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Abstract: Amorphous solid dispersions are considered a promising formulation strategy for the
oral delivery of poorly soluble drugs. The limiting factor for the applicability of this approach
is the physical (in)stability of the amorphous phase in solid samples. Minimizing the risk of
reduced shelf life for a new drug by establishing a suitable excipient/polymer-type from first
principles would be desirable to accelerate formulation development. Here, we perform Molecular
Dynamics simulations to determine properties of blends of eight different polymer–small molecule
drug combinations for which stability data are available from a consistent set of literature data.
We calculate thermodynamic factors (mixing energies) as well as mobilities (diffusion rates and
roto-vibrational fluctuations). We find that either of the two factors, mobility and energetics, can
determine the relative stability of the amorphous form for a given drug. Which factor is rate limiting
depends on physico-chemical properties of the drug and the excipients/polymers. The methods
outlined here can be readily employed for an in silico pre-screening of different excipients for a given
drug to establish a qualitative ranking of the expected relative stabilities, thereby accelerating and
streamlining formulation development.

Keywords: molecular dynamics simulation; amorphous; physical stability; hydrogen-bond;
molecular mobility; mixing energy; molecular interactions

1. Introduction

A substantial percentage of small molecule drugs in development pipelines are expected to have
poor aqueous solubilities and thus inadequate oral bioavailabilities [1]. As the preferred type of
drug formulation is usually the solid oral dosage form, low solubility can be a serious issue for the
developability of a new active pharmaceutical ingredient (API). A potential remedy is the formulation
of drugs as amorphous solids, a strategy that can improve aqueous solubilities due to the higher free
enthalpy of API molecules in the amorphous compared to the crystalline state. However, at ambient
conditions, small molecule drugs are usually more stable in their crystalline compared to the
amorphous state. Such amorphous solids are meta-stable at best, and their conversion into crystalline
solids, and the concomitant reduction in solubility, is only a matter of time. Consequently, this strategy
has been successfully applied in only a small number of cases to date as ensuring the required physical
(long term) stability of such formulations can be difficult [2].

A popular strategy towards improving the physical stability of amorphous drugs has been
the preparation of amorphous solid dispersions (ASD), i.e., their co-formulation with intrinsically
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amorphous excipients, usually polymers such as poly-vinyl-pyrrolidone (PVP) or hydroxypropyl
methylcellulose (HPMC) [2–5]. Due to the large chemical variety of drug compounds, their
miscibility with with various polymer types can vary widely, and thus for each new API its
compatibility with different polymers needs to be established at the onset of formulation development.
Several different experimental and theoretical methods have been proposed and used for this
purpose. On the experimental side, this includes thermal analysis, via melting point depression
(DSC), thermo-rheological methods, recrystallization, or dissolution end point methods [6–8]. If a
liquid low molecular weight analogue of the polymer is available, relative drug solubilities can also
be estimated by measuring solubilities in this analogue [9]. This, however, requires that such an
analogue exists, which is not necessarily the case for all commonly used polymers, and it also cannot
account for the effect of finite polymer chain lengths and their impact on kinetic stabilities [10–12].
Moreover, the latter method assumes the activity coefficient of a drug molecule in a small molecule
analogue to be comparable to that in polymer counterpart at a given concentration. Common to most
of these methods is that room temperature drug solubilities in polymers are not measured directly,
and the interpretation of experimental results is based on various assumptions and models which
might apply in a given case or not. In a recent review and comparison of these methods, Knopp et
al. concluded that relative solubilities obtained with different methods do not agree in all cases, and
the optimal choice of experimental method for a determination of solubilities depends on the thermal
properties of drug and polymer [11].

Next to the experimental effort, the techniques mentioned above require a substantial amount of API,
a commodity that can not be taken for granted at the early pre-formulation stage. Thus, a pre-ranking
of various polymers with respect to the expected stability of the ASD with a given API would be
beneficial as a means to streamline and accelerate formulation development. For this purpose, several
theoretical methods have been proposed. A comparatively simple approach is a statistical analysis
of the correlation between various molecular descriptors of the API and the stability of an ASD
with a given polymer. Moore at al developed such a model for PVP using the descriptors based on
EDRAGON [13] and stability data of 12 API molecules. They identify one descriptor, called R3m
index, showing an excellent correlation with stability [14]. However, the authors stated: “a direct
physical interpretation of the correlation between the R3m index and amorphous molecular solid
dispersion potential is not readily apparent”. In addition, although they go through some effort
demonstrating the statistical significance of their result, we consider it questionable whether a model
based on 12 data points, and choosing one out of several thousand different descriptors can be expected
to hold for a wide class of API molecules. A similar model based on other descriptors was proposed by
Nurzynska et al., but this is only valid for pure compounds and does not take into account the effect
of polymers or other excipients [15].

Another approach that has a long history, and whose physical interpretation appears to be more
straight forward is the use of solubility parameters (Hansen and Hildebrandt), usually in the context of
Flory–Huggins (FH) theory [16,17]. Originally developed for a description of dilute polymer solutions,
more recently FH theory was embraced in formulation development as a means for the interpretation
of experimental data [18–21]. However, as early as 1951, it was argued that “The lattice model, basis
of the Flory–Huggins theory and equation, was at first widely accepted because it seemed to be in
agreement with the available data [...] with only one adjustable parameter, the Huggins Φ constant.
With more recent work [...] serious discrepancies in the theory have become evident. More thorough
weighing of the theory at the outset [...] might have led to the expectation that it would fail” [22].
Strikingly, now, more than sixty years later, this assessment seems to have been largely forgotten and
ignored. Specific and directional intermolecular interactions of varying strength, in particular hydrogen
(H) bonding exist in most drug–polymer systems [23–25]. Quantitative values of the strength of such
specific interactions and the degree to which they influence thermodynamic and kinetic properties
remain unaccounted for in these models, resulting in poor miscibility predictions for interacting
composites [10]. A conceptually different approach is the perturbed-chain statistical associating fluid
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theory [26]. It was applied to estimate the stability of a number of amorphous APIs [27], but the effect of
excipients/polymers has not been accounted for. In addition, the method requires empirical parameters
that are not always readily available for new compounds. For example, fluid-state properties of high
polymers are quite challenging to measure and also the impact of chirality/tacticity on the directional
interactions such as H-bonding are hard to account for.

An alternative theoretical method for an estimation of relative stabilities of an API in various
polymer types are models based on atomic scale molecular simulations. In principle, such models
could provide both a ranking of different polymer types with respect to the stability of the ASD
with a given API and insights into the physical mechanism that provides this stability. Gupta et al.
performed MD simulations of blends of Celecoxib and PVP [28]. They reported the observed
interactions between specific API and polymer functional groups and confirmed these findings using
spectroscopic methods. Anderson and co-workers performed molecular dynamics (MD) simulations
of indomethacin in a PVP matrix. They identified the changes in H-bonding patterns upon mixing
and used the calculated energies to parameterize a FH interaction parameter [29]. However, in neither
of the accounts mentioned above, were attempts made to extend the method to cover more than a
single API–polymer combination to investigate its accuracy in the prediction of relative stabilities.
Jha et al. used MD simulations to study molecular interactions between a model drug and two
different cellulose based polymers in aqueous solutions at different concentrations. They investigated
structural features and give some general recommendations regarding preferential substituents on
the polymers, but no comparison with experimental stabilities was included [30]. In a somewhat
different approach, Maniruzzaman calculated interaction energies at the ab initio level between
dimers of several polymers and different APIs performing in silico energy minimizations of small
drug–polymer complexes. However, no clear correlation between miscibilities or stabilities and the
calculated energies was apparent [31]. Gupta et al. determined the relative stabilities of ASDs of
indomethacin, with polyethylene oxide, glucose, and sucrose by calculating solubility parameters via
MD simulation of the pure API and excipients [32]. No simulations of blends were included, and
the resulting model is expected to suffer from the same limitations as the above mentioned solubility
parameters/FH based methods, not accounting for specific intermolecular polymer–API interactions.

The examples mentioned above could certainly provide valuable insights in specific cases, but
they are limited in scope, and so far comprehensive and comparative studies demonstrating the general
usefulness of this approach are not available. In addition, most molecular modeling studies towards
the stability of ASDs published so far concentrate on the thermodynamic aspect, i.e., they consider
equilibrium properties, mixing enthalpies and H-bonding. However, as the solubilities of drugs in
polymers are often lower than the required drug loads, we are facing non-equilibrium systems with
time-dependent properties, and a stability that is governed by kinetics and relaxation processes [33–35]
(Figure 1). The relative stabilities of different amorphous systems or glasses have been associated
with both α-relaxation (translational diffusion) [36] and higher order mobilities (Johari–Goldstein
and β-relaxation) [35]. One example including amorphous drugs is given in a recent publication
by Knapil et al. Using various spectroscopic methods and DSC, the authors demonstrated for a
co-amorphous system of two API molecules at different molar ratios that stability of the amorphous
state clearly correlates with molecular mobilities [37]. To our knowledge, a comparative study using
atomic scale molecular simulation to investigate the impact of both effects, thermodynamics and
kinetics, on the stability of a range of different API–polymer combinations has not been available
to date. Even most experimental accounts reported so far concentrate on either the thermodynamic
solubility of API in polymer or on the molecular mobility.

While being related, the molecular basis of thermodynamic and kinetic contributions to the
physical stability of ASDs have not been reported. In the present contribution, we aim to develop
and deploy MD simulations to derive thermodynamic (energetic) and kinetic (mobility) descriptors
for diverse ASDs and compare the outcome with the reported experimental study. To this end, we
report first results obtained by performing and analyzing extensive MD simulations of two different
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API molecules, namely flufenamic acid (FLA) and phenacetin (PAC), each blended at two different
compositions in ASDs with Eudragit E100 (EEC), polyacrylic acid (PAA), poly (styrene sulfonic acid)
(PSA) and PVP (Figure 2). Though experimental solubility values vary, both APIs can definitely
be considered poorly soluble (S / 1.0 × 10−3 mol/L) [38]. For each API–polymer combination,
we determined mixing energies, variations of H-bonding, and API mobilities in the blend. Here,
we compare our results to experimental stabilities from literature data, and discuss the relative impact
of both factors, thermodynamics and kinetics, on stabilities. Finally, we interpret our findings on the
basis of the API molecules’ molecular structures and physicochemical properties.
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Figure 1. Schematic presentation of the free energy landscape of an amorphous solid dispersion
undergoing molecular relaxation, phase separation, nucleation and crystal growth.

Figure 2. Compounds used in this study: (top) Polymers: eudragit (EEC), polystyrene sulfonic acid
(PSA), poly acrylic acid (PAA), and poly vinylpyrrolidone (PVP); and (bottom) APIs: phenacetin (PAC)
and flufenamic acid (FLA).
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2. Methods

2.1. Force Field

A crucial ingredient of classical molecular simulation are the parameters of the semi-empirical
equations that are used to calculate energies and forces for a given structure, usually referred to
as the force field. We used the General Amber Force Field (GAFF), which has been shown to
reproduce a range of properties for a wide spectrum of organic molecules [39]. Ambertools [40],
acpype [41], and the amb2gmx perl script [42] were used to identify atomtypes, assign bonded and
Lennard–Jones parameters, and convert Amber to Gromacs topology files. Partial charges for each
atom where determined from electrostatic potential derived charges in a set of ab initio calculations at
the DFT-B3LYP level of theory using the cc-pVTZ basis set and a solvation correction with a dielectric
constant of 4 [43]. For these calculations, we used the RED online server [44] as well as Gamess-US [45]
on local workstations. For the conversion of the resulting charge density distributions to partial
charges, we used the RESP algorithm implemented in the Ambertools software, version 16. [40].
For the polymers, the ab initio calculations were performed using trimers, in each case four different
conformations. Considering that all simulated samples are in the solid state without water, we decided
to model all molecules, APIs and polymers in their neutral state with zero net-charge.

For the two API molecules considered, the resulting force fields were tested by performing short
1-ns MD simulations of the crystals at ambient conditions using Gromacs [46]. Initial structures
were generated by replicating the unit cell of the the crystal structures of the most stable polymorph
of each API to obtain supercells of sufficient size, i.e., with a minimum extension of 4 nm in each
dimension. MD simulations of these systems at ambient conditions were performed and the root
mean square deviation between the averages structures from the simulation and the experimental
crystal structures was calculated. The resulting numbers converged around 1.2 Å for FLA, and 0.6 Å for
PAC. These numbers as well as visual inspection of the trajectories confirmed that the force field can
faithfully reproduce at least structural features of the API compounds studied here.

2.2. Molecular Dynamics Simulations

To reproduce the effects discussed in the publication of the experimental data used here as faithfully
as possible, and to generate results for different blends that are as comparable as possible, we attempted
to produce blends of polymers and APIs that: (i) have approximately the same polymer–API molar
or weight ratios as used in the experimental study; and (ii) have comparable numbers for the total
weights and volumes. Thus, we produced 16 different systems (2 APIs × 4 polymers × 2 concentrations).
The concentrations we chose to use correspond to 25 and 40 weight percent API. The polymers were
modeled as atactic chains consisting of 40 monomer units. In the case of eudragit EEC, which is a
co-polymer, the ratio of the monomer units was used as specified by the manufacturer of this polymer
(dimethylaminoethyl methacrylate, butyl methacrylate, and methyl methacrylate with a ratio of
2:1:1) and the order of monomer types was chosen randomly. The total system size corresponds to
a mass of about 80 kD for the polymer plus the corresponding mass (25 or 40 wt %) for the API.
Details for the molecular contents of the blends and the pure samples are provided in Table 1.
All initial structures were generated using in-house scripts by placing polymers, initially extended
chains, and API molecules, both with a random orientation, approximately evenly distributed
in a box that was large enough to exclude any major overlaps between neighboring molecules.
For each polymer–API combination and concentration, four such structures were generated by varying
the orientation and initial velocities of all molecules and atoms, respectively. These 64 systems
(2 APIs × 4 polymers × 2 concentrations × 4 copies with different structures) were subjected to a
short energy minimization run, followed by several cycles of compression, heating, and quenching
(1–1000 bar and 300–1000 K) to produce ASDs with roughly evenly distributed partially entangled
polymers and APIs at realistic densities. The procedure covered about 20 ns simulation time for each
system. This was followed by an equilibration phase, an MD simulation at ambient conditions
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for another 100 ns, and production runs at the same conditions of varying length (0.2–1.4 µs).
For simulations of samples of pure polymer and pure API, initial structures were generated in a
similar manner.

Table 1. Details of the systems used here for MD simulations. Molecular content and average volumes
for API–polymer blends, and pure systems.

Polymer Npol
a Nmon

b API Napi
c m d w(API) e V f

EEC 14 40 FLA 95 108,631 24.6 161.0
PAA 28 40 FLA 95 107,486 24.9 133.8
PSA 12 40 FLA 95 99,774 23.2 139.2
PVP 18 40 FLA 95 106,778 25.0 152.0
EEC 14 40 FLA 190 135,348 39.5 193.5
PAA 28 40 FLA 190 134,203 39.8 166.5
PSA 12 40 FLA 190 126,491 37.7 171.4
PVP 18 40 FLA 190 133,495 40.0 184.1
EEC 14 40 PAC 149 108,617 24.6 167.5
PAA 28 40 PAC 149 107,472 24.8 140.2
PSA 12 40 PAC 149 99,761 23.2 144.9
PVP 18 40 PAC 149 106,764 25.0 157.0
EEC 14 40 PAC 298 135,321 39.5 206.3
PAA 28 40 PAC 298 134,176 39.8 179.5
PSA 12 40 PAC 298 126,464 37.6 183.6
PVP 18 40 PAC 298 133,468 40.0 195.7

EEC 14 40 – – 81,913 0 128.7
PAA 28 40 – – 80,769 0 100.2
PSA 12 40 – – 88,446 0 107.3
PVP 18 40 – – 80,061 0 120.1

– – – FLA 302 84,933 100.0 104.9
– – – PAC 475 85,130 100.0 128.0

a Number of polymer chains; b Number of monomers per polymer chain; c Number of API molecules; d Total mass
of the system in atomic mass units; e API concentration in weight percent; f Average volume in MD simulations
in nm3.

All MD simulations were performed using GROMACS (versions 4.6.5, 5.0.4., and 5.1.2) [46].
For integration of the equations of motion a velocity verlet algorithm with a time step of two femtoseconds
was used. Temperature and pressure were controlled using the Nose–Hoover thermostat [47], and
Berendsen barostat [48], respectively. A cut-off radius of 9 Å was used for Lennard–Jones and electrostatic
interactions. Electrostatic long range interactions were calculated using a Smooth Particle Mesh Ewald
(PME) algorithm [49]. For dispersion interactions beyond the cut-off range, a correction factor was
included. All bonds including hydrogen atoms were constrained using the LINCS algorithm [50].
Snapshots of the system were saved at intervals of two picoseconds.

2.3. Analysis

The MD trajectories were analyzed to determine energies, H-bonding, and mobilities using
various tools and algorithms that are part of the GROMACS distribution as well as a number of
in-house scripts. Unless mentioned explicitly, all numbers reported below are averages from four
independent simulations with different initial structures and initial particle velocities. Error bars were
determined as standard deviations calculated from these four averages. Two specific aspects of the
analysis should be mentioned in more detail:

Interaction energies: Due to the nature of the PME algorithm, the Coulomb contribution to
inter-molecular interaction energies (ECoul) for different components of a mixture cannot be directly
calculated from a single analysis of the trajectory. For this purpose, the energies needed to be
re-calculated threefold: (1) for the original system; (2) for the original system with all charges on
the interesting molecule set to zero; and (3) for the original system with all charges but those on the
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interesting molecule set to zero. This threefold re-calculation needs to be performed for the entire
trajectory and for each molecule in turn to obtain average ECoul values that contain only inter- but no
intra-molecular interactions, and the correct contribution of electrostatic long range interactions.

Contributions to mobility: Calculation of the translational component of molecular mobilities is
straight forward, using the average squared distances of molecules centers of mass as function of time.
To obtain average values for the mobility involving rotational and vibrational degrees of freedom
of the API molecules, we proceeded as follows: the trajectories were split into parts, one for each
API molecule. Subsequently, each of these sub-trajectories of a single API molecule was processed
so that the center of mass of the API molecule was moved to origin, keeping its conformation and
orientation intact. The resulting trajectories were then analyzed using the GROMACS rmsf tool [46] to
calculate the average root mean square fluctuation of each atom in the molecule around its individual
average position. the resulting values for each non-hydrogen atom were averaged for all atoms in all
molecules to obtain a number referred to as RMSF below. We used this number as a measure for the
lump sum of the higher order (β, γ, etc. relaxation) mobility of the API.

3. Results

3.1. Choice of Model Systems

One issue hampering progress in the development of improved models for the prediction of ASD
stabilities is the scarcity of comparable experimental data. Most of the existing experimental accounts
only discuss results for a single, or a small number of API–polymer combinations, and a comparison
of numbers from different studies, obtained with different experimental procedures is obviously
rather difficult. Here, a notable exception is the data published by Van Eerdenbrugh and Taylor who
determined and compared the stabilities for good number of different API–polymer combinations,
using in all cases the same experimental protocol [51]. The authors attempted to explain their data on
the basis of molecular properties, in particular on the presence and combination of H-bond donors and
acceptors of a given strength in drug and polymer, respectively. The data used here for comparison
with results from molecular modeling of API–polymer blends are so-called amorphicity indices (AI),
that were determined by Eerdenbrugh and Taylor for combinations of eight different API molecules
and seven different polymers. AI values are dimensionless numbers ranging from 0 to 100, and a
measure for the relative amorphous content observed in an ASD after a given storage time at room
temperature. The higher the number the more stable a particular choice of API–polymer combination
is expected to be. In practice AI values were determined for samples prepared by spin coating by
visual inspection under polarized light microscopy and based on the degree of birefringence observed.
For more details, we refer to the original publication [51].

The computational effort of the simulations reported here is considerable. Therefore, we chose
to use only a subset of the data provided in the work by Van Eerdenbrugh and Taylor [51].
First, we discarded all combinations with HPMC and HPMCAS as polymers, since, in most cases,
results with these polymers lie intermediate in between some of the other polymers, and trends are
less pronounced. Moreover, polysaccharides such as cellulosic polymers can be difficult to model
reliably with empirical model potentials, compared to non-sugar organic molecules [52,53]. We also
discarded data from PVPVA based ASDs since here the results were qualitatively identical to those
obtained with PVP, leaving four polymers: Eudragit E100 (EEC), poly acrylic acid (PAA), poly sulfonic
acid (PSA), and PVP. We then visualized the data as shown in Figure S1 to identify groups of API
molecules representing the same stability trends and similar chemistries. Data for bifonazole was
discarded as this API showed essentially the same AI value for each of the four polymer types. Each of
the remaining APIs comprises a comparatively rigid aromatic ring system with a varying number of
substitutes including amide, carboxylic acid and and halogen groups. They can be divided into two
groups, one with molecules that feature a strong donor (chlorzoxazone, flufenamic acid, flurbiprofen,
and chlorpropamide), and a second with weak or intermediate donors (lidocaine, benzamide, and
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phenacetin). The molecules within each group display similar trends with respect to their relative
stabilities with the four polymers. Molecules of the first group are more stable with PVP and EEC,
than with PAA and PSA; molecules of second group show poor stability with EEC, and good stabilities
with each of the three other polymers. From each group, we chose the molecule for which the most
pronounced differences in stabilities were observed, for the first group flufenamic acid (FLA), and for
the second phenacetin (PAC).

3.2. Convergence

The systems considered here are essentially glasses, i.e., non-equilibrium systems. Thus, they are
subject to aging, a process whose completion, even for the small system sizes considered here, can take
much longer than the comparatively short time scales that are achievable with atomic scale molecular
simulation. Unless the solubility of an API in a given polymer is equal or above the concentration in the
initial structure mixing energies are therefore time-dependent and essentially ill-defined. The resulting
enthalpy and density relaxation has been observed before for similar systems [54]. However, if we are
only interested in relative energies, i.e., a qualitative ranking for systems of a given API combined with
various polymers, we can assume that this ranking will not change after an initial period. To improve
the probability of being in this regime where relative energies stay reasonably constant, we performed
rather long MD simulations runs that compare favorably to previously published accounts.

For each of the systems reported here numbers were obtained as averages and standard deviations
of four MD simulations with different starting geometries and initial velocities. Each single simulation
of pure compounds was extended to cover 200 ns (APIs) and 400 ns (polymers), respectively. The time
development of energies and volumes is shown in Figures S2 and S4 in the SI. Not surprisingly we
find that even after these comparatively long simulation times it is unclear whether full convergence is
achieved. However, a comparison of the time developments in a single diagram (Figures S3 and S5)
suggests that the relative numbers show reasonably good convergence, Simulations of different
polymer–API blends with a weight ratio of 25 wt % API were extended to cover 400 ns. Again visual
inspection of the time developments of the individual simulations, (Figures S6 and S8) and their
comparison in a single diagram (Figures S7 and S9) suggest reasonable convergence of the calculated
relative numbers. The results obtained at a weight ratio of 40 wt % API were extended to cover
one microsecond. Here, convergence appears to be better than it is at the lower API concentrations.
(Figures S10–S13) Using averages from the time intervals 150–200 ns (APIs), 200–400 ns (polymers and
blends at 25 wt %), and 600–1000 ns (blends at 40 wt %), we expect to obtain reproducible numbers at
least for relative energies, i.e., trends for a given API combined with different polymers.

As opposed to mixing energies the mobility, here calculated as diffusion coefficients for the API
molecules in the different polymer matrices, should show better reproducibility and convergence.
However, the low mobility of API molecules in this type of system combined with the overall small
system sizes renders achieving converged results difficult. Better convergence is observed for the
simulations with API concentrations of 40 wt % (one microsecond simulation time) compared to
25 wt % (400 ns simulation time), but even here the final numbers for the calculated API diffusion
coefficients are within each others error-bars for FLA (Figure S14). For PAC, we extended the
simulations to each cover 1.4 µs (Figure S15) and here, in comparison, we observe significant differences,
which are discussed below.

3.3. Energy Terms and Trends

The estimated relative polymer–API mixing energies comprise one of the two major descriptors
of molecular miscibility, and thereby stability, considered here. Due to the nature of classical force
fields, a number of different energies can be calculated from MD simulations. The energy terms that
are parameterized by the force field used here are typical for classical model potentials and given in
Equation (1).

Etot = Ebond + Eangle + Edih + ELJ + ECoul (1)
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They include so-called bonded interactions: bond (Ebond), angle (Eangle), regular and improper
dihedral terms, Edih, as well as non-bonded interactions: Lennard–Jones (i.e., Van der Waals, (VdW)
ELJ , and Coulomb (ECoul) energies. The two latter can be subdivided into inter- and intra-molecular
contributions. A special case are the so-called 1–4-interactions, which are, usually scaled, VdW and
Coulomb interactions between atoms in a given molecule that are separated by three bonds. The best
choice for a calculation of mixing energies to be compared with experimental stabilities appears to
be Etot, the sum of all these energies. However, if we consider the way in which classical force fields
are parameterized, we will find that some of these contributions might be more specific and/or more
accurate than others. In particular the Lennard–Jones (VdW) parameters are often the result of fitting
procedures with little physical basis. In the present case, i.e., for the GAFF force field, they were
transfered unmodified from the original Amber peptide parameters based on chemical similarities.
Whether relative dispersion energies of different molecular combinations can be reproduced even
semi-quantitatively is unclear. Bond, angle, dihedral, and in particular 1–4 interactions are generally
the result of fitting procedures aimed at reproducing experimental structures rather than energies.
Thus, concentrating on inter-molecular interactions only might provide more reliable results than
inclusion of all terms. In addition, these energies are expected to represent experimentally measurable
sublimation enthalpies (cohesive energies).

Another open question regarding the quantities to compare experimental data with is the
normalization of energy terms, and the choice of reference state. For a sample of a pure compound,
normalization appears to be trivial. The total calculated energy of a given sample is simply divided
by the number of molecules in the simulated sample. However, if we want to compare energies
of samples with molecules of appreciably different sizes and/or energies of different mixtures this
choice is less straight forward. A common remedy used here is to replace energies by energy-densities,
i.e., the calculated total energy for a sample is divided by the volume of this sample. Again, if the
compared samples feature appreciably different densities and/or API concentrations this might not be
the optimal choice. Alternatively, and in particular when considering ASDs of drug molecules, as done
here, we might want to look at energies divided by the number of drug molecules, since usually we
aim at a high drug load per sample. As for the reference state we can choose comparing the total
energies (or energy densities) of different blends (E) or the energy differences (∆E) between the mixture
and a (sum of) reference state(s). This reference state can be the energy of a given molecule in the gas
phase, in the amorphous solid, or in the crystalline solid—or the weighted sum of such energies in
pure samples if we compare mixtures.

For none of the questions outlined above there appears to be an un-ambiguous answer.
Here, we calculated, and compared three types of energies: ∆Etot, ∆Enb, and ∆ECoul . Enb (nb stands for
non-bonded) is the sum of all VdW and Coulomb interactions, including intra-molecular VdW and
Coulomb contributions, excluding 1–4 interactions. As reference state, we chose, in all cases, the sum
of the energies of the same amount of molecules (API and polymers) in the pure amorphous phases.
Thus, the resulting energy difference corresponds to ∆Eps in Figure 1. Additionally, we normalized
each energy difference by the sample volume, or the number of API molecules. Un-normalized values
are also provided. Results for FLA are shown in Figure 3. We find that, in all cases, the observed
trends for a given API, i.e., the relative energies in blends with different polymer types, are identical,
irrespective of the energy term or the type of normalization. This is probably a consequence of
the fact that we chose to make the various blends, regarding their composition, as comparable as
possible (see Section 2.2), and that the total densities of all samples are fairly similar. It also suggests
that the relative electrostatic interactions dominate the differences between different blends as this
energy contribution is part of all three energy terms shown in Figure 3. This was to be expected
as electrostatic interactions usually represent the largest intermolecular energy contribution in such
systems that feature a substantial amount of H-bonds. The combination of different structures and
charge distributions also results in large variations of this term and will, therefore, dominate the
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relative compatibilities of different API–polymer combinations. The equivalent type of diagrams for
PAC (not shown) confirm this conclusion.

Figure 3. Variation of Energy terms with API concentration for FLA: (left) total energy difference;
(center) normalized by volume; and (right) normalized by number of API molecules in blend. From top
to bottom: ECoul , Enb, and Etot.

Individual numbers for the energies calculated at the two API concentrations considered here
(25 and 40 wt %) differ. However, the trends (relative numbers) obtained with the four polymers for a
given API are the same and do not vary with API concentration. Therefore, in the following, we only
discuss results obtained for one concentration, where we chose the 40 wt % samples since here usually
the statistics, i.e., the precision of the results is better.

As a substitute for energies, a structural parameter, the change in the number of H-bonds upon
mixing (∆NHB) is sometimes employed as a criterion for solubility [29,55]. For all pure samples
and blends, we calculated this number as outlined in Section 2.3. ∆NHB shows an excellent inverse
correlation with ∆ECoul . For FLA at 40 wt % and the four polymers considered here this correlation is
shown in Figure 4. For the remaining systems considered here, this correlation is not shown, but is is
in all cases good, with a Pearson correlation, r > 0.8, and in most cases excellent with 0.9 < r < 1.0.

In the systems considered here, hydrogen bonds provide by far the largest contribution to the
overall Coulomb energies, thus the correlation between ∆ECoul and ∆NHB is no surprise, and we expect
this relation to hold for most systems with comparable chemistry. The good correlation between these
terms suggests that calculation of only one of the two terms is required to capture the corresponding
physics. In the following, we therefore only report ∆ECoul . Relations between ∆NHB and amorphous
stabilities are not shown as they are in all cases, at least qualitatively, equivalent to those of ∆ECoul .
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Figure 4. Correlation between the change in Coulomb interaction energy ∆ECoul and change in the
number of H-bonds (∆NHB) in blends of 40 wt % FLA with PVP, EEC, PSA, and PAA (from higher to
lower values of ∆NHB). Numbers are the differences between the quantities in the mixtures and of the
equivalent numbers of molecules in the pure phases.

3.4. Flufenamic Acid

Results for FLA, ∆ECoul and for the API mobilities in the polymer matrices, are shown in top of
Figure 5 and Table 2. We found that ∆ECoul of FLA in PSA and PAA is positive (unfavorable) while
in EEC and PVP negative (favorable) contributions to the mixing energies are obtained. This is in
agreement with the experimental observation that PSA and PAA provide ASDs with comparatively
good stabilities (AI = 100) while mixed with the two former polymers the API shows pronounced
crystallization tendency (AI ≤ 0.13). ∆NHB, the change in the number of H-bonds (not shown) follows
the same trend. For the mobility of the API in the polymer matrix, two different estimates are provided:
the translational diffusion coefficient of the API (D), and the average root mean square fluctuation
(RMSF) of all atoms in the API molecules, calculated as described in Section 2.3. The latter we
use as a coarse measure for the sum of mobility contributions of higher order or local/secondary
molecular motions (roto-vibrational degrees of freedom and β, γ, etc. relaxation). No correlation
with experimental stabilities can be observed simply due to the fact that values are so similar that,
in most cases, the error bars overlap. The vague trend suggesting higher mobility, and thus poorer
stability, for EEC does not agree with experimental data. The results in Figure 5 suggest that the
relative stabilities of FLA in the four polymer types considered here are predominantly determined
by thermodynamics (relative mixing energies) rather than kinetics. This is basically in line with the
interpretation in the original publication of the experimental results, which assigns the good stability of
FLA in EEC and PVP to the strong H-bonds that can be formed between the API and the two polymers,
or actually the larger energy gain through mixing a strong H-bond donor with a polymer that has only
acceptors and no donors, and therefore cannot form any H-bonds in the pure phase.

Table 2. Thermodynamic and kinetic descriptors from MD simulations of eight API–polymer blends
compared to experimental literature data.

API Polymer AI25 a AI40 b <AI> c ∆ECoul
d D e RMSF f

FLA EEC 100 100 87 −698.7 1.20 0.082
FLA PAA 25 13 13 4863.8 0.42 0.068
FLA PSA 0 0 15 1948.8 0.54 0.078
FLA PVP 100 100 87 −3753.7 0.49 0.080

PAC EEC 25 13 13 −704.0 3.73 0.0892
PAC PAA 100 100 67 1945.4 1.51 0.0724
PAC PSA 100 100 78 −1468.4 2.06 0.0790
PAC PVP 100 94 49 −2590.1 1.25 0.0721

a Amorphicity index at API concentration of 25 wt %; b Amorphicity index at API concentration of 40 wt %; c Average
amorphicity index from six different API concentrations; d Calculated Coulomb contribution of the intermolecular
mixing energy in kJ/mol; e Calculated API translational diffusion coefficient in 10−10 cm2/s; f Calculated average
root mean square deviation of API in the MD trajectories after alignment of each API molecules’ center of mass in
nanometer.
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Figure 5. Results from MD simulations of API (40 wt %) blends in four different polymer matrices:
FLA (top); and PAC (bottom). The two diagrams on the left show the changes of the Coulomb
interaction energies upon mixing. The diagrams on the right show API translational diffusion coefficient
and roto-vibrational mobility (RMSF). Each point is labeled with the corresponding polymer type.
The error bars are standard deviations calculated from four replicates.

3.5. Phenacetin

For PAC results for ∆ECoul and for the mobility of the API in the polymer matrices are shown
on the bottom of Figure 5 and in Table 2. As opposed to the FLA cases the mixing energy or its
electrostatic contribution can not explain the experimental trend observed for the relative stabilities of
the four API polymer blends. The calculated energies suggest that PAA shows the poorest, and PVP
the best performance in terms of miscibility with PAC. EEC and PSA show intermediate performance.
The experimental stability data, however, shows that three of the four polymers, PAA, PSA, and PVP
provide relatively similar and good stabilities when blended with PAC. Only EEC has a significantly
poorer performance compared to the others. This suggests that thermodynamics plays no, or a minor,
role in the relative stabilities of PAC blended with the four polymer types. If this is true, then the
kinetic stabilities, or the relative molecular mobilities of the API molecules must be the rate limiting
factor. Indeed, if we consider the mobilities of PAC in the four polymer matrices as shown in Figure 5,
we find that numbers for PAA, PSA and PVP basically lie within each others error-bars, and only in
EEC PAC shows a significantly higher mobility compared to the others, which qualitatively agrees
with the available experimental data.
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4. Discussion

4.1. Thermodynamics vs. Kinetics

Our results suggest that thermodynamic factors are rate limiting for the relative stabilities of
FLA in the four polymers considered here, while those of PAC are determined by kinetic factors.
This conclusion is also supported by our calculations if the numbers are plotted in a different way,
as done in Figure 6a where the four ∆ECoul and D values are plotted for each of the two APIs in a
single diagram. We find that for FLA the energies cover a range of about 8620 kJ/mol, while for PAC
the corresponding range is nearly half (4535 kJ/mol). For the mobilities, on the other hand side, we see
the opposite relation: PAC in the four polymers covers a range of ∆D = 2.5 × 10−10 cm2/s while FLA
only varies by ∆D = 0.8 × 10−10 cm2/s. Thus, for FLA, whose stability correlates with mixing energies,
these energies show a larger variation than for the other API. For PAC, whose stability correlates with
API mobility, these mobilities show a larger variation than for the other API. Generally, our calculations
suggest that, irrespective of the polymer, the mobility of PAC is higher than that of FLA. This is in
agreement with experimental numbers for the glass transition temperatures, Tg. PAC (Tg = 2 ◦C) will
be in the comparatively mobile and rubber-like state at RT, while FLA (Tg = 17 ◦C) is much closer to its
glass transition. Since the glass transition is not a sharp boundary [56] FLA molecules can be expected
to be considerably less mobile, at room temperature than PAC. The fact that, for both APIs, Eudragit
based ASDs show the highest mobilities is in accordance with the experimental Tg values for the four
polymers, with Eudragit having a considerably lower Tg than the three others. However, only for PAC
this factor appears to determine the relative stabilities of ASDs with different polymers, while for FLA
this effect is overridden by the relatively high solubilities of the API in Eudragit and PVP.

Figure 6. (a) Comparison of the ranges of ∆ECoul and diffusion coefficients for FLA vs. PAC.
The polymers are in the order of increasing ∆ECoul : PVP, EEC, PSA, PAA (for FLA), and PVP, PSA,
EEC, PAA (for PAC). (b) Correlations between calculated descriptors (top: API Diffusion coefficient,
bottom: Coulomb contribution to the mixing energy) and amorphous stabilities (AI values for 40%
drug-load) for FLA (left column) and PAC (right column). The dashed green lines are included as
guide for the eye.

4.2. Relevant Properties of API and Excipient

Our findings do not exclude the possibility that both factors, energetics and mobility, contribute to
the total stabilities of all the blends considered here, but the rate limiting factor for each API is different
(Figure 6b). FLA is a compound with a carboxylic acid group. Since all the systems considered here are
dry this functional group is mostly un-ionized and will act as a strong H-bond donor (as in the original
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experimental setup used by Van Eerdenbrugh and Taylor) [51]. Accordingly, and in line with the
arguments in the publication that presented the experimental data, we can expect a good miscibility
with polymers that feature H-bond acceptors. In addition to the strong API–polymer interaction
the miscibility of FLA with PVP and EEC is increased by the fact that these strong interactions do
not compete with any polymer–polymer interactions since neither of the two polymers has any
donor functionality. PAC also has a donor functionality, but this is a secondary amide group, and
thereby a much weaker donor than the carboxylic acid group of FLA. The donor group in PAC is
also less flexible/accessible than the one in FLA, where the proton can tunnel from one oxygen of the
carboxylic acid group to the other to optimize interaction energies (an effect that cannot be accounted
for by classical molecular simulation). We hypothesize that for API–polymer combinations that allow
for a very strong polymer–API interaction, preferably one that does not compete with equivalent
polymer–polymer interactions (such as FLA with PVP and EEC), the equilibrium solubility of the
API in a solid polymer matrix can be substantial. In these cases, the speed at which this equilibrium
is reached, i.e., kinetics, is less relevant for stability of the blends. In other cases, for example PAC
with the four polymer types considered here, the API at pharmaceutically relevant concentrations is
generally above its solubility limit, and therefore kinetics, the speed at which equilibrium is reached,
dominates the observed relative stabilities.

4.3. Some Technical Considerations

An important practical aspect of the interpretation of simulation results concerns the question
which energy terms are the most appropriate for an estimation of the physical stability of
molecular dispersions. We find that the qualitative conclusions remain un-changed whether we
use energies normalized by number of API molecules, or by the volume. For FLA, the Coulomb
contribution to the total change in inter-molecular interaction, however, showed a better correlation
with stabilities, than the total energy, including VdW terms did. We assign this to the fact that
electrostatic interactions and their variations between systems are larger than the VdW contributions,
and using a simple Lennard–Jones potential the latter are neither very specific nor accurate. The most
appropriate energy difference would, of course, be the difference between the solvation free energies
of the API in the molecular dispersion and in pure API phase. Although tremendous progress
has been made in recent years in the field of free energy calculations via molecular simulation,
the calculation of solvation free energies of small organic molecules in a solid matrix below the
glass transition temperature is still beyond our reach at this point [57,58]. A common remedy for
this issue is to approximate relative free energy differences by relative (internal) energy differences.
Our results for FLA suggest that for systems comparable to the ones studied here this is a reasonable
approximation. One might argue that perhaps for PAC a better correlation between solvation energies
and stabilities might have been achieved if entropic contributions had been accounted for. However,
we consider this unlikely. Although details are still a matter of debate, it has been clearly shown that the
entropy in molecular systems correlates with diffusion coefficients (or equivalently viscosity) [59,60].
Considering the numbers in Table 2, this would mean that for PAC in EEC the entropic contribution
to the mixing energy would actually lower the energy (make it more favorable) by a larger amount
than for the other polymers. This would make the correlation between stabilities (AI values) and
energies even worse, suggesting that missing entropic contributions are unlikely to explain this lack
of correlation.

A final technical point concerns the fact that we did not consider any cellulose based polymers.
HPMC and HPMCAS probably comprise the most widely used classes of polymers in this context, and
models for both polymers have in fact been developed by others [61,62]. However, it has been shown
that the accuracy/reliability of classical force fields for modeling sugar based polymers is limited [53].
Our current work includes development of improved force fields for HPMC/AS. The outcome of
these studies will be communicated in future publications, and we prefer to wait until then before
attempting to simulate ASDs containing such polymers.
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4.4. What Are Practical Implications?

The number of polymer–API combinations studied here is too small for providing quantitative
thresholds of an API’s molecular descriptors that could be used to predict to which of the two categories
(stability governed by thermodynamics or kinetics) it belongs. However, our data do suggest that both
scenarios are possible. Given the fact that many drugs are similar to PAC in terms of H-bond donor
and acceptor densities, further research towards establishing such values is definitely warranted.

The relevance for the above conclusions for pharmaceutical development is considerable.
Most theoretical studies that use molecular simulation to study API stabilities in polymer
excipients concentrate on intermolecular API–polymer interactions, in particular (relative) H-bonding
propensities [19,28,29,31,63,64]. Since none of the polymers commonly used in the field has only donors
and no acceptors, but there are several polymers (e.g., Eudragit and PVP) that have only acceptors
but no donors, the goal of optimizing API–polymer mixing energies can most easily be achieved for
APIs that include strong H-bond donor functionalities. However, the strongest donors, such as the
carboxylic acid group in FLA, are acidic groups. For APIs featuring such groups, solubility issues
can often be solved by their formulation as salt, rendering the application of an ASD as formulation
strategy less attractive. However, in cases where polymer–API interactions are weaker, the calculation
of molecular mobilities might be mandatory to obtain a correct qualitative ranking of an API’s stability
in various polymer carriers. As stated above, due to the small sample size considered here, further
research is required to substantiate this preliminary conclusion.

The fact that this strategy has not been adopted so far might be due to the exceptionally
long simulation times required to obtain sufficiently precise values of diffusion coefficients at
room temperature. Here, for example the calculation of the D values for PAC in four different polymers
required MD simulations covering more than 20 microseconds for system sizes of around 20,000 atoms,
taking several months on a small cluster with 16 nodes each comprising 8 cores. However, in light of
the ever increasing speed of state of the art computers, and, in particular the increasing popularity of
comparatively cheap GPU based architectures, this will become a minor problem in the foreseeable
future [46,65–67].

Given the above considerations, it would be tempting to establish thresholds for the variation of
calculated ∆ECoul and/or diffusivity values above which a clear statement can be made about their
impact on the relative ASD stabilities. However, some caution is required here since the magnitude
of these values will, of course, depend not only on the API and polymers but also on simulation
parameters, system size, and the employed force field. Thus, if we stated that a certain difference
in diffusion coefficients or in Coulomb energies will indicate a significant difference for the ASD
stabilities, this would only apply if not only the chemistry of the compounds was sufficiently similar
to those used here, but also the calculations would have to be performed with the same simulation
parameters, system sizes and force fields. Although in principle this could be done, in practice more
reliable results will be obtained if experimental numbers for at least two polymers that, ideally provide
rather different stabilities, are available to validate any conclusions drawn from calculated numbers for
a given API. Notwithstanding the above, it should be possible to use calculations as outlined here to
provide, for a given API, a coarse ranking of different polymers with respect to the expected stabilities
of the corresponding ASDs.

5. Summary and Conclusions

We performed extensive MD simulations and analyzed the resulting trajectories in an attempt to
improve our understanding of the mechanisms that govern the stabilities of two different APIs in ASDs
with four different polymers. We believe that this study provides the most comprehensive account of
this type to date. Not only did we perform simulations of a comparatively large set of polymer–API
combinations, we also considered both energetics/thermodynamics and kinetics/mobility. We found
that the relative stabilities of the two API molecules considered here are determined by different
mechanisms. For FLA, which has very favorable inter-molecular interactions with two of the polymers,
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the resulting large range of mixing energies, and presumably its equilibrium solubility in at least
these two polymers determine the stabilities. For PAC, only its relative mobilities in different polymer
types can explain the trend observed for its stability in the four different ASDs. The importance of
molecular mobility for the relaxation and stability of amorphous systems is widely appreciated, and
has been thoroughly discussed in the literature. However, most, if not all, attempts using molecular
simulation to explain the stability of amorphous drug formulations with polymer excipients found in
the literature concentrate on specific intermolecular interactions and energetics. We expect that a large
portion, perhaps the majority, of all poorly soluble drug molecules will require the consideration of
mobility to allow for accurate predictions of relative stabilities in silico. Here, we demonstrated that
this is feasible with readily available methodologies paving the way for molecular simulation to play a
truly active role in the development, and finally the rational design, of ASD based drug formulations.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4923/10/3/101/s1,
Figure S1: Literature data for eight different API molecules. Figures S2–S15: Convergence of various quantities
calculated in MD simulations.
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The following abbreviations are used in this manuscript:

API Active Pharmaceutical Ingredient
ASD Amorphous Solid Dispersions
PVP Polyvinylpyrrolidone
HPMC Hydroxypropyl Methylcellulose
DSC Differential Scanning Calorimetry
MD Molecular Dynamics
FH Flory–Huggins
FLA Flufenamic acid
PAC Phenacetin
EEC Eudragit E100
PAA Polyacrylic acid
PSA Poly (styrene sulfonic acid)
GAFF General Amber Force Field
RESP Restrained Electrostatic Potential
GROMACS Groningen Machine for Chemical Simulations
LINCS Linear Constraint Solver
PME Particle Mesh Ewald
AI Amorphocity Indices
VdW Van der Waals
∆ECoul change in Coloumb energy
∆NHB change in number of H-bonds
RMSF average root mean square fluctuation
D Diffusion coefficient
RT Room Temperature
GPU Graphic Processing Unit
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