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Neurophysiological experiments on monkeys have reported highly irregular persistent activity during the performance of an oculomotor
delayed-response task. These experiments show that during the delay period the coefficient of variation (CV) of interspike intervals (ISI)
of prefrontal neurons is above 1, on average, and larger than during the fixation period. In the present paper, we show that this feature
can be reproduced in a network in which persistent activity is induced by excitatory feedback, provided that (i) the post-spike reset is
close enough to threshold , (ii) synaptic efficacies are a non-linear function of the pre-synaptic firing rate. Non-linearity between pre-
synaptic rate and effective synaptic strength is implemented by a standard short-term depression mechanism (STD). First, we consider
the simplest possible network with excitatory feedback: a fully connected homogeneous network of excitatory leaky integrate-and-fire
neurons, using both numerical simulations and analytical techniques. The results are then confirmed in a network with selective excitatory
neurons and inhibition. In both the cases there is a large range of values of the synaptic efficacies for which the statistics of firing of
single cells is similar to experimental data.
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INTRODUCTION
The mechanisms of working memory at the neuronal level have been
investigated in the last three decades using single neuron electro-
physiological recordings in monkeys performing delayed response tasks
(Funahashi et al., 1989; Fuster and Alexander, 1971; Fuster and Jervey,
1981; Goldman-Rakic, 1995; Miyashita, 1988). These tasks share in com-
mon a ‘delay period’ during which the monkey has to maintain in working
memory information needed to solve the task after the end of the delay
period. One of the major findings of these experiments is that neurons
in many areas of association cortex exhibit selective ‘persistent activity’
during the delay period—they increase (or decrease in some cases) their
firing rates compared to the baseline period, selectively for one or several
cues whose identity is needed for the monkey to perform the task cor-
rectly after the end of the delay period. This has led to the hypothesis that
persistent activity of neurons in such areas is what allows the monkey
to maintain the identity of a stimulus in working memory. In particular,
neuronal persistent activity in prefrontal cortex (PFC) has all the properties
expected for a working memory system: it is maintained until the end of
the delay period, even when the duration of this delay period is changed
from trial to trial (Funahashi et al., 1989; Nakamura and Kubota, 1995);
the monkey makes an error when persistent activity stops before the end
of the trial (Funahashi et al., 1989).
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Most experimental papers reporting persistent activity have focused
purely on changes in firing rates of the recorded neurons. Several recent
studies have investigated in more detail the statistics of firing of neurons
in dorsolateral PFC during such tasks (Compte et al., 2003; Shinomoto
et al., 1999). In particular, Compte et al. (2003) found that neurons fire in
a highly irregular fashion in all periods of the task. The average CV is close
to one in the baseline period, and is higher than 1 in the delay period, both
for preferred and non-preferred stimuli.

Most models of working memory in recurrent neuronal circuits
(reviewed in Brunel, 2004) generate persistent activity due to excitatory
feedback loops in such circuits. These models are able to account for the
firing rates observed in such tasks (Amit and Brunel, 1997; Brunel, 2000;
Brunel and Wang, 2001), though not very robustly. However, these models
do not account for the high irregularity shown in the experiments. While
high irregularity can be obtained robustly in the baseline period, provided
inhibition is sufficiently strong, because neurons receive synaptic inputs
that are subthreshold in average and firing is due to temporal fluctuations
in these inputs (Amit and Brunel, 1997; van Vreeswijk and Sompolinsky,
1996, 1998), persistent activity states typically involve neurons which
receive supra-threshold inputs (Brunel, 2000) and therefore exhibit much
more regular firing. This has led to alternate models that propose different
mechanisms for working memory maintenance, that rely on an increase
of inhibition in the persistent state compared to the background state
(Renart, 2000; Renart et al., 2007).

In this paper, we re-examine the issue of irregularity in recurrent net-
works in which multistability is induced by recurrent excitation. We show
that recurrent excitation can lead to persistent activity that is more irregular
than background activity, provided two conditions are fulfilled: (i) post-
spike reset is close to threshold (i.e. neurons do not have a pronounced
hyperpolarization following a spike, Troyer and Miller, 1997) and (ii) satu-
ration of post-synaptic currents at high pre-synaptic firing rates, which is
implemented by short-term depression (Tsodyks and Markram, 1997).
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MATERIALS AND METHODS
The model
We consider a fully connected network of N excitatory integrate-and-
fire neurons. Each neuron has two sources of input currents: an external
current, Ii,ext and the recurrent current Ii,rec due to the spikes arriving from
all other neurons in the network. The membrane potential Vi of neuron i
(i = 1, . . . , N ) evolves in the sub-threshold range according to:

τV̇i(t) = −Vi(t) + Ii,rec(t) + Ii,ext(t) (1)

where τ is the integration time constant of the membrane and the currents
are expressed in units of the potential. If at time t the voltage reaches the
threshold θ, a spike is emitted and the voltage is reset to a value Vr for
an interval (t, t + τrp) where τrp is the refractory period.

The external input is assumed to be Gaussian and δ-correlated:

Ii,ext(t) = µext + σext

√
τηi(t) (2)

where µext is a constant input, σext measures the fluctuations around µext

and ηi(t) is white noise uncorrelated from neuron to neuron: 〈ηi(t)〉 = 0,
〈ηi(t)ηj (t′)〉 = δijδ(t − t

′
).

Spikes arriving at synapses from excitatory neurons produce a fast
component that models AMPA receptor-mediated currents, and a slow-
decaying component, mimicking NMDA receptor-mediated currents. Since
the network is fully connected, all neurons receive the same recurrent
synaptic input,

Ii,rec(t) = Irec(t) = s(t) + z(t) (3)

where s(t) and z(t) denote respectively the fast and slow components of
the synaptic current which obey to:

τd ṡ = −s + x (4)

τr ẋ = −x + τ

N
(1 − γ )

∑
k

N∑
j=1

Jj (t)δ(t − tkj − D) (5)

τdN ż = −z + h (6)

τrN ḣ = −h + τ

N
γ

∑
k

N∑
j=1

Jj (t)δ(t − tkj − D) (7)

where τr is the rise time, τd the decay time constant of the post-synaptic
AMPA current, x(t) is an auxilliary variable and D the synaptic delay. The
fraction of charge mediated by the NMDA-like component is denoted by
γ and τrN , τdN are respectively the rise and decay time of the NMDA
post-synaptic current. Individual synaptic strengths scale as 1/N , see
the factor in front of the sums in Equations (5, 7).

The time dependence of the synaptic efficacy Jj (t) is due to the pres-
ence of short-term depression (STD). We use the phenomenological model
introduced by Tsodyks and Markram (1997). The synaptic transmission is
described in terms of fraction of available resources, yj (t) ∈ [0, 1], where
the index j refers to pre-synaptic neuron. Upon arrival of a spike, a frac-
tion u of currently available resources is activated, becoming temporarily
unavailable. In between spikes, available resources recover exponentially
with a time constant τrec, i.e.

ẏj (t) = 1 − yj (t)
τrec

− uyj (t)
∑

k

δ(t − tkj ) (8)

The current produced is proportional to the instantaneous fraction of acti-
vated synaptic resources at the presynaptic emission time. Hence, J (t) is
given by:

Jj (t) = uJyj (t − D) (9)

where J is the maximal efficacy.

Analytical methods
The model is studied using both numerical simulations and analytical
techniques. Analytical calculations are performed using a ‘mean-field’
approach, following previous studies (Amit and Tsodyks, 1991; Amit and
Brunel, 1997; Romani et al., 2006).

Statistics of input currents in the large N limit. Since the strength of the
synaptic efficacies is O(1/N ), the fluctuations in the recurrent currents
are O(1/

√
N ) and hence they can be neglected in the limit N → ∞.

In this limit the fluctuations in the inputs are induced by external inputs
exclusively and are thus independent from neuron to neuron. Equations (4–
7) become:

τd ṡ = −s + x (10)

τrẋ = −x + τ(1 − γ )J̄ (t)ν(t − D) (11)

τdN ż = −z + h (12)

τrN ḣ = −h + γτJ̄ (t)ν(t − D) (13)

where J̄ (t) is the instantaneous population-averaged synaptic efficacy,
and ν(t) is the instantaneous population-averaged firing rate. The average
synaptic efficacy is a function of the first moment of the ditribution of the
available resources in the presynaptic population:

J̄ (t) = uJ〈y〉(t) (14)

where 〈y〉(t) is given by:

〈y〉(t) = 1
N

N∑
1

yj (t) (15)

In an asynchronous state in which ν(t) = ν, the synaptic inputs are
therefore

Ii,rec + Ii,ext = µ + σext
√

τmηi(t) (16)

µ = µext + uJτ〈y〉ν (17)

Hence, the computation of the recurrent synaptic currents requires the
knowledge of the average emission rate ν and of the average fraction of
the available resources 〈y〉, which depends itself on the statistics of firing
of the network. Note again that since the fluctuations of the recurrent part
of the synaptic input vanish and the external current is gaussian and δ-
correlated, the fluctuating parts of the synaptic input to different neurons
are uncorrelated.

Average firing rate. In the presence of white noise, the average emission
rate, ν, defined as the inverse of the average first passage time, is given
by the well-known formula (Ricciardi, 1977):

ν =
(

τrp + τ

∫ θ−µ
σext

Vr−µ
σext

duφ(u)

)−1

(18)

where µ is given by Equation (17), and φ(u) = √
πeu2

(1 + erf (u)).

Average fraction of available resources. The expression of the aver-
age fraction of the available resources in a network of LIF neurons has
been computed recently (Romani et al., 2006). The first moment of the
distribution of available synaptic resources is

〈y〉 =
1 − γrpp̃

(
1

τrec

)
1 − (1 − u)γrpp̃

(
1

τrec

) (19)

where p̃(·) is the Laplace transform of the distribution of presynaptic ISIs

and γrp = e
τrp
τrec . The Laplace transform p̃(s) of an Ornstein–Uhlenbeck
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process was derived in Alili et al. (2005) in terms of Hermite functions
Hl(z)

p̃(s) =
H−sτ

(
µ−Vr
σext

)
H−sτ

(
µ−θ

σext

) . (20)

To summarize, the average firing rate in asynchronous states of the
network is given by the solutions of equations:

ν = 
(µ, σext) (21)

µ = µext + uJτ〈y〉ν (22)

〈y〉 =
1 − γrpp̃

(
1

τrec

)
1 − (1 − u)γrpp̃

(
1

τrec

) (23)

The coefficient of variation of the ISIs—the standard deviation of the
ISI divided by the mean ISI—is given by the following expression:

CV2 = 2πν2
∫ θ−µ

σext

Vr−µ
σext

ex2
dx

∫ x

−∞
ey2

(1 + erfy)2dy. (24)

where µ is given by Equation (22).
These equations are integrated numerically to obtain the dependence

of the rate ν and CV on mean inputs µ or synaptic strength J.

Numerical methods
The equations for the membrane potential Vi(t) (Equation (1) plus con-
dition for spike emission and refractoriness) with the recurrent current
Irec (Equations 3–6), external current Iext (Equation 2) and for the fraction
of available resources at each synapse (Equation 8) are integrated using
a Runge–Kutta method with gaussian white noise with a time step �t

(Honeycutt, 1992). The mean value of the external current µext is calcu-
lated using mean-field equations such that the background activity is at
a choosen value νsp, i.e.

µext = µsp − uτJνsp〈y〉(µsp) (25)

The network has been simulated using the following protocol. The simula-
tion starts by a pre-stimulus interval of 1 second, during which the network
receives no external stimulation. Then a stimulus is presented during 500
ms. Stimulus presentation consists in increasing the value of the exter-
nal mean synaptic input by a contrast factor λ. Last, a delay period of
several seconds follows in which the external stimulus is removed. Delay
period activity and CV are estimated excluding the first second following
the stimulus presentation, to ensure the network has reached its steady
state. The parameters used in the simulations are summarized in Table 1,
except when stated otherwise.

Spatial working memory model
We also simulated a network model with a spatial structure (Camperi and
Wang, 1998; Compte et al., 2000; Renart et al., 2003). The network is
composed of NE pyramidal cells and NI interneurons, with NE = 4NI.
Excitatory neurons are selective to an angular variable θ ∈ [0, 2π].
Neuron i (i = 1, . . . , NE) has preferred angle θi = (2πi)/NE. Hence,
neurons of the network cover uniformly all the angles along a circle. Both
excitatory and inhibitory cells are modelled as leaky integrate-and-fire
neurons whose parameters are summarized in Tables 1 and 2. Both types
of neurons receive non-selective external inputs, modelled as external
currents of mean µE

ext and µI
ext and SD σE

ext and σI
ext as in Equation (2).

Neurons receive their recurrent excitatory inputs through AMPAR- and
NMDAR-mediated transmission and their inhibitory inputs through
GABAR-mediated currents. These currents are modelled as in ‘The Model’
with time constants summarized in Tables 1 (AMPA and NMDA) and 2
(GABA). Only excitatory-to-excitatory connections are endowed with STD.
In contrast to the network used until now (a homogeneous network with

Table 1. Parameters used in the simulations of a network of N excita-
tory cells connected by synapses with STD.

θ—spike emission threshold 20 mV
Vr—reset potential 15 mV
τ—memmbrane time constant 5 ms
τrp—refractory period 2 ms
N—number of excitatory neurons 800
νsp—desired background activity 3 Hz
µext—mean external current Equation (25)
σext—standard deviation of external current 8 mV
τr—rise time constant of synaptic AMPA currents 0.05 ms
τd—decay time constant of synaptic AMPA currents 5 ms
τrN —rise time constant of synaptic NMDA currents 2 ms
τdN —decay time constant of synaptic NMDA currents 100 ms
γ—fraction of charge mediated by NMDA-like component 0.9
u—fraction of synaptic resources activated per spike 0.5
τrec—recovery time of activated synaptic resources 160 ms
λ—contrast factor 0.1
dt—time step 1 �s

no spatial structure), the excitatory-to-excitatory recurrent connections
between neurons depend on the difference between their preferred cues.
This is implemented taking the absolute synaptic efficacy between neuron
i and neuron j to be Jij = J (θi − θj ), where J (θi − θj ) is given by

J (θi − θj ) = J− + (J+ − J−) exp
[
− (θi − θj )2

2σJ
2

]
(26)

In this equation, J− represents the strength of the weak crossdirectional
connections, J+ the strength of the stronger isodirectional connections
and σJ is the width of the connectivity footprint, J (θi − θj ). The
normalization condition:

1
360◦

∫ 360

0
J (θi − θj )dθj = JEE (27)

imposes a relationship between J+, J− and σJ ; therefore the only
remaining free parameters are J+ and σJ , while J− is determined by
Equation (27). This normalization condition is used in order to maintain a

Table 2. Parameters used in the simulations of a network with spatially
structured connectivity. Other parameters as in Table 1.

NE—number of excitatory neurons 1600
NI—number of excitatory neurons 400
νE

sp—desired background activity 0.75 Hz
νI

sp—desired background activity 2.5 Hz
µE

ext—mean external current Equation (28)
µI

ext—mean external current Equation (29)
σE

ext—standard deviation of external current 8 mV
σI

ext—standard deviation of external current 8 mV
τI

r —rise time constant of synaptic GABA currents 0.05 ms
τI
d—decay time constant of synaptic GABA currents 5 ms

JEE—excitatory-to-excitatory synaptic efficacy 0.2 mV
JIE—excitatory-to-inhibitory synaptic efficacy JEE

JEI—inhibitory-to-excitatory synaptic efficacy αJEE

JII—inhibitory-to-inhibitory synaptic efficacy αJEE

α—ratio of inhibitory to excitatory synaptic efficacy 3
σJ —width of the connectivity footprint 18 degree
λ—contrast factor 0.5
dt—time step 0.01 ms
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Figure 1. f–I curve and CV–I curve of a LIF neuron with low reset. (A) f–I curve of the LIF neuron. Output frequency, Equation (18), as a function of the mean
input, for θ = 20 mV, σext = 5 mV, τrp = 5 ms, τm = 20 ms and Vr = 10 mV. (B) Coefficient of variation, Equation (24) as a function of the mean current input
for the same parameters.

Figure 2. Single cell and network properties with low reset and linear synapses. Parameters: θ = 20 mV, σext = 5 mV, τrp = 5 ms, τm = 20 ms and
Vr = 10 mV. (A) f–I curve (firing rate of a single LIF neuron as a function of mean input). The intersections between the f–I curve (thick line) of the LIF neuron
and the straight line (thin line) correspond to solutions of Equation (30), shown by diamonds, for J = 18 mV. The three solutions correspond to the background
activity state (stable), the limit of the basin of attraction (unstable) and the persistent activity state (stable). (B) CV–I curve (CV of a single LIF neuron as a function
of mean input). Diamonds: Values of the CV for the three states shown in A. (C): Bifurcation diagram showing firing rate of the excitatory network as a function
of synaptic strength J. The background activity corresponds to the red horizontal curve (lowest branch), the dotted curve (intermediate branch) is the boundary
of the basin of attraction and the black curve (highest branch) represents the evolution of the persistent activity. (D) Bifurcation diagram showing how the CV
depends on J: the persistent activity (black curve, lowest branch) has a CV which is well below the CV of the background activity (highest branch, red curve) for
all values of J.
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fixed background activity as J+ is varied (Amit and Brunel, 1997; Compte
et al., 2000).

Other connections (inhibitory-to-excitatory, excitatory-to-inhibitory
and inhibitory-to-inhibitory) are unstructured, i.e. they are independent
on the preferred angle of both neurons. In order to achieve the desired
levels of background activity of the excitatory and inhibitory population,
the mean, µE

ext and µI
ext, of the external inputs have been chosen using

mean-field equations:

µE
ext = µE

sp − τEJEEu〈y(µE
sp)〉νE

sp + JEIτEνI
sp (28)

µI
ext = µI

sp − τIJIIuνI
sp − τIJIEνE

sp (29)

where JIE is chosen equal to JEE, while inhibitory connections are
chosen to be stronger than the excitatory ones by a factor α, so that
JEI = JII = αJEE. The simulation protocol is similar to the one used
until now, but the cue presentation is modelled enhancing by a factor λ

the value of the mean external input to pyramidal cells whose preferred
cues are close to the stimulus (θ ∈ [θs − 18◦, θs + 18◦]).

RESULTS
f –I and CV–I curves of IF neurons with low reset
We first consider how the firing rate and CV of the integrate-and-fire
neuron depend on its mean synaptic inputs. This is done by plotting the

f –I curve (frequency as a function of mean input) and CV–I curve (CV as a
function of mean input). The qualitative features of these curves are crucial
to understand the solutions of mean-field equations that give the collective
properties of the network, as we will see below. The firing frequency is
represented as a function of the mean synaptic input in Figure 1A for a low
value of the reset potential (Vr = 10 mV). It shows two regimes: for mean
synaptic inputs well below threshold, firing is driven by the fluctuations
around the mean input. In this region, the f –I curve is convex. For mean
synaptic inputs well above threshold, the neuron is in a supra-threshold
firing mode. Firing is essentially driven by the mean synaptic input, the
firing frequency is relatively independent of the fluctuations and the f –I
curve is concave. The inflexion point is close to the point at which the
mean synaptic input is equal to the firing threshold.

How the CV behaves as a function of the mean synaptic input is
shown in Figure 1B: for very small inputs (those corresponding to low
rates) the CV is almost 1, since firing is due to rare fluctuations that
bring the neuron to threshold (Poisson-like firing). As the mean input
increases, firing becomes more and more regular, and the CV starts to
decrease significantly when the mean inputs are close to threshold. In
the supra-threshold regime the CV becomes small, since the inter-spike
interval density becomes peaked around the mean time for the neuron
to cross threshold. The CV tends to zero as the mean inputs become
large.

Figure 3. Simulations versus theory. The network is submitted to the following protocol: pre-stimulus interval (0–1000 ms); Stimulus presentation
(1000–1500 ms); and delay activity (1500–2500 ms). The total excitatory coupling strength is J = 18 mV. The external current is chosen in order to have a
background activity of 3 Hz. Other parameters as in Figure 2. (A) Spike trains of 10 neurons in the interval 500–2000 ms. (B) Average instantaneous firing rate
as a function of time (in bins of 1 ms); the mean value of the CV in the background and persistent activity are indicated in the graph. (C) Bifurcation diagram
showing firing rate versus J: Mean-field (solid lines) versus simulations (symbols). (D): Bifurcation diagram showing CV versus J: Mean-field (solid lines) versus
simulations (symbols).
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Figure 4. Effect of reset potential on single cell and network behaviour. Other parameters are � = 20 mV, τm = 20 ms, τrp = 5 and σext = 5 mV. (A) f–I
curves for four different values of the reset potential, indicated on the graph; the steepness of the f-I curve increases with increasing Vr . (B) The CV–I curve
develops a peak when Vr is large enough. (C) CV as a function of the mean firing rate. (D) Bifurcation diagrams for different values of Vr ; the values of the CV in
persistent activity close to the bifurcation increase with Vr , but the gap between persistent and background CVs remain large (∼0.5) at any value of the CV.

Persistent activity of excitatory networks of IF neurons with low
reset and linear synapses
We now turn to an investigation of the dynamics of the network in absence
of short-term depression, which is obtained in the limit u → 1, τrec → 0.
In this limit the relationship between the presynaptic firing rate and the
average post-synaptic currents becomes linear. As described in Brunel
(2000), the firing rates ν in background and persistent activity states can
be obtained as the solutions of the equation:

ν = 
(µsp + Jτ(ν − νsp), σext) (30)

where in the first argument of the function 
, we have rewritten the mean
input µ as the sum of its value µsp in the background state, plus the
deviation from this value when the population has an average firing rate
ν. This second term in the mean currents is proportional to J, the total
synaptic efficacy, and to ν − νsp. The solutions of Equation (30) are the
intersections of the response function ν = 
(µ, σext) and the straight line
ν = νsp + (µ − µsp)/τJ in the µ–ν plane. For low values of the synaptic
efficacy J, there is a unique solution which corresponds to the background
state νsp. When increasing the strength of the synaptic efficacy J, the slope
of the straight line decreases. At a critical value of J, the straight line
becomes tangent to the transfer function. This intersection represents the
onset of working memory. Note that at this intersection point the response
function is necessarily concave.

As shown in Figure 2A, as J increases further, Equation (30) develops
two other solutions: the highest one ν = νper represents the persistent
activity state and is potentially stable; the lowest one, ν = ν∗ is unstable
and represents the boundary of the basins of attraction of persistent and
background states. The values of the coefficient of variation relative to
these three solutions are shown in Figure 2B. The CV of the background
activity state is near 1, while the persistent activity state is in the region
in which the CV is small. This is not surprising because, as mentioned
above, the onset of working memory happens at the point at which the
straight line is tangent to the f-I curve and at this point the response
function is necessarily concave. Thus, the persistent activity state is in the
supra-threshold region for any value of the synaptic strength.

Figure 2C shows the bifurcation diagram—how the solutions of
Equation (30) depend on J. The lowest horizontal branch corresponds to
the background solution, the intermediate branch to the unstable solution
and the upper branch to the persistent activity state. As can be seen in
Figure 2D, the CV of the persistent activity state is always lower than the
CV of the background activity state (upper horizontal branch)—in fact it
is around 0.4 at the bifurcation point and goes to zero as the synaptic
strength increases.

This highly regular firing predicted by the mean-field calculations dur-
ing persistent activity is confirmed by numerical simulations; Figures 3A
and 3B represent respectively the spike trains of 10 neurons and the evo-
lution of the mean firing rates during time for a fixed value of the synaptic
efficacy. In the pre-stimulus interval (0–1000 ms) the network is in the
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Figure 5. Effect of membrane time constant on rate and CV. Others param-
eters are � = 20 mV, Vr = 15 ms, τrp = 5 and σext = 5 mV. (A) f–I curve
for several values of τ. (B) CV–I curve. (C) CV as a function of mean firing rate.

background state and the CV is close to one (CV = 0.89), while during
the delay period (1500–2500 ms) we found persistent activity with small
CV (CV = 0.23). Figures 3C and 3D compare mean-field predictions and
simulations for both rates and CVs.

Effect of reset and membrane time constant on CV–I curve
In the previous section we described the behaviour of a network model
in which the synapses are a linear function of the output frequency and

in which the value of the reset potential is relatively far from threshold
(θ − Vr = 10 mV). We now turn to the analysis of the effect of increasing
the value of the reset potential (Troyer and Miller, 1997), keeping a linear
description of the synaptic efficacies.

Figure 4 shows the effect of increasing Vr on the firing rate and on
the CV. Increasing Vr increases the gain of the f –I curve, since the neuron
is closer to threshold just after a spike has been emitted. The effect on the
CV is more interesting: when Vr is large enough (Vr = 15 mV in Figure
4), the CV–I curve becomes non-monotonic—it first increases when the
mean input increases, reaches a maximum at a value which is smaller than
Vr , and then decreases monotonically as the mean inputs go towards the
supra-threshold range. Hence, there is a large region of mean inputs for
which the CV is larger than one. The reason for a maximum in CV for mean
inputs smaller than the reset is that in these conditions, the instantaneous
firing probability is higher just after firing that it is afterwards; hence, there
is a higher probability of short interspike intervals, compared to a Poisson
process with the same rate. Therefore, the CV is larger than one. This
effect can also be seen by plotting the CV as a function of rate, while the
CV becomes 1 at low enough rates for any value of Vr , the range in which
the CV is larger than 1 depends in a pronounced way on how close Vr is
to the threshold (see Figure 4B).

Changing the membrane time constant has also a pronounced effect on
rate and CV. Decreasing the membrane time constant increases the steep-
ness of the f –I curve, as shown in Figure 5A, since shorter integration
time leads to shorter ISIs, which means higher firing rates. Furthermore,
reducing the membrane time constant has the effect of shortening the
transients of the voltage, which leads to a decrease in the size of the peak
in the CV–I curve for low values of τ (see Figure 5B); this happens since,
as mentioned above, the transient dynamics just after the spike is respon-
sible for the increase in the probability of firing at short ISIs. However, this
effect is not very pronounced and, as we can see in Figure 5C, decreasing
τ yields a flattening of the CV versus rate curve, leading to high CV values
for a very broad range of firing rates.

Can this increase in Vr in itself solve the problem of the irregularity
of persistent activity? Figure 4D shows that while increasing Vr does
increase the CV of both background and persistent activity states, the
large gap between the CV in the background state and the one in the
persistent state persists. This is due to the fact that the high-CV region
remains confined to the subthreshold range, while we have seen in the last
section that with linear synapses, the persistent activity state is necessarily
in the supra-threshold range. We now turn to networks with non-linear
synapses and ask whether non-linearity can bring persistent activity in
the sub-threshold range.

Persistent activity in networks of neurons with high reset and
non-linear synapses
In the previous section, we saw that a way to obtain robustly CVs larger
than 1 is to set the reset potential close enough to threshold. Nevertheless,
even if this condition is fulfilled, a model with linear synapses as described
above, is not able to capture the irregularity of the persistent activity
reported in (Compte et al., 2003). In this section, we describe how this
problem can be solved by introducing non-linear synapses.

The introduction of short-term synaptic depression mechanisms leads
to a frequency-dependent synaptic efficacy (Equation (14), where 〈y〉(µ)
is given by Equation (19)). For the sake of simplicity, let us first assume a
Poissonian presynaptic firing. Under this assumption, the dependence of
the total synaptic efficacy on the firing frequency is given by:

J (ν) = J

1 + ν

νs

(31)

where J is the absolute synaptic efficacy and νs = 1/(uτrec) (Tsodyks and
Markram, 1997). Thus, when ν � νs, the efficacy is ∼ J , while it decays
as Jνs/ν when ν � νs. Correspondingly the mean synaptic input in a
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Figure 6. Single cell and network properties when neurons have high reset (Vr = 15 mV) and synapses have short-term depression. (A) f–I curve
(solid line) plotted together with the current–rate relationship for synapses with short-term depression, Equation (33) (dotted curve). Intersections between these
two curves (diamonds) yield the solutions of Equation (21). They correspond to background, unstable and persistent fixed points, respectively. (B) CV–I curve.
Diamonds: Values of the CV for the three intersection points shown in A. (C) Bifurcation diagram showing firing rate versus J. The black curve correspond to the
persistent state (stable), the dotted one to the boundary of the basin of attraction (unstable) and the red one to the background state (stable). ( D) CV versus J
bifurcation diagram. There exists a finite range of values of the synaptic efficacy for which the CV in the persistent state is larger than in the background one
(370 mV < J < 420 mV in the figure).

network of cells firing at rate ν is:

µ = µsp + τ
(
J (ν)ν − J (νsp)νsp

) = µsp + τJ

(
ν

1 + ν

νs

− νsp

1 + νsp

νs

)
,

(32)

In this equation the second term in the right-hand side is linear in ν when
ν � νs while if ν � νs, it saturates at a value τJνs. Such a saturating
behaviour of the mean synaptic input as a function of the mean firing
rate is necessary to obtain a persistent state solution in the sub-threshold
region of the f –I curve, as we will see below.

Let us now turn to the situation when presynaptic firing is induced
by threshold crossing of an Ornstein–Uhlenbeck process, rather than the
Poisson process considered above. Equation (32) becomes:

µ = µsp + τuJ (〈y〉(µ)ν − 〈y〉(µsp)νsp), (33)

Inverting Equation (33) yields ν as a function of µ. The qualitative
behaviours of ν obtained by solving Equations (32) and (33) are simi-
lar, but while Equation (32) is only an approximation, (33) is exact in the
large N limit (Romani et al., 2006). The expression of ν versus µ obtained
from Equation (33) is displayed in Figure 6A together with the f –I curve
of the IF neuron (black curve): the upper intersection between the two

curves, which represents the persistent state solution, is shifted towards
the subthreshold region of the f –I curve, thanks to the saturation effect
mentioned above. Figure 6B shows where the values of the CV of the
three solutions are located on the CV–I curve. The persistent state solu-
tion is now in the range in which the CV displays a peak. In fact, the CV of
the persistent state is greater than the CV of the spontaneous state. This
property holds in a fairly large range of synaptic efficacies, as shown by
Figures 6C and 6D, which display the bifurcation diagrams for rates and
CV, respectively. The large gap in the CV between background state and
persistent state that was found for linear-synapses is now reduced to a
few percent, since both solutions are now located in the sub-threshold
region dominated by fluctuations around the mean input.

We tested the mean-field prediction using simulations of a network of
800 excitatory cells connected by synapses with STD. These simulations
that the persistent state is stable only if the fraction of NMDA currents,
γ is high enough. If γ ≥ 0.8, the persistent activity is asynchronous and
stable up to a value of J near the bifurcation point. On the other hand, if
γ ≤ 0.7, for some value of J near the bifurcation point the asynchronous
state destabilizes and network oscillations appear, with an amplitude that
grows as γ decreases. When the amplitude of the resulting oscillation is
large enough, persistent activity is destabilized. The value of the synaptic
efficacy J at which the activity falls in the background state increases when
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Figure 7. High CV in persistent activity: simulations versus mean-field. Pre-stimulus (0–7 second), stimulus (7–8 second) and post-stimulus (8–15 second)
activity of a network of 800 excitatory cells with nonlinear synapses. (A) Spike trains of 10 neurons in the interval 6–9 second. (B) Mean network activity as a
function of time (bins of 1 ms). The mean value of the CV in the persistent state is larger than in the pre-stimulus interval as predicted my mean-field. The transient
decrease of the rate during the stimulus interval is due to short-term depression. (C) Bifurcation diagram showing firing rate versus excitatory coupling strength
(mean-field: lines; simulations: symbols). (D) Bifurcation diagram showing CV versus excitatory coupling strength (mean-field: lines; simulations: symbols).

γ decreases. These oscillations disappear for large values of J for every
γ . These oscillations are due to STD and have been observed previously in
recurrent networks with frequency-dependent synapses (Tsodyks et al.,
1998). Here, we used γ = 0.9 for which the persistent activity is asyn-
chronous and stable in a wide range of values of J. In Figure 7B, we show
the temporal evolution of the mean activity: in the pre-stimulus interval
the network is in its background activity state and the CV is slightly larger
than 1 (CV = 1.06); during the stimulus, short-term depression leads to
a pronounced decrease in the activity (Chance et al., 1998; Mongillo et al.,
2005), and during delay period the CV of the persistent activity reaches
CV = 1.17, as predicted by the mean-field analysis. Figures 7C and 7D
compare bifurcation diagrams for firing rates and CVs predicted by mean-
field calculations with values obtained with simulations. Note the good
agreement between the two; however, to reach such a good agreement,
one needs to choose a very small value of the time step (dt = 1 �s).

Effect of heterogeneity in reset potentials
Compte et al. (2003) classified PFC cells in three types of discharge
patterns, ‘refractory’, ‘Poissonian’ and ‘bursty’ as assessed by their auto-
correlograms and power spectra. They also found that the coefficients of
variation of the spike trains of the three classes are such that the ‘refrac-
tory’ cells have the lowest CV, the ‘bursty’ ones have the highest CV,
while the ‘Poissonian’ cells have a CV which is an intermediate between
refractory and Poissonian.

To investigate whether heterogeneity can be responsible for this
diversity of behaviours, we introduced in the model a variability in
the reset potential from neuron to neuron. For each neuron, we draw
randomly the reset potential using a uniform distribution between a min-
imum and a maximum value (we take V min

r = 10 mV and V max
r = 19

mV). We divided the whole population of neurons in three classes,
according to the value of their reset potential (first class: Vr ∈ [10
mV, 13 mV); second class: Vr ∈ [13 mV, 16 mV), third class: Vr ∈
[16 mV, 19 mV)).

This heterogeneity leads to a large diversity in ISI histograms that
reproduces qualitatively the diversity of ISI histograms found in Compte
et al. (2003), as shown in Figure 9. The ISI histograms in the delay period
are plotted for these three classes of neurons in Figure 9. Neurons with
high reset have a large peak close to the minimal ISI imposed by the
refractory period (2 ms). This peak is much larger than a Poisson process
with equivalent rate, indicating a tendency to fire in bursts, similar to
the ‘bursty’ neurons found in PFC. On the other hand, neurons with low
reset have a larger effective refractory period, as shown by the peak at
larger ISIs (∼5 ms), similar to the ‘refractory’ neurons found in PFC. All
these neurons have exponential tails of the ISI distribution, as shown in
Figure 9 (note the logarithmic y scale in the graph). The CV distributions
of these three classes of neurons are shown in Figure 8, in both ‘fixation’
and ‘delay period’. It shows, as expected, that CV increases with reset
potential.
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Figure 8. Hetereogenity of ISI distributions due to variability in the reset
potential. ISI histograms for three classes of neurons (low, intermediate and
high Vr ) during delay period. The y-axis is displayed in logarithmic scale. Note
that the higher the reset, the larger the tendency to fire in bursts, leading to
the pronounced peak close to the minimal ISI imposed by the refractory period
(2 ms). On the other hand, neurons with lower resets have a longer effective
refractory period, with a peak of the ISI distribution at ∼5 ms. These behaviours
of the ISI histograms match qualitatively the three types of behaviours seen in
Compte et al. (2003).

Spatial working memory model
So far we found that a network of excitatory neurons connected by
synapses with STD is able to reproduce the irregularity of the persistent
activity found in PFC. In this experiment, the authors recorded prefrontal
neurons during an oculomotor delayed response (ODR) task in which neu-
rons are spatially selective. Hence, in this section, we investigate whether
these results still hold using a model with a spatial structure (Camperi
and Wang, 1998; Compte et al., 2000; Renart et al., 2003) as described in
‘Materials and Methods’. The network we simulate is homogeneous (all
neurons have the same reset).

The network activity is monitored by plotting its spatiotemporal fir-
ing pattern. Figure 10A shows the rastergram of excitatory neurons
labelled by the location of their preferred cues; during the ‘fixation’ period

(0–2000 ms) the network is in the background state. After the cue pre-
sentation (2000–2500 ms), elevated persistent activity remains restricted
to the group of neurons that received an increase in synaptic inputs
during cue presentation throughout the delay period (2500–5500 ms).
Figure 10B shows the population firing profile, averaged over the delay
period. Figure 10C shows the CV profile, averaged over the delay period:
the mean CV of neurons belonging to the subpopulation selective to the
stimulus is 1.25.

Note that in this simulation we kept very low values of the background
activity (νE = 0.75 Hz and νI = 2.5 Hz) in order to obtain a robust bistabil-
ity. Using these values of νE and νI, we found selective persistent activity
in the range J+ = 3.1 − 3.4 mV.

Figure 10A also shows that the location of the bump exhibits small
drifts around the location of the cue. This random drift is common to models
with this type of architecture (see e.g. Compte et al., 2000; Renart et al.,
2003). In fact, the order of magnitude of the displacement of the bump after
3 seconds is a few degrees, roughly of the same order of magnitude as
reported in previous studies for a network of this size (Compte et al., 2000).
Hence, the presence of short-term depression and strong irregularity of
firing of cells participating in the bump does not affect adversely the
stability of the bump.

DISCUSSION
We have shown here that a purely excitatory network of spiking neurons
can account for the high irregularity shown by PFC neurons in the delay
period (Compte et al., 2003). In fact, in our model, persistent activity is even
more irregular than background activity. Two conditions are necessary in
our model to obtain this behaviour: (i) high post-spike reset, to obtain a
non-monotonic CV–I curve; and (ii) saturation of average post-synaptic
currents at high pre-synaptic firing rate, to allow persistent activity to
occur in the high CV region. We now examine the evidence for these
conditions to occur in PFC in vivo.

The first requirement is that the membrane potential should be reset
after a spike above the mean membrane potential induced by fluctuating
synaptic inputs. In particular, one should not see a pronounced hyper-
polarization below that average membrane potential. This is a prediction
of the model, that could be checked by intracellular recordings in PFC
in vivo, which to our knowledge have never been performed. However, it
is instructive to consider intracellular recordings in vivo in other cortical
structures. Intracellular recordings in visual cortex of the cat have been
performed by several groups in recent years. Visual inspection of the mem-

Figure 9. Distribution of CVs in the three classes of neurons. (A) Pre-stimulus interval (network in background state). Neurons with low reset (red curve)
have a CV distribution centered below 1, due to the effective refractory period induced by the low reset. Neurons with large reset potential (blue curve) have
high values of the CV. (B) Delay period (network in persistent state). There is an increase in the variability of the firing in all neuronal classes.
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Figure 10. Spatial working memory network with J+ = 3.4. (A) Spike
times of excitatory neurons, labelled by the location of their preferred cues.
Fixation epoch (0–2000 ms): the entire excitatory population is in the back-
ground state. Stimulus presentation consists in enhancing the external input
to neurons with preferred cues between [162, 198 degrees] during a period of
500 ms. This stimulus triggers a localized neural activity which persists during
the delay period (2500–5500 ms). (B) Firing rate of single excitatory neurons
in the delay period, as a function of preferred angle. (C) CV of single excitatory
neurons in the delay period as a function of preferred angle. Only cells firing
at more than 3 Hz are shown. Note the high irregularity of selective neurons
in the delay period (mean CV is equal to 1.25).

brane potential traces shown e.g. by Anderson et al. (2000) and Monier
et al. (2003), for instance, seem to indicate no pronounced afterhyperpo-
larization, consistent with our prediction. Furthermore, one should expect
that in a regime in which a neuron receives a large barrage of excitatory
and inhibitory inputs, which has been hypothesized to be the situation
in cortex, such inputs should decrease the effectiveness of potassium
currents responsible for post-spike repolarization.

The second requirement is a saturation of the average post-synaptic
currents at high pre-synaptic firing rate. Short-term depression leads to
such a saturation (Tsodyks and Markram, 1997) and it is known to be
present in excitatory-to-excitatory synapses in at least a subset of PFC
neurons (Wang et al., 2006). Saturation at high presynaptic firing rates
is in fact a general property of chemical synaptic transmission and is
expected to occur regardless of the details of short-term dynamics.

Other studies (Sakai et al., 1999; Shinomoto et al., 1999) recently
addressed the question of whether spike trains recorded in PFC during
the delay period of a short-term memory task are well described by a
LIF model with stochastic inputs. They show that the statistics of ISI can
be reproduced by such a model, only if inputs are temporally correlated,
with a correlation time constant of order 100 ms. In our model, stochastic
external inputs were taken to be white noise for the sake of simplicity, but
all our results should also hold with temporally correlated external inputs.
In fact, the finite size of the network in our simulations leads to fluctuations
of the recurrent inputs that have long correlation time constants, due to
both the long NMDA decay, and to short-term depression time constants.

Electrophysiological recordings from PFC shows that cells in the delay
period have often strongly non-stationary firing rates, which are not
present in our model. This non-stationarity might in principle be another
factor contributing to high CVs. To disambiguate between intrinsic vari-
ability of firing and variability due to temporal variations in firing rate,
Compte et al. (2003) computed a ‘local’ measure of irregularity, the CV2,
that measures irregularity from adjacent ISIs. Measured CV2s in PFC are
also high (typically of order 1), showing that the observed irregularity is
not due to non-stationarity of the firing rate.

In this paper, we have treated the standard deviation of the fluctuations
in synaptic currents as a fixed parameter σ. The values of this parameter
were chosen to be in the range of experimentally observed values in in
vivo. The standard deviation of the distribution of membrane potentials in
vivo has been reported to be approximately 5 mV (Anderson et al., 2000).
This is roughly consistent with σext = 8 mV, since at low firing rates, the
standard deviation of the distribution of membrane potentials is approxi-
mately σext/

√
2. Such a large variance is often thought to emerge due to

strong excitation and inhibition that balance each other (Amit and Brunel,
1997; Tsodyks and Sejnowski, 1995; van Vreeswijk and Sompolinsky,
1996, 1998).

Other investigators have proposed recently models with irregular per-
sistent activity. These models rely on strong inhibition for such irregularity
to emerge. Renart et al. (2007) showed strong irregularity of persistent
activity when there is a balanced increase in both excitation and inhi-
bition in the persistent state compared to the background state. In this
scenario, the variance of synaptic inputs in the persistent state is signif-
icantly larger than the variance in the background state, explaining the
high CV in the persistent state. However, the bistability range is small in
this scenario, and it in fact vanishes in the limit of large number of con-
nections per neurons (Renart et al., 2007). Another scenario involves a
Hopfield-type memory structure on top of unstructured random excitatory
connections (Roudi and Latham, 2007), together with inhibitory neurons
maintaining a balance with excitation in both background and persistent
states. The values of the CV obtained in that model are not very large—
of the order of 0.8. However, it is important to note that the model they
used, a quadratic integrate and fire neuron, is likely to behave as the LIF
neuron if the reset potential is chosen to be close to threshold. We there-
fore believe that a high reset potential in the Roudi and Latham model,
would lead to high CV (>1) values in the persistent state, as found in
our model.
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We have demonstrated that high CVs occur robustly in an unstructured
network. We have also performed preliminary simulations of a spatial
working memory network, that also shows strong irregularity in persistent
activity. A more detailed investigation of this model, as well as models
storing an extensive number of discrete attractors, will be the subject of
future work.
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