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Apolipoprotein is a group of plasma proteins that are associated with a variety of
diseases, such as hyperlipidemia, atherosclerosis, Alzheimer’s disease, and diabetes.
In order to investigate the function of apolipoproteins and to develop effective targets
for related diseases, it is necessary to accurately identify and classify apolipoproteins.
Although it is possible to identify apolipoproteins accurately through biochemical
experiments, they are expensive and time-consuming. This work aims to establish a
high-efficiency and high-accuracy prediction model for recognition of apolipoproteins
and their subfamilies. We firstly constructed a high-quality benchmark dataset including
270 apolipoproteins and 535 non-apolipoproteins. Based on the dataset, pseudo-
amino acid composition (PseAAC) and composition of k-spaced amino acid pairs
(CKSAAP) were used as input vectors. To improve the prediction accuracy and
eliminate redundant information, analysis of variance (ANOVA) was used to rank the
features. And the incremental feature selection was utilized to obtain the best feature
subset. Support vector machine (SVM) was proposed to construct the classification
model, which could produce the accuracy of 97.27%, sensitivity of 96.30%, and
specificity of 97.76% for discriminating apolipoprotein from non-apolipoprotein in 10-
fold cross-validation. In addition, the same process was repeated to generate a new
model for predicting apolipoprotein subfamilies. The new model could achieve an
overall accuracy of 95.93% in 10-fold cross-validation. According to our proposed
model, a convenient webserver called ApoPred was established, which can be freely
accessed at http://tang-biolab.com/server/ApoPred/service.html. We expect that this
work will contribute to apolipoprotein function research and drug development in
relevant diseases.

Keywords: apolipoprotein, identification, subfamily-classification, multiple features, machine learning

Abbreviations: 188D, 188-dimensional feature vectors; ANOVA, analysis of variance; Apo, apolipoprotein; CKSAAP,
composition of k-spaced amino acid pairs; DPC, Dipeptide Composition; IFS, incremental feature selection; PseAAC,
pseudo-amino acid composition; SVM, support vector machine.
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INTRODUCTION

Apolipoprotein (Apo), a protein component of plasma
lipoprotein, can bind and transport blood lipids to various
tissues of the body for metabolism and utilization. It is
mainly synthesized in the liver and partly in the small
intestine (Yiu et al., 2020). A large number of studies have
found that apolipoprotein gene mutation, the formation of
different allelic polymorphisms, and further the generation
of different phenotypes of apolipoprotein, can affect the
metabolism and utilization of blood lipid, thereby triggering the
occurrence and development of hyperlipidemia, atherosclerosis,
cardiovascular and cerebrovascular diseases (Richardson et al.,
2020). Millions of people around the world are suffering
from apolipoprotein-related diseases (Cheng et al., 2019b;
Fang et al., 2019).

Apolipoprotein includes A, B, C, D, E, L, F, H, M, N,
and R subfamilies, each of which has different functions.
Beyond the basic function of transporting lipids and stabilizing
structure of lipoproteins, some types of apolipoprotein can
activate lipoprotein metabolic enzymes and recognize receptors.
Alterations in expression level, spatial structure, and function of
apolipoproteins are closely related to a variety of diseases. For
instance, the occurrence of hyperlipidemia and atherosclerosis
is often accompanied by abnormal expression of high-density
lipoprotein (HDL) and ApoA-I. Besides, the increased level of
ApoB can raise the incidence of coronary heart disease. And
ApoC-II can affect the uptake of triglyceride-rich lipoproteins
by liver receptors, leading to the formation of human
hypertriglyceridemia (Wolska et al., 2017). Moreover, ApoD is
up-regulated in several human neurological disorders, such as
Alzheimer’s disease (AD), Schizophrenia, Parkinson’s disease,
and multiple sclerosis, and serves as an early diagnostic marker
for a variety of cancers and neurological diseases (Martinez-
Pinilla et al., 2015). Low level of ApoE in the brain and
cerebrospinal fluid is associated with Alzheimer’s disease and
other neurodegenerative diseases, as well as the early stage
of many eye diseases (Mahley, 2016). In addition, ApoH
participates in the coagulation process, and curbs ADP-mediated
platelet aggregation by regulating adenylate cyclase activity;
as a plasma inhibitory factor, it suppresses the activation of
intrinsic coagulation pathway. Moreover, ApoM is a novel
subtype of apolipoprotein discovered by Xu and Dahlback (1999).
Studies suggested that ApoM takes a role in the antiatherogenic
function of HDL through multiple pathways such as lipid
metabolism, immune regulation, and anti-inflammatory effect
(Arkensteijn et al., 2013). In patients with diabetes, the ApoM
level is significantly reduced, and the rescue of ApoM level
can decrease blood sugar level, increases insulin secretion, and
improves insulin resistance, thereby serving as a predictor of
the development of diabetes (Nojiri et al., 2014). Thus, correctly
identify apolipoproteins and their subfamilies could provide
important clues for understanding their function and roles in
various of diseases.

Due to its biological function and association with
multifarious diseases, apolipoprotein has gained increasingly

more attention by researchers. Although more than 600
annotated apolipoproteins can be retrieved from the UniProt
database, over 40,000 potential apolipoproteins are not
annotated. However, identifying apolipoproteins in the vast
amounts of data by biochemical assays will be a time-consuming
and expensive task. Therefore, the research of apolipoprotein
from the perspective of bioinformatics, with the help of a variety
of statistical means and kinetic theory, can effectively narrow the
target research scope.

In recent years, sequence alignment analysis has become
the main bioinformatical study of apolipoprotein, which can
reveal the evolution mode of apolipoprotein and predict the
possible functional domains (Seda and Sedova, 2003; Weinberg
et al., 2003; Toledo et al., 2004; Krisko and Etchebest, 2007;
Deng et al., 2015). In 2000, Frank and Marcel (2000) analyzed
the amino acid sequence composition and physicochemical
properties of ApoA-I in 12 species. They found that the
n-terminal of ApoA-I is highly conservative, while the c-terminal
and the middle of the sequence display remarkable variation.
Structural analysis suggested that the C-terminal is critical
for lipid binding. Subsequently, Kiss et al. (2001) studied
the functional similarity of ApoA-I in humans and chickens,
declaring the correlation between the spatial structures of
ApoA-I and lipid binding. Then, Gangabadage et al. (2008)
studied the nuclear magnetic three-dimensional structure and
kinetic properties of ApoC-III and simulated the binding
structure of this protein and lipids. A recent study using
sequence and structural alignment showed that the structure
of ApoC-III is conserved in mammals. Bashtovyy et al. (2011)
conducted sequence comparison of ApoA-I from 31 animals
and found that there are conservative salt bridges in the
first 30 residues and many conservative functional domains,
revealing the relationship between apolipoprotein structure
and function. Besides, Bandarian et al. (2016) studied the
sequence variation of the ApoA-II gene and the correlation
between this protein and serum level of HDL cholesterol.
However, all above studies based on sequence or structure
comparison have limitations. When facing a new sequence
without homologs, these sequence alignment-based methods
will be invalid. To solve the problem, in 2016, we designed
a machine learning-based model to identify apolipoproteins
(Tang et al., 2016) by using g-gap dipeptide feature extraction
algorithm and LibSVM classifier. Nevertheless, this model has
its own vulnerabilities, which cannot predict the subfamilies of
apolipoproteins and the benchmark dataset built in the model is
not large enough.

To overcome the shortcomings mentioned above, we
constructed a new benchmark dataset and developed a new
model to distinguish apolipoproteins from non-apolipoproteins
and further classified their subfamilies. Finally, based on the new
model, we established a novel webserver called ApoPred, which
can be freely accessible to all scholars. The whole process for
the model construction was shown in Figure 1. This work can
not only shed new light on the function of apolipoprotein, but
also provide theoretical guidance for the further development
of drug targets.
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FIGURE 1 | Flowchart of the proposed classification scheme.

MATERIALS AND METHODS

Benchmark Dataset
Establishment of a high-quality dataset is the key of constructing
a prediction model (Liang et al., 2017; Zhang et al., 2017; Cui
et al., 2018; Hasan et al., 2019a,b). All of our apolipoprotein
sequence data was downloaded from the UniProt online
database. To obtain the reliable dataset, all sequences are
processed in the following steps:

a. Select the apolipoprotein sequences that have been
annotated in the Swiss-Prot database.

b. Remove the sequences which contain undesirable
characters: such as “B,” “J,” “O,” “U,” “X,” and “Z.”

c. Remove redundant sequences by setting the cutoff value of
CD-HIT at 0.8

For protein prediction, redundant sequences with similarity
of higher than 40% are generally removed. Nevertheless, in
this work, the cutoff value of CD-HIT was set at 0.8 in
order to have enough sequences to train models. Thus, a

total of 270 apolipoproteins remained. Due to the fact that
the sample size of some subfamilies is too small to be
compared statistically, we combined these subfamilies into a
new class called Apoelse which contains 20 proteins. The
details of apolipoprotein subfamilies were illustrated in Figure 2.
Additionally, since apolipoproteins are mainly present in plasma,
our negative samples (982 sequences) were selected from the
non-apolipoproteins in plasma. To construct a reliable non-
apolipoprotein dataset, we obtained 535 sequences with the
sequence identity of less than 80%.

Feature Expression
After constructing the dataset, we need to represent
apolipoprotein sequence with a valid feature vector. It is
obvious that the sequence, structure, and function are different
between apolipoproteins and non-apolipoproteins, and among
different apolipoprotein subfamilies. Generally, the differences
are mainly manifested in long-term correlation, physicochemical
properties, and amino acid composition. In this study, we tried
a variety of feature extraction methods, and finally chose the
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FIGURE 2 | The pie chart of samples. The number after each Apo type indicates the sequence number. The Apoelse refers to the subfamilies including ApoF, ApoH,
ApoM, ApoN, and ApoR.

optimal ones as the input vectors, namely pseudo-amino acid
composition (PseAAC) and composition of k-spaced amino
acid pairs (CKSAAP).

Pseudo-Amino Acid Composition (PseAAC)
PseAAC has been widely used in proteins prediction (Yang et al.,
2016; Hasan et al., 2020b). It is defined by adding spatial structure
and physicochemical properties to the amino acid frequency.
The physicochemical properties considered in this work are
hydrophobicity, hydrophilicity, mass, pK1 (alpha-COOH), pK2
(NH3), pI (at 25◦C), rigidity, irreplaceability, and flexibility.
Therefore, based on the formulation of Type II PseAAC, a protein
sequence P with a total number of L amino acids can be described
by a (20+ 9γ)-dimensional vector as follows:

P =
[
A1, · · ·A20,A20+1, · · · ,A20+9γ

]T (1)

where “T” is a symbol of transpose operator. Ai(i = 1, 2,
. . ., 20) represents the frequency of occurrence of 20 amino
acids in protein P. Ai(i = 20+ 1, . . ., 20+ nγ) are the
first to γth tire correlation factors of protein sequence which
can be calculated according to the equations in references. n
depends on the number of physical and chemical properties
we used.

Composition of k-Spaced Amino Acid Pairs
(CKSAAP)
The CKSAAP has also been used to analyze protein function
(Ju and Wang, 2020). It calculates the frequencies of amino
acid pairs separated by any k residues (k = 0, 1, 2, . . ., 5. The
default maximum value of k is 5). Given a k value from 0 to 5,
the number of occurrences of each k-spaced amino acid pairs
can be determined from target sequences. Taking k = 0 as an
example, we can get 20× 20 residual pairs of 0-interval (i.e., AA,
AC, AD, YY.). Thus, a given protein P can be formulated by a
400-Dimension vector as follows:

P =
(
NAA

Ntotal
,
NAC

Ntotal
,
NAD

Ntotal
, · · · ,

NYY

Ntotal

)
20×20

(2)

where the NAA represents the occurrence number of 0-interval
residue pair AA in the protein sequence, and the Ntotal means
the total number of 0-interval residual pairs in the given protein
sequence. The value of each descriptor represents the frequency
of the corresponding residue pair in the sequence. Then, when
k= (1,2, . . ., 5), a protein P can be formulated as:

P =
(
NAA0

Ntotal0
, · · · ,

NYY0

Ntotal0
,
NAA1

Ntotal1
, · · · ,

NYY1

Ntotal1
, · · · ,

NAAk

Ntotalk
, · · · ,

NYYk

Ntotalk

)
20×20×(k+1)

(3)
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where the NAAk denotes the occurrence number of k-interval
residue pair AA in the protein sequence, and the Ntotalk stands
for the total number of k-interval residual pairs in the given
sequence. For k = 0, 1, 2, 3, 4, and 5, the values of Ntotalk are
P – 1, P – 2, P – 3, P – 4, P – 5, and P – 6 for a protein of length
P, respectively.

188-Dimensional Feature Vectors
188D extracts sequence features based on 20 amino acid
compositions and eight physicochemical properties (Ao et al.,
2020). These features encode the primary sequence with 188-
dimensional vectors (Li et al., 2019). Thus, the 188D of a given
protein P is calculated as:

P = (m1, . . . ,mi, . . . ,m20,C1, . . . ,Ci,T1, . . . ,Ti,D1, . . . ,Di)
(4)

The mi is the frequency of 20 amino acids (in alphabetical
order, ACDEFGHIKLMNPQRSTVWY) in the sequence. Then,
the amino acids are classified into three groups according to
each of the n(n = 1, 2, . . ., 8) physicochemical properties of
proteins. For every single protein property, Ci is the frequency
of occurrence of amino acids from the three groups respectively,
yielding 3-dimension features; T describes the frequency of three
types of dipeptides composed of two amino acids from different
groups, which also generates 3-dimension features; D represents
distribution of the three groups of amino acids at five specific
points (first, 25%, 50%, 75%, and end in the sequence), through
which the other 15-dimension features are extracted. In total,
we obtain 20 + 8 × (3 + 3 + 15) = 188 dimensional features
by this algorithm.

Dipeptide Composition (DPC)
The Dipeptide Composition is a commonly used algorithm for
protein sequence description,giving 400 descriptors (Saravanan
and Gautham, 2015; Manavalan et al., 2019a,b; Hasan et al.,
2020a). It is defined as:

D (r, s) =
Nrs

N − 1
r, s ∈ (A,C,D, · · · ,Y) (5)

where Nrs is the number of dipeptides represented by amino
acid types r and s, and the value of N stands for the length of a
protein sequence.

Feature Selection
In order to obtain the optimal feature subset and eliminate
redundant and irrelevant features, analysis of variance (ANOVA)
feature selection technology was adopted in this work.

ANOVA generally performs well in feature selection (Ding
and Li, 2015; Kwon et al., 2020). Based on its definition, the
features can be ranked by the corresponding F-value, as shown
below:

F(θ) =
S2
B(θ)

S2
W(θ)

(6)

where the F(θ) denotes the total variance, S2
B(θ) and S2

W(θ) are
the variances between groups and within a group, separately.

The detailed formula are given in

S2
B (θ) =

1
ni − 1

ni∑
j=1

xij −
1
ni

ni∑
j=1

xij

2

(7)

S2
W (θ) =

1
n− 1

k∑
i=1

ni∑
j=1

xij −
1
n

k∑
i=1

ni∑
j=1

xij

2

(8)

where xij is the observations of the jth sample in the ith group, k
is the number of group, ni is the sample size of each group. And
here i= 1, 2, . . ., k.

To determine the optimal feature combination, we employed
incremental feature selection (IFS) (Zhu et al., 2019), which adds
features to the feature subset in succession, and then study the
influence of these features on the predicting performance of the
constructed machine learning model. By strictly following the
above steps, the optimal feature subset can be finally obtained
when the maximum accuracy appeared.

Model Construction by Support Vector
Machine (SVM)
SVM is a supervised learning method which has been widely
applied in statistical classification and regression analysis
(Manavalan and Lee, 2017; Xu et al., 2018a,b; Basith et al., 2019;
Lai et al., 2019; Manavalan et al., 2019c; Wang et al., 2019; Yang
W. et al., 2019; Dao et al., 2020b). Proposed in 1964, SVM
developed rapidly after 1990s and derived a series of improved
and extended algorithms which have been performed in pattern
recognition such as portrait recognition and text classification
(Qin and He, 2005). SVM uses hinge loss function to calculate
empirical risk and adds regularization terms in the solution
system to optimize structural risk. Besides, SVM can build a
hyperplane to carry out non-linear classification through kernel
function (Bredesen and Rehmsmeier, 2019). Due to its good
performance in non-linear classification, we employed SVM in
this study. We adopted a tool of SVM, the LibSVM package,
which can be obtained from: https://www.csie.ntu.edu.tw/~cjlin/
libsvm. Grid search was used to optimize the parameters C and γ.

Performance Evaluation
Cross-validation is an objective method for evaluating the
performance of predictors (Cheng and Hu, 2018; Cheng
et al., 2019a; Tahir and Idris, 2020). In our study, 10-fold
cross-validation was applied to assess our prediction model.
Sensitivity (Sn), specificity (Sp), accuracy (Acc), and Mathew
correlation coefficient (MCC) are commonly used to measure the
performance of classifiers (Xu et al., 2018c, 2019; Boopathi et al.,
2019; Huang et al., 2019; Liang et al., 2019; Stephenson et al., 2019;
Yang H. et al., 2019; Basith et al., 2020; Dao et al., 2020a; Hasan
et al., 2020c; Zhao et al., 2020), and can be defined as follows:

Sn =
TP

TP + FN
(9)

Sp =
TN

TN + FP
(10)
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TABLE 1 | The results of four feature extraction methods in prediction
of apolipoprotein.

Feature Acc (%) Sn (%) Sp (%) MCC Number

CKSAAP (k = 4)a 97.02 96.67 97.20 0.93 180

DPCb 96.40 97.41 95.89 0.92 381

PseAACc 97.27 96.30 97.76 0.94 70

188Dd 95.53 92.59 97.01 0.90 182

aRepresents composition of k-spaced amino acid pairs.
bMeans the dipeptide composition.
c Is Pseudo-amino acid composition.
dStands for 188-dimensional feature vectors that is cited from literature
(Liao et al., 2016). The bold values indicate the best performances of the methods.

Acc =
TP + TN

TP + TN + FP + FN
(11)

MCC =
(TP × TN)− (FP × FN)

√
(TP + FP) (TP + FN) (TN + FP) (TN + FN)

(12)

where TP and TN are the correctly predicted positive and
negative samples, respectively; FP and FN are the falsely predicted
positive and negative samples, respectively.

The Receiver Operating Characteristic (ROC) curve can
intuitively represent the influence of any threshold on the
generalization of the constructed prediction model (Wang et al.,
2020). Generally, the closer the ROC curve is to the point of (0, 1),
the higher the recall of the model is. Furthermore, the area under
ROC curve (AUC) is the important numerical indicator of ROC

TABLE 2 | The results of four feature extraction methods in subfamily classification
of apolipoprotein.

Feature CKSAAP DPC PseAAC (γ = 10) 188D

K = 3 K = 4

ACC (%) 95.93 96.67 94.44 91.11 90.37

Numbere 169 763 142 56 53

eRepresents the optimal number of features left after feature selection. The bold
values indicate the top two performances of the CKSAAP.

curve, which ranges from 0 to 1. The performance of classifier is
positively related to the value of AUC. Thus, we also used ROC
curve and AUC to evaluate the model.

RESULTS

The Accuracy for Apolipoproteins
Prediction
We trained SVM with the different feature extraction strategies.
And the best feature extraction method was selected to construct
the final prediction model. In each feature extraction, feature
selection was applied to achieve the optimal feature subset. In our
research, a total of four different feature extraction strategies were
examined. Results are recorded in Table 1.

As shown in Table 1, the PseAAC achieved the highest Acc
of 97.27% among four feature extraction methods. In addition, it
also gained the best MCC of 0.94 and Sp of 97.76%. This suggests

FIGURE 3 | The ROC curves of four feature extraction methods. When PseAAC was applied to construct the model for apolipoprotein prediction, the AUC reaches
the peak of 0.9957.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 6 January 2021 | Volume 8 | Article 621144

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-621144 December 24, 2020 Time: 17:13 # 7

Liu et al. Identification of Apolipoproteins and Their Subfamilies

FIGURE 4 | A histogram showing the classification sensitivity of each subfamily. ApoL has the highest Sn of 100%, while Apoelse gets the relatively lowest Sn of
90.00%. And the total Sn is 95.93%.

FIGURE 5 | The top page of the ApoPred webserver at http://tang-biolab.com/server/ApoPred/service.html.
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FIGURE 6 | Cluster analysis of apolipoproteins and non-apolipoproteins.

that apolipoprotein and non-apolipoprotein can be predicted
satisfactorily according to the differences in their sequences.

To further evaluate the predictive performance of our models,
we plotted the ROC curves in Figure 3. Obviously, PseAAC is the
best one among the four features for apolipoprotein prediction
because it could produce the AUC of 0.9957.

The Accuracy for Apolipoprotein
Subfamily Classification
Up to now, this is the first machine learning work for
apolipoprotein subfamily classification. By identifying the
subfamilies of apolipoprotein, we aimed to provide more
comprehensive understanding of apolipoproteins’ function. We
investigated the performances of three kinds of features:
CKSAAP, DPC, and PseAAC with feature selection. Results are
listed in Table 2.

As presented in Table 2, the best accuracy of 96.67% was
obtained via CKSAAP with the k = 4. However, such high
accuracy was produced at the cost of a high-dimension feature
vector (763 D). From the table, one may notice that when k of
CKSAAP was set to 3, the overall accuracy is 95.93% which is
slightly lower than that of k= 4. Whereas, the dimension of input
feature decreases dramatically from 763 to 169. Thus, the model
constructed on CKSAAP (k= 3) is more robust and reliable. The

prediction accuracy for each subfamily in 10-fold cross-validation
is illustrated in Figure 4.

Different subfamilies of apolipoprotein have different
functions and play distinct roles in the metabolism and
physiological process of lipoprotein. Therefore, the subfamily
classification of apolipoprotein is particularly significant. In
our model, the highest accuracy of 100% was obtained for the
ApoL subfamily. However, for Apoelse prediction, the accuracy
is 90.00% which is the lowest among all subfamilies. The reason
for this low accuracy is that Apoelse contains several types
of subfamilies and the apolipoproteins in these subfamilies
are not very similar in feature space. Such phenomenon also
demonstrates that the apolipoproteins in different subfamilies
possess different intrinsic sequence characteristics, structure,
and function. Given this, our subfamily classification model of
apolipoprotein is stable and reliable.

Webserver
For the sake of most scholars, we established a user-friendly
webserver called ApoPred. Users can browse the server homepage
at http://tang-biolab.com/server/ApoPred/service.html. And the
webserver is guaranteed to work properly for at least 2 years.
A detailed guide on how to use the webserver is given below.

On the home page of ApoPred, as shown in Figure 5, the
Read Me button provides a brief introduction of the predictor
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FIGURE 7 | Cluster analysis of apolipoprotein subfamilies.

and warnings when using it. Click the Data button, and the
benchmark dataset that we built can be freely downloaded.

The users can input or paste the query amino acid sequences
into the input box in FASTA format. The Example button
supplies users with our example sequences in FASTA format.
When clicking the Submit button, users can view the results of
apolipoproteins identification and their subfamily classification.

DISCUSSION

It is acknowledged that apolipoprotein has crucial effect
on regulating lipoprotein metabolism, and variations in the
expression level. Spatial structure and function of apolipoprotein
are associated with numerous diseases. Nevertheless, lack
of intensive bioinformatical analysis on the function and
classification of apolipoprotein restricted its application on drug
targets for the associated diseases.

In this work, we innovatively applied the correlation features
obtained from residues sequence on constructing a two-tier
classifier to identify apolipoproteins and their subfamilies. All
the corresponding results and models stem from a reliable
benchmark dataset which have been verified by biochemical
experiments. Besides, the correlation of amino acids residues
contains key genetic information. We consequently compared

four feature extraction strategies describing the association
between apolipoprotein amino acids and selected the optimal
features by incorporating ANOVA into IFS. The PseAAC
employed in apolipoprotein prediction model has been widely
used in various fields of computational proteomics (Feng et al.,
2013; Yang et al., 2016; Long et al., 2017). Another feature
expression of CKSAAP used for subfamily classification is also
a convenient tool in bioinformatics (Wang et al., 2016; Li et al.,
2017; Cheng, 2019). The prediction models based on these
features achieved encouraging results in 10-fold cross validation,
which are demonstrated by cluster analysis via t-distributed
stochastic neighbor embedding (t-SNE). The visualization results
are shown in the Figures 6, 7.

After feature extraction and selection procedure, 70-
dimensional feature vectors were generated, which were reduced
to 2-dimensional by t-SNE algorithm to facilitate clustering
analysis. t-SNE is a common technique for dimensionality-
reduction and visualization of high-dimensional data. As
displayed in Figure 6, apolipoproteins are well separated from
non-apolipoproteins. This illustrates that the features of PseAAC
have promising performance in apolipoprotein classification.
Similarly, as shown in Figure 7, the first six subfamilies, namely,
ApoA, ApoB, ApoC, ApoD, ApoE, and ApoL, are obviously
separated, while the seventh class, Apoelse, partly overlaps with
ApoB, ApoC, ApoD, and ApoL, possibly because the seventh class
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is not a pure subfamily but a combination of ApoF, ApoH,
ApoM, ApoN, and ApoR.

In addition, due to the size of the dataset provided
by UniProt, our model does not conduct independent data
validation. However, the validation of independent data will
be carried out in our future work by collecting more
apolipoprotein data.

In a word, based on feature extraction and selection algorithm,
our models performed excellently in apolipoprotein recognition
and subfamily-classification.

CONCLUSION

In this research, a practical tool, named ApoPred, was established
to identify potential apolipoproteins and their subfamilies,
providing a new theoretical basis for apolipoprotein function
research and a new approach for drug target development. We
have constructed the latest, high-quality, and reliable dataset
to date, which is potentially to be conducted as the standard
dataset for apolipoprotein research. We also successfully applied
strategies of feature extraction and selection to obtain high-
accuracy and robust classification models, which will facilitate
further research of apolipoprotein function and drug targets for
the relevant diseases. In the future, we will construct a more

robust and precise model based on deep learning (Cao et al., 2017;
Sunil et al., 2017; Si et al., 2020; Tomasz et al., 2020) and fusion
features to identify apolipoproteins.
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