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Cystic fibrosis (CF) lungs are filled with thick mucus that obstructs airways and facilitates chronic
infections. Pseudomonas aeruginosa is a significant pathogen of this disease that produces a variety
of toxic small molecules. We used molecular networking-based metabolomics to investigate the
chemistry of CF sputa and assess how the microbial molecules detected reflect the microbiome and
clinical culture history of the patients. Metabolites detected included xenobiotics, P. aeruginosa
specialized metabolites and host sphingolipids. The clinical culture and microbiome profiles did
not correspond to the detection of P. aeruginosa metabolites in the same samples. The P. aeruginosa
molecules that were detected in sputum did not match those from laboratory cultures.
The pseudomonas quinolone signal (PQS) was readily detectable from cultured strains, but absent
from sputum, even when its precursor molecules were present. The lack of PQS production in vivo is
potentially due to the chemical nature of the CF lung environment, indicating that culture-based
studies of this pathogen may not explain its behavior in the lung. The most differentially abundant
molecules between CF and non-CF sputum were sphingolipids, including sphingomyelins, ceramides
and lactosylceramide. As these highly abundant molecules contain the inflammatory mediator
ceramide, they may have a significant role in CF hyperinflammation. This study demonstrates that the
chemical makeup of CF sputum is a complex milieu of microbial, host and xenobiotic molecules.
Detection of a bacterium by clinical culturing and 16S rRNA gene profiling do not necessarily reflect
the active production of metabolites from that bacterium in a sputum sample.
The ISME Journal (2016) 10, 1483–1498; doi:10.1038/ismej.2015.207; published online 1 December 2015

Introduction

Cystic fibrosis (CF) is an autosomal recessive
disorder caused by mutations within the CF trans-
membrane conductance regulator (CFTR). CFTR
mutations result in abnormal ion transport across
the epithelium leading to the production of thick
bronchial mucus (Knowles et al., 1983; Quinton,
1983, 2008; Widdicombe et al., 1985). This mucus
provides niche space for microbial colonization,
resulting in chronic lung infections that begin in
infancy and persist throughout a patient’s lifetime.
The CF lung is a polymicrobial infection containing
viruses (Willner et al., 2009, 2012), fungi (Delhaes
et al., 2012; Willger et al., 2014) and bacteria (Rogers
et al., 2003; Guss et al., 2011; Blainey et al., 2012;

Filkins et al., 2012; Goddard et al., 2012; Lim et al.,
2013, 2014; Maughan et al., 2012; Zhao et al., 2012;
Price et al., 2013; Salipante et al., 2013; Zemanick
et al., 2013; Cuthbertson et al., 2014; Smith et al.,
2014) (literature summarized in Supplementary
Table S1) co-existing in a complex community. The
community is diverse during youth, but as patients
age, this diversity decreases and specific pathogens
take over (Harrison, 2007; Zhao et al., 2012).

Pseudomonas aeruginosa is traditionally regarded
as the principle pathogen of CF disease and is one of
the most common bacteria cultured from CF patients
(Harrison, 2007). This bacterium is known to
produce a myriad of small molecules that damage
both host and microbial cells (Allen et al., 2005; Irie
et al., 2005; Zulianello et al., 2006; Rada et al., 2008;
Heeb et al., 2011). Rhamnolipids (Zulianello et al.,
2006), phenazines (Allen et al., 2005) and quino-
lones (Calfee et al., 2001) have been shown to be
important for the pathogenesis of this bacterium
in vitro, but their role in CF disease is less well
known. These molecules have been detected in CF
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sputum (Kownatzki et al., 1987; Collier et al., 2002)
and the redox active phenazines have been shown to
accumulate as lung function declines (Hunter et al.,
2012), but beyond these studies little is known
about the diversity of these molecules in the lung,
how their chemistry differs between the lung
environment and the laboratory and how detection
of P. aeruginosa metabolites is reflected in other
diagnostic methods on the same sample. A better
understanding of the chemistry of these molecules in
the lung environment is required to realize their
importance in the pathology of CF disease.

Irrespective of P. aeruginosa metabolites, there is
limited information on the overall molecular con-
stituents of CF lung secretions. Metabolomics studies
have investigated the microbial and host molecules
in sputum (Jones et al., 2000; Palmer et al., 2007;
Bensel et al., 2011; Yang et al., 2012; Twomey et al.,
2013), breath gas or breath condensate (Barker et al.,
2006; Celio et al., 2006; Newport et al., 2009;
Robroeks et al., 2010; Montuschi et al., 2012;
Monge et al., 2013) and bronchiolar lavage fluid
(Wolak et al., 2009; Eiserich et al., 2012; Yang et al.,
2012). These studies demonstrated that core
primary metabolites including ethanol, acetate and
2-propanol distinguished CF from non-CF samples
(Montuschi et al., 2012) and that the fermentation
product 2,3-butanedione was associated with micro-
bial activity (Whiteson et al., 2014). A study
investigating host-derived lipid mediators showed a
complex network of inflammatory lipid signaling in
CF lungs (Yang et al., 2012). These metabolomics
studies have identified important molecules in
CF disease that are potential markers of host or
microbial physiological states (Collier et al., 2002;
Price-Whelan et al., 2006; Diggle et al., 2007;
Mitchell et al., 2010; Pierson and Pierson, 2010).
However, the chemistry of CF lung secretions
remains poorly characterized, particularly concern-
ing specialized metabolites that function outside
primary metabolism.

There are major challenges when studying the CF
metabolome and determining the role of particular
molecules in vivo. Principally, the chemical milieu is
extremely complex, containing thousands of host
and microbial metabolites (Molloy, 2014). Compre-
hensive and untargeted assessments of the CF airway
metabolome are hard to interpret, because annota-
tion of detected molecules is still a laborious process
and metabolomics databases are not easily search-
able (Dettmer et al., 2007). Molecular networking
(Bandeira et al., 2007; Watrous et al., 2012), which
compares the fragmentation patterns of individual
molecules to show structural relationships, alleviates
some of these challenges. This tool enables the
investigation of structural relatedness within a
metabolome and can be used as a dereplication
strategy or for data visualization to investigate small
molecule chemistry (Moree et al., 2012; Watrous
et al., 2012; Nguyen et al., 2013; Sidebottom et al.,
2013; Yang et al., 2013). Molecular networking has

been used to study the specialized metabolome of
P. aeruginosa, where it revealed chemical details of
the antibiotics and quorum-sensing molecules it
produces (Moree et al., 2012; Watrous et al., 2012;
Nguyen et al., 2013).

In this study, a combination of 16S rRNA gene
sequencing and metabolomics was used to analyze
sputa from CF patients and non-CF volunteers.
A molecular networking approach was used because
of its ability to comprehensively assess the chemistry
of microbial, host and xenobiotic metabolites in an
untargeted manner. Although known microbial
metabolites were rare in CF sputum, sphingolipids
were highly abundant. P. aeruginosa specialized
metabolites, including phenazines, rhamnolipids
and quinolones, were detected, but their prevalence
did not correspond to 16S rRNA gene sequence
profiles or clinical cultures. Furthermore, the meta-
bolites produced by P. aeruginosa in the lung were
different from that produced in laboratory cultures.
The abundant sphingolipids, particularly sphingo-
myelin, may be clinically relevant, as this molecule
contains the inflammatory lipid ceramide, creating a
reservoir of hyperinflammatory responses that may
be damaging to the lungs.

Materials and methods

Additional methodological details for each section
are available in the Supplementary information.

Sample collection
Seven CF samples and two non-CF samples were
collected in October 2012 at the Adult CF Clinic at
the University of California, San Diego Medical
Center, and four non-CF samples were collected
from volunteers at San Diego State University.
These samples were brought to a 12-ml total
volume in phosphate-buffered saline if the sample
was less than 12ml. An additional 27 sputa were
collected during a 6-month period in 2013–2014 at
the UCSD adult CF clinic during routine clinical
visits, because a smaller sample volume was
needed for only targeted MS analysis they were
not diluted. All samples were collected with
the same clinical sampling procedure. After a
mouthwash to minimize oral contamination,
samples were expectorated into a sterile sputum
cup following hypertonic saline inhalation for
30min. The initial CF and non-CF sputum samples
were frozen on dry ice, whereas the 27 additional
sputum samples were stored immediately in liquid
nitrogen. All samples were collected in compliance
with the University of California Institutional
Review Board (HRPP 081500) and San Diego State
University Institutional Review Board (SDSU
IRB#2121) requirements and written consent was
obtained.
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Bacterial culturing and metabolite extraction
P. aeruginosa cultures were spot plated onto a single
ISP2 plate and grown overnight. Extracts were taken
by cutting out the agar around the colony and
extracting in 200 μl of ethyl acetate by brief vortexing
and incubation for 1 h. The top ethyl acetate layer
was removed and dried in a centrifugal evaporator.
The remaining sample was extracted in 200 μl of
methanol by vortexing and incubation for 1 h.
The methanol extract was then spun in a tabletop
centrifuge at 10 000 g for 30 s. The methanol extract
supernatant was then added to the dried ethyl
acetate extract, dried down and frozen at − 80 °C
until mass spectrometry analysis. The same cultures
were also grown in artificial sputum medium in thin
glass capillary tubes simultaneously overnight
according to the method developed in Quinn et al.
(2014), which is meant to mimic the conditions of a
CF bronchiole. Metabolites were extracted with the
same solvent procedure, but for these samples the
liquid media was removed from the capillary tube
first with a syringe and then added to the ethyl
acetate solvent.

Microbiome sequence profiling
The microbiome sequencing was performed accord-
ing to Quinn et al. (2014) where the same CF sputum
profiles are also published. Briefly, DNA was
extracted from 100 μl of sputum obtained from a
−80 °C aliquot immediately after thawing by directly
pipetting the sample into 200 μl of the Trizol reagent
(Life Technologies, Carlsbad, CA, USA). Extraction of
DNA was done using the manufacturers protocol for
DNA extraction. Total DNA was sent to the Genomics
Core at Michigan State University for 16S rRNA gene
sequencing. The V4 region (515F/806R) of the
bacterial 16S rRNA gene was amplified by PCR
(Caporaso et al., 2011). A standard Illumina MiSeq
v2 reagent kit (San Diego, CA, USA) was used to
prepare for paired end, 2×250 bp sequencing on the
Illumina MiSeq format. Data processing, quality
control and operational taxonomic unit clustering in
mothur (Schloss et al., 2009) are described in
Supplementary methods. Briefly, the Silva database
(Quast et al., 2013) was used with Ribosomal Database
Project taxonomy (Cole et al., 2005) to identify the
taxonomy of operational taxonomic units at a cluster
cutoff of 97%. Sequence profiles were rarefied to a
minimum of 4000 sequence reads per sample, using
the rrarefy command in the ‘vegan’ package in the R
statistical software (Oksanen et al., 2015).

Sputum metabolite extractions and LC-MS/MS
All sputum samples were defrosted and 20 μl was
extracted in 100 μl of LC-MS/MS grade ethyl acetate
by brief vortexing and incubation for 1 h. The top
ethyl acetate extracted layer was then removed and
dried in a centrifugal evaporator. The remaining
sample was then mixed with 100 μl of LC-MS/MS

grade methanol by vortexing and incubation for 1 h,
and centrifugation in a tabletop centrifuge at 10 000 g
for 30 s. The methanol extract supernatant was then
added to the dried ethyl acetate extract, dried down
and frozen at − 80 °C until tandem mass spectro-
metry (MS/MS) analysis. Liquid chromatography
was performed with ThermoScientific UltraMate
3000 Dionex (Sunnyvale, CA, USA). Mass spectro-
metry was performed using a Bruker Daltonics Maxis
qTOF mass spectrometer (Billerica, MA, USA)
equipped with a standard electrospray ionization
source. The mass spectrometer was tuned by
infusion of Tuning Mix ES-TOF (Agilent Technolo-
gies, Santa Clara, CA, USA) at a 3 μl min− 1 flow rate.
For accurate mass measurements, lock mass internal
calibration used a wick saturated with hexakis
(1H,1H,3H-tetrafluoropropoxy) phosphazene ions
(Synquest Laboratories, Alachua, FL, USA, m/z
922.0098) located within the source. High-
performance liquid chromatography (HPLC)-MS/MS
analysis was performed using Phenomenex
(Torrance, CA, USA) Luna 5 μm C18(2) HPLC
column (2.0mm×250mm) on the initial seven CF
samples and on the additional 27 samples for
targeted analysis. A Phenomenex Kinetex 2.6 μm
C18 (30 × 2.10mm) ultra performance liquid chro-
matography (UPLC) column was used to obtain
metabolomics data from the seven CF samples and
six non-CF samples for statistical comparison of
molecule abundances. Both analyses utilized a 20-μl
injection volume. A linear water–acetonitrile gradient
(from 98:2 to 2:98 water:acetonitrile) containing 0.1%
formic acid was utilized (HPLC: 54min gradient;
UPLC: 14min gradient). The flow rate was 0.2
mlmin−1 for the HPLC analysis and 0.5mlmin−1 for
the UPLC analysis. The mass spectrometer was
operated in data-dependent positive ion mode,
automatically switching between full-scan MS
and MS/MS acquisitions for both the UPLC and HPLC
analysis. Full-scan MS spectra (m/z 50–2000) were
acquired in the TOF and the top 10 most intense ions
in a particular scan were fragmented using collision
induced dissociation at 35 eV for +1 ion and 25 eV for
+2 ions in the collision cell.

Statistical analysis
Abundances of molecules were calculated using the
MS1-based area under the curve and normalized for
the original sample volume. Putative assignments of
the source or annotation of a molecular feature were
based on MS/MS data and analyzed with molecular
networking. For random forests analysis, each area
under the curve abundance in the UPLC metabo-
lomes was normalized to the total abundance of all
molecules detected to generate an abundance matrix.
This matrix was imported to the R-Studio software
package v0.97.318 (Boston, MA, USA) for statistical
analysis. Shannon–Weiner indices were calculated
based on the normalized abundance of each
molecular feature or each bacterial genus using
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the ‘vegan’ package in R (Oksanen et al., 2015).
A correlation between these two indices was then
tested using Pearson’s r and statistical differences
tested with the Student's t-test. A supervised random
forests (5000 trees) was done on the abundance
matrix using the R ‘randomForest’ package v4.6-7
(Boston, MA, USA). A variable importance plot (VIP)
of the random forests was used to detect molecules
enriched in CF compared with non-CF samples.
Statistical significance between CF and non-CF
metabolite abundances was then verified with the
Wilcoxon rank-sum test after normalization for
original sample volume.

Molecular networking
All LC-MS/MS data collected were converted into
the .mzXML format using Bruker DataAnalysis
software v4.1 (Billerica, MA, USA). Molecular
networking was carried out as described in
Bandeira et al. (2007), Watrous et al. (2012) and
Yang et al. (2013) using our in-house bioinformatics
workflow (gnps.ucsd.edu). To detect P. aeruginosa
metabolites, pure cultures of CF and non-CF isolates
were grown on ISP2 media, and the media and
colonies were extracted with the same solvents as
the sputum samples and run with the same LC-MS/
MS methods. Highlighting individual nodes by their
source in Cystoscape (San Diego, CA, USA) allowed
for assessment of the putative source of the
metabolites detected. The pure culture data were
seeded into the network of the sputa data, and
networks were analyzed using the GNPS database
and the Cytoscape software (Shannon et al., 2003).
P. aeruginosa metabolites and sphingomyelin were
identified by matching retention time and MS/MS
spectra according to the metabolomics standard
initiative level 1 annotation guidelines (Sumner
et al., 2007), previously unidentified molecular
relatives of these metabolites are considered as
level 2 and all other microbial metabolites are
unknown (level 4 compounds).

Results

Initially, seven CF sputum samples were collected
from patients with a varied clinical culture history to
compare clinical culture results with metabolomics
and 16S rRNA gene sequencing. Six non-CF sputa
(obtained from healthy human individuals without
CF disease using the same induced sputum method)
were used for a statistical comparison to the CF
metabolomic data from these original patients.
Sputum samples from 27 additional CF patients
were then collected and analyzed with targeted
metabolomics and clinical culture for a more in-
depth investigation of the relationships between
metabolomics and P. aeruginosa culture results.
The molecular abundances in this study were
determined using area under the curve of the MS1

signal of each unique ion to provide accurate
abundance information on molecules detected.
Annotation and assignment of molecular sources
were based on molecular networking of MS/MS
spectra from sputum with known spectra in the
GNPS mass spectrometry database (gnps.ucsd.edu).

Global chemistry of CF sputum
An HPLC-MS/MS approach was used for an
initial chemical investigation of the seven CF
sputa. Metabolomics data were also generated on
bacterial CF isolates that were detected in
the microbiomes, including a P. aeruginosa strain
(PAnmFLR01), methicillin-sensitive Staphylococ-
cus aureus (SaFLR01), methicillin-resistant
S. aureus (MRSAFLR01), Stenotrophomonas mal-
tophilia (SmFLR01), Escherichia coli (EcFLR01)
and Streptococcus salivarius (SsFLR01). The
sputum and microbial metabolomics data were
co-networked together with stringent parameters
using our in-house molecular networking bioinfor-
matics tool GNPS to identify putative microbial
metabolites by matching MS/MS spectra between
the samples and with our spectral libraries
(Figure 1, Supplementary Figure S1). Molecular
networking is based on the property that molecules
of similar structure fragment similarly resulting in
similar MS/MS spectra. This information is visua-
lized using nodes as a proxy for MS/MS spectra
and the thickness of the edges representing the
similarity between the nodes. For visualization of
the CF sputum molecular network, the nodes are
colored based upon the sample origin, and the ‘V’
shape indicates a match to the GNPS spectral
libraries (Figure 1). In the global molecular
network, 1352 unique MS/MS spectra were
observed. Putatively annotated molecules included
host lipids, amino acids, various xenobiotics
(particularly drugs given to the patients) and
P. aeruginosa specialized metabolites (Figure 1).
A total of 2.5% of detected molecules could be
annotated through GNPS, 3.8% matched to a
microbial metabolome, the remaining 96.2% were
only detected in CF sputum, and were therefore
assigned as host or other microbial molecules
(Figure 2a). Only 1.0% of molecules detected in
the CF sputa matched a P. aeruginosa pure culture.
A number of phosphoethanolamines were present
in both CF sputum and bacterial cultures, indicat-
ing that this molecular family is shared between
bacteria and the host (Figure 1).

Microbiome and metabolome diversity
Clinical culture results and 16S rRNA gene
amplicons were sequenced to generate microbial
profiles of the initial seven CF patients in this study.
The microbiome profiles differed between all
patients and did not coincide with culturing results
(Figure 2b, Table 1). Two of the patient microbiomes
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were dominated by Rothia spp. and Streptococcus
spp. (CF10, CF11), two were dominated by
Pseudomonas spp. (CF9 and CF13) and the other
three were unique (CF1, CF6 and CF12, Figure 2b).
Pseudomonas spp. constituted 45% of the 16S
rRNA gene sequence reads in only three of the
patients (CF1, CF9 and CF13, Table 1). As the initial
patients in this study were selected based on varied
culture results, we investigated the literature to
assess how often P. aeruginosa was the dominant
bacterium in microbiome profiles without this
selection (Supplementary Table S1). From 18 studies
comprising 393 patients, 60% of patients had
P. aeruginosa as the most relatively abundant
bacterium (Supplementary Table S1). This demon-
strated that while P. aeruginosa is most often the
dominant pathogen in adult CF patients, other
bacteria are dominant in 40% of individuals. To
compare microbiome and metabolome diversity,
Shannon–Weiner indices were calculated on the
abundance matrices from both data types on the
same samples. The CF metabolomes were signifi-
cantly more diverse than non-CF (Shannon–Weiner
index, one-tailed Student's t-test; P=0.00003,
df = 13), but the 16S rRNA gene profiles produced

the opposite trend (P=0.0010) (Supplementary
Figure S2). There was no significant Pearson's
correlation between microbial diversity and the
metabolome diversity in either CF or non-CF
populations (Supplementary Table S2, r=−0.12,
and r=0.43, respectively).

P. aeruginosa specialized metabolites in sputa
P. aeruginosa metabolites were detected in four of
the seven initial CF patients within the global
molecular network (Figure 1, Table 2). The specific
chemistry of these metabolites was then analyzed by
networking individual patients with P. aeruginosa
data alone (Figure 3, Table 2, Supplementary
Figure S3). Patient CF9 had the largest relative
abundance of P. aeruginosa in the microbiome
(75.0%, Table 1), and quinolones were detected in
this patient’s metabolome; however, the overall
abundance of these molecules was only 0.03% of
the total metabolome. The most abundant specia-
lized metabolite in CF9 was 2-heptyl-4-quinolone
(HHQ), which made up 0.02% of the total counted
ions. For comparison, the most abundant host
metabolite in CF9 (sphingomyelin) was 1.1% and
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Figure 1 Molecular network of CF sputa and bacterial isolate HPLC-MS/MS metabolomic data generated on GNPS. The network was
visualized using the Cytoscape software. Each node represents a unique spectrum that was detected at least twice in the data set and is
colored by its sample of origin according to the legend. Nodes that were detected in multiple bacteria as well as a sputum sample are
considered together regardless of which bacteria were represented. Bacterial-only nodes are colored gray and were not considered for
subsequent sputum statistical analysis and ISP2 media blank nodes are colored black to be ignored as a background. Nodes that hit to the
GNPS database based on the molecular networking algorithm (Watrous et al., 2012) are shaped as a ‘V’ and circular nodes are those that are
not known in GNPS. Molecular families and identified molecules are highlighted. *Singleton nodes are those that did not have any
molecular relatives and are not shown in the network.
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the most abundant xenobiotic (azithromycin) was
2.1%. This demonstrated that while detectable in
sputum, the P. aeruginosa specialized metabolites
were at a low relative abundance compared with
other molecules, even in a patient dominated by
this bacterium. A total of six unique quinolones
were detected in patient CF9 (Figure 3, Table 2),
including the two base quinolones: 2-heptyl-4-
hydroxyquinolone-N-oxide (HQNO, m/z 260.19) and

HHQ (m/z 244.17). The remaining six quinolones
were structural derivatives of these molecules,
differing only in the length and unsaturation of the
aliphatic chain (Figure 3). The pseudomonas quino-
lone signal (PQS, 2-heptyl-3-hydroxy 4-quinolone)
was not detected, even though its precursor HHQ
was the most abundant quinolone in CF9 (Figure 3).
To further investigate the chemistry and prevalence
of P. aeruginosa metabolites, a targeted analysis

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

All CF

Annotated Sputum
2.5%

Host or Other Microbe
96.1%

Multiple Bacteria
1.0%

Sputum P. aeruginosa
1.0%

Sputum S. aureus
0.9%

Sputum S. maltophilia
0.6%

Sputum S. salivarius
0.1%

Sputum E. coli
0.1%

Sputum R. mucilaginosa
0.1%

ALL CF

16S rRNA MicrobiomeMetabolome

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

C
F

1

C
F

6

C
F

9

C
F

10

C
F

11

C
F

12

C
F

13

Other
Achromobacter
Neisseria
Achromobacter
Campylobacter
Oribacterium
Haemophilus
Ralstonia
Leptotrichia
Gemella
Granulicatella
Prevotella
Staphylococcus
Veillonella
Stenotrophomonas
Escherichia
Rothia
Streptococcus.1
Streptococcus
Pseudomonas

Clinical
Culture
Result

.1

Figure 2 (a) Bar chart of the distribution of the detected molecules based on the network mapping. Molecules are assigned to a particular
bacterium when a spectrum was detected in sputum and that bacterium only. Shared molecules between multiple bacteria are also shown.
(b) Clinical culture results and 16S rRNA microbiome profiles of the seven sequenced CF sputum samples in this study. Microbiome
profiles were generated using 16S rRNA gene amplicon sequencing and operational taxonomic unit clustering using Mothur, 19 of those
most abundant are shown here while the rest are clustered into ‘other’ as they were of very low abundance.

Table 1 Clinical culture history and 16S rRNA gene profile results of CF and non-CF sputa

Sample Clinical culture results Dominant bacterium in
microbiome

% Most dominant
bacterium

% Pseudomonas
abundance

# of Sequence
reads

CF1 P. aeruginosa,
S. maltophilia

Streptococcus 27.5 5.00 57 206

CF6 E. coli Escherichia 52.52 1.74 17 977
CF9 P. aeruginosa Pseudomonas 75.00 75.00 50 875
CF10 Achromobacter

xylosoxidans
Streptococcus 44.40 0.018 63 917

CF11 P. aeruginosa,
S. maltophilia

Streptococcus 34.80 0.11 40 948

CF12 MRSA, P. aeruginosa Stenotrophomonas 45.67 0.99 39 029
CF13 MRSA Pseudomonas 67.87 66.41 62 187
H1 NA Streptococcus 16.48 0.005 54 333
H2 NA Burkholderia 22.73 0.22 4743
H3 NA Veillonella 27.95 0.001 56 836
H4 NA Geobacillus 36.32 0.005 32 899
H5 NA Streptococcus 15.22 0.002 69 545
H6 NA Streptococcus 17.02 0.002 54 559

Abbreviations: CF, cystic fibrosis; MRSA, methicillin-resistant S. aureus; NA, not applicable.
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was performed on the additional 27 CF sputa
and compared with clinical culture results. Fourteen
of these additional samples were positive by
P. aeruginosa targeted metabolomics. Six of these
samples were positive for P. aeruginosa culture, but
negative by metabolite detection, and four contained a
P. aeruginosametabolite, but were negative by culture
results (Table 3). Incorporating the initial seven
samples, 50% of the sputa that were negative by
P. aeruginosa clinical culture (n=12) contained at
least one specialized metabolite from this bacterium.
HHQ was detected in four samples, 2-nonyl-4-
quinolone in eleven and both molecules were found
in three (Table 3). Similar to CF9, PQS and C9-PQS
were not detected in any of these sputum samples
even when HHQ was present.

To test whether the chemical nature of the
P. aeruginosa quinolone production in sputum was
specific to growth in the CF lung environment, three
different CF strains of P. aeruginosa were grown in a
CF mucus bronchiole model that mimics lung
conditions (WinCF model) (Quinn et al., 2014) and
compared with metabolite production when grown on
ISP2 aerobic media. The quinolone production in the
WinCF model matched that of the sputum, where the
isolates produced abundant HHQ, HQNO and NQNO
(C9-HQNO), but not PQS or C9-PQS (Supplementary

Figure S4). However, PQS and C9-PQS were produced
when P. aeruginosa was grown on the aerobic ISP2
media (Supplementary Figure S4).

Phenazines were detected in patient CF6
(Figure 3, Table 2) and in three of the additional
twenty-seven samples (Table 3). These known
phenazines included 1-hydroxyphenazine (1-HP),
phenazine-1-carboxylic acid and a variant of
pyocyanin (PYO) (Figure 3, Supplementary
Figure S3). Additional putative phenazines were
also detected in the raw data including a phenazine
with the same exact mass and similar MS/MS
fragmentation pattern to 1-HP (m/z 197.07), but a
different retention time when compared with
P. aeruginosa pure culture (Supplementary
Figure S3). This indicated that this metabolite was
likely an analog of 1-HP, probably differing in the
position of the hydroxyl group. The PYO variant
shared the same mass as PYO, but both the
fragmentation pattern and retention time differed
(Supplementary Figure S3). The similarity of
MS/MS fragmentation between the detected phena-
zine and PYO suggests that their structures were
closely related.

Despite the diversity of rhamnolipids produced
by P. aeruginosa in culture, only the rhamnolipid
Rha-Rha-C10-C10 (m/z 673.37 ([M+Na]+)) was

Table 2 Chemical characteristics and abundances of P. aeruginosa specialized metabolites detected in CF sputum

Molecular
family

Compound
name

Form Calculated
m/z

Sample Retention
time (min)

Measured
m/z

Peak intensity
in sputum

Δppm

Phenazine 1-HP H+ 197.0709 25.3 197.07 4.06
CF6 25.1 197.07 1.1 × 104 3.04

?-HP H+ ** CF6 22.4 197.07
PYO H+ 211.0866 14.5 211.08 3.8 × 104 0.95
PYO analog H+ ** CF6 18.7 211.08
PCA H+ 225.0659 26.2 225.06 5.78

CF6 25.9 225.06 5.9 × 104 2.22
5-MPCA H+ 239.0815 MPA01, CF6 12.7 239.08 7.6 × 104 1.67

Quinolone HHQ H+ 244.1696 PAmFLR02 26.3 244.17 4.91
CF9 26.1 244.16 4.9 × 105 0.41

HQNO H+ 260.1645 PAmFLR02 26.5 260.16 6.53
CF9 26.3 260.16 1.5 × 104 −1.92

db-NHQ H+ 270.1852 AmFLR02 29.5 270.18 2.96
CF9 29.2 270.18 2.3 × 104 0.74

NHQ H+ 272.2009 PAmFLR02 29.9 272.20 5.14
CF9 29.7 272.20 1.6 × 105 1.1

NQNO H+ 288.1958 PAmFLR02 29.9 288.19 4.16
CF9 29.8 288.19 1.7 × 104 1.73

db-UHQ H+ 298.2165 PAmFLR02 31.5 298.21 3.69
CF9 31.2 298.21 3.4 × 104 2.35

Rhamnolipid Rha-Rha-
C10-C10

Na+ 673.3770 PAmFLR02 34.0 673.37 1.63

CF6 33.9 673.37 6.2 × 103 −1.78
CF9 33.9 673.37 4.3 × 104 −0.74
CF10 33.9 673.37 5.9 × 103 −1.78
CF11 33.9 673.37 6.9 × 104 −2.08

Abbreviations: CF, cystic fibrosis; db-NHQ, 2-nonenyl-4-hydroxyquinolone; db-UHQ, 2-undecenyl-4-hydroxyquinolone; 1-HP,
1-hydroxyphenazine; HHQ, 2-heptyl-4-hydroxyquinolone; HQNO, 2-heptyl-4-hydroxyquinolone-N-oxide; NHQ, 2-nonyl-4-hydroxyquinolone;
NQNO, 2-nonyl-4-hydroxyquinolone N-oxide; PCA, phenazine-1-carboxylic acid; PYO, pyocyanin; UHQ, 2-undecyl-4-hydroxyquinolone;
5-MPCA, 5-methylphenazine-1-carboxylic acid; **, same as above.
Strain MPAO1 is a laboratory strain, PAnmFLR01 is a non-mucoid CF isolate and PAmFLR02 is a mucoid isolate. m/z=mass-to-charge ratio;
Δppm=change in parts per million from exact mass.
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found in CF sputum (Figure 3). This molecule was
detected in four of the original CF samples (Figure 3,
Supplementary Figure S3, Table 2), two of which
were negative by clinical culture (Supplementary
Table S3) and three of the additional twenty-seven
samples (Table 3). The peak intensity of Rha-Rha-C10-
C10 was highest in sputum from patient CF9, who had
the highest proportion of P. aeruginosa in the micro-
biome (Table 1). Even though Rha-Rha-C10-C10 was
detected, the microbiome of patients CF6, CF10 and
CF11 contained less than 2% P. aeruginosa.

Xenobiotics in CF sputa
A number of exogenous metabolites were identified
in the original seven CF sputa, including anti
biotics, antifungals and antidepressants (Figure 1,
Supplementary Figure S5). Caffeine was detected in
four CF samples (CF1, CF6, CF11 and CF13) and one
non-CF sample (H1) (Figure 4). The antibiotic
azithromycin was detected in prescribed patients
(CF1, CF9 and CF13) and aztreonam (Figure 4) was
only detected in CF9; although several other patients
were prescribed the medication (Supplementary
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Table S3). In addition, the antibiotics sulfamethox-
azole and trimethoprim (Figure 4) were detected in
several patients (CF1, CF6, CF9 and CF10) even
though these drugs were not known to have been
administered recently. The antifungal itraconazole
was detected in patient CF9 (Figure 4). Anti-
depressants citalopram and amitriptyline were
detected in CF6 and CF13, respectively (Figure 4).
Metabolism and transformations of these xenobiotics
were also observed, including loss of a sugar moiety
of azithromycin, desulfated aztreonam, acetylated
sulfamethoxazole, and demethylation and/or hydro-
xylation of caffeine, citalopram, amitriptyline and
itraconazole (Figure 4). There was a positive correla-
tion between levels of azithromycin in sputum with
levels of P. aeruginosa reads and the P. aeruginosa
rhamnolipid Rha-Rha-C10-C10 (one-tailed test of
Pearson’s r = 0.72 and r=0.89 respectively, Po0.05).

Metabolites that distinguish CF from non-CF
After assessment of the overall chemistry and
putative source assignments of the molecules
detected, an UPLC-MS/MS method was used to
generate metabolomic data on the initial seven CF
sputa and an additional six non-CF sputa for
statistical comparisons between these two groups.
A random forest statistical approach was used to

identify which molecules best differentiated the
CF from non-CF metabolomes based on their
MS1 abundances. Although this represents a rela-
tively small sample size, our statistical approach
reveals molecules that are drastically different in
abundance between CF and non-CF lending
the findings more broadly applicable. Thirty differ-
ential molecular features were identified in the
random forests VIP as significantly different
between CF and non-CF (Supplementary Table S4,
Supplementary Figure S6). The source of these
molecules was then determined by matching
their parent mass in the molecular network and
determining which group they were from xenobio-
tics, CF only, non-CF only, shared or matching a
bacterium. None of the distinguishing molecules
were known to be bacterial, their source was CF
only (18/30), non-CF only (1/30) or both (11/30,
Supplementary Table S4). This indicated that the
most differential molecular features between CF
and non-CF were molecules highly abundant in
CF sputa, likely of host origin, as they did not match
a microbial culture metabolome. However, it is
important to note that different conditions of
microbial culture may result in variable metabolite
production.

Of the 30 molecular features identified in the VIP,
many yielded an MS/MS fragmentation peak of

Table 3 Extracted ion abundance of P. aeruginosa specialized metabolites in the additional 27 sputum samples and their P. aeruginosa
clinical culture results

Quinolones Rhamnolipid Phenazines P. aeruginosa culture

HHQ NHQ PQS C9-PQS Rha-Rha-C10-C10 PCA PYO

CF6 0 0 0 0 0 0 0 +
CF26 0 0 0 0 0 0 1780 −
CF28 0 0 0 0 0 0 0 −
CF29 0 0 0 0 0 0 0 −
CF30 0 0 0 0 15 712 0 0 +
CF31 0 3484 0 0 0 0 0 −
CF33 0 0 0 0 0 0 0 −
CF34 0 0 0 0 0 0 0 −
CF35 0 0 0 0 0 0 0 +
CF36 0 4072 0 0 0 0 0 +
CF37 0 0 0 0 0 0 0 −
CF38 0 4060 0 0 0 0 0 +
CF39 0 150 652 0 0 0 0 0 +
CF40 0 0 0 0 0 0 0 +
CF41 0 0 0 0 0 0 0 +
CF42 0 3620 0 0 0 1992 0 −
CF43 0 0 0 0 0 0 0 −
CF44 1216 4460 0 0 0 0 0 +
CF45 0 116 548 0 0 0 0 0 +
CF46 2396 0 0 0 7760 0 +
CF47 0 0 0 0 0 0 0 +
CF48 162 940 511 380 0 0 6988 0 0 +
CF49 0 0 0 0 0 0 0 +
CF50 0 3392 0 0 0 0 0 +
CF51 0 0 0 0 0 2120 0 +
CF52 0 3084 0 0 0 0 0 +
CF53 38 012 267 824 0 0 0 0 0 +

Abbreviations: CF, cystic fibrosis; HHQ, 2-heptyl-4-quinolone; NHQ, 2-nonyl-4-hydroxy-quinolone; PCA, phenazine-1-carboxylic acid; PQS,
pseudomonas quinolone signal; PYO, pyocyanin.
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m/z 184.07 which corresponded to phosphocholine
(Supplementary Figure S6). This fragmentation
pattern indicated that these differential metabolites
were phospholipids, particularly the sphingolipids,
which are rare in bacteria and fungi (Olsen and
Jantzen, 2001; Wieland Brown et al., 2013). One
particularly differential molecule (m/z 703.58),
highly abundant in CF, was annotated as the
lipid sphingomyelin (18:1/16:0) (Supplementary
Figure S7). Three additional sphingomyelins were
detected in the VIP (m/z 675.54, m/z 689.56 and
m/z 701.56). The sphingomyelin molecular cluster
in the CF/non-CF molecular network visualized
these sphingomyelins and a number of other related
molecules not identified in the VIP (Figure 5a).
Manual annotation of the MS/MS spectra of these
molecules, in conjunction with searches of the
LipidMaps database (Sud et al., 2006), putatively
annotated them as related sphingomyelins.
All putative sphingomyelins detected in the
molecular cluster in Figure 5a were significantly
elevated in CF vs non-CF sputa according to the
Wilcoxon rank-sum test (two-tailed), including
d18:1/16:0 (m/z 703.58, P = 0.002), d18:1/14:0
(m/z 675.54, P= 0.002), d18:1/15:0 (m/z 689.56,
P= 0.01) and d18:1/16:1 (m/z 701.56, P = 0.003,
df = 13, Figure 5a). The glycosphingolipids, tetra-
glycoceramide (d18:1/16:0, m/z 1227.76) and

lactosylceramide (d18:1/16:0, m/z 862.62) were also
identified with the random forests VIP and signifi-
cantly more abundant in CF sputa (P= 0.009 and
0.02, respectively, Supplementary Figure S6,
Supplementary Table S4). To determine whether
sphingolipid forms were especially abundant as
opposed to other phospholipids, the area under the
curves of the C18 lipids ceramide (18:1/16:0),
sphingomyelin (18:1/16:0), and diacylglyceropho-
sphocholine (18:1/16:0) were compared. Significant
differences in abundance were only found for
the C18 sphingolipids ceramide (P = 0.002) and
sphingomyelin (P = 0.004), but not for the C18
diacylglycerophosphocholine (P = 0.1, Figure 5b,
Wilcoxon rank-sum test). The sphingolipids were
not significantly correlated with any particular
bacterial genus.

Discussion

This study investigated the global chemistry of CF
sputum comparing findings to clinical culture
history and microbial 16S rRNA gene profiles. We
found that sputum is a diverse sample containing
molecules from microbial, host and xenobiotic
sources. What was unexpected, however, was that
microbial molecules were not particularly abundant
and the microbiome diversity was not correlated
with metabolome diversity. The most abundant
molecules in CF sputum were sphingolipids and
antibiotics. Sphingolipids were significantly more
abundant in CF sputum than in non-CF sputum,
indicating that they may accumulate in the lungs of
CF patients. This discrepancy between microbial and
metabolite diversity is likely due to the high
abundance and diversity of host metabolites coming
from inflammatory cells in sputum (Macher and
Klock, 1980; Dechecchi et al., 2011).

Clinical culturing, 16S rRNA gene profiling and
metabolite-based detection were not congruent for
the diagnosis of a P. aeruginosa infection (Tables 1
and 2). It was found that patients without a known
P. aeruginosa infection contained the bacterium’s
molecules in their sputum and vice versa.
For example, patient CF13 had abundant reads
(67.9%) mapped to P. aeruginosa in the sputum
microbiome, but was clinically classified as being
infected by MRSA, and LC-MS/MS did not detect
any P. aeruginosa specialized metabolites. Similarly,
CF1 had abundant P. aeruginosa reads in the
16S rRNA microbiome profile and was classified as
a Stenotrophomonas maltophilia/P. aeruginosa
infection by culture, but P. aeruginosa metabolites
were absent. Three patients had low amounts of
P. aeruginosa in their microbiome, but LC-MS/MS
detected the rhamnolipid Rha-Rha-C10-C10. Patient
CF9, however, had signatures of P. aeruginosa using
all three methods of detection. In light of these
results, we further investigated the presence of
P. aeruginosa molecules in another 27 sputum
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samples and found similar discrepancies with
clinical culture. Of the samples tested, 21% were
culture positive, but negative for P. aeruginosa
metabolites. Thus, clinical culture and microbiome
results do not reflect the active production of
P. aeruginosa small molecules. Rhamnolipids, for
example, may be produced by P. aeruginosa active
metabolism despite its overall low abundance or
ability to be cultured on selective media. Identifica-
tion of actively growing bacteria is of particular
interest for antibiotic treatment, as antibiotics are
most effective against actively growing cells (Hu and
Coates, 2012). Clinical decisions should take into
account the potential that culture identifications are
not necessarily reflective of active growth and
metabolite production of a particular bacterium.

The molecules produced by P. aeruginosa grown
in culture did not match those produced in CF
sputum, demonstrating that the bacterium’s specia-
lized metabolite production is unique in the lung
environment. For example, in patient CF9, quino-
lones were detected, but PQS, the best-studied
P. aeruginosa quinolone, was completely absent
even though it was readily detected from cultured
cells under the same LC-MS/MS conditions. The
most abundant quinolone detected was HHQ, the
biosynthetic precursor of PQS. This phenomenon
was verified in another 27 sputum samples by
targeted quinolone analysis. We hypothesize that
the absence of PQS in the sputa is due to the high
concentration of iron (Stites et al., 1998; Ghio et al.,
2012) and low concentration of oxygen (Schertzer

et al., 2010), which has been shown to inhibit PQS
production (Bredenbruch et al., 2006; Schertzer
et al., 2010). Growing P. aeruginosa in an environ-
ment mimicking the CF lung reproduced the specific
quinolone production, indicating that the chemical
conditions of a mucus-plugged bronchiole are likely
responsible for the specific quinolone chemistry
detected in sputum. The presence of HHQ and
HQNO suggests that the historical research focus
on PQS may not be relevant in the lung environment
(Collier et al., 2002; Bredenbruch et al., 2006;
Häussler and Becker, 2008), these other quinolones
may be more important to the bacterium in vivo.
A similar phenomenon has been observed with
P. aeruginosa homoserine lactone quorum-sensing
molecules, which also implicated the environment
of the CF lung as the driver of the unexpected
chemistry (Singh et al., 2000). Close molecular
relatives of phenazines were detected in CF6,
indicating that those that are produced in the lung
may include previously unrecognized molecules.
Rhamnolipid production also varied, where 12
specific rhamnolipids were produced by cultured
P. aeruginosa cells, but only 1 detected in sputum.
The disparity between the specific chemistry of
P. aeruginosa small molecules in culture and in vivo
is likely due to differential abundance of the bacterium,
clonal adaptation and hyper-mutation affecting its
phenotype, and the effects of the complex lung
environment on the bacterium’s physiology (Wilder
et al., 2009; Hogardt and Heesemann, 2010; Behrends
et al., 2013; Workentine et al., 2013). This study
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demonstrates the importance of growing the bacter-
ium in an environment better mimicking the CF lung,
an approach that has previously revealed important
aspects of P. aeruginosa physiology as a CF pathogen
(Palmer et al., 2005, 2007; Sriramulu et al., 2005; Fung
et al., 2010; Hare et al., 2012; Quinn et al., 2014;
Turner et al., 2015).

The most differential metabolites between CF and
non-CF sputa were sphingolipids. Sphingolipids are
rare in bacteria and fungi and therefore likely host
derived. However, some microbes have been docu-
mented to produce them, including a bacterium
detected in our microbiome profiles (Prevotella)
(Olsen and Jantzen, 2001; Wieland Brown et al.,
2013). Molecular networking revealed that there
was a diverse complement of sphingolipids highly
abundant in CF lungs including various sphingo-
myelins, lactosylceramide, tetraglycoceramide,
ceramides and sphingosine. Hydrolysis of the hydro-
philic head group of sphingolipids produces cera-
mide, which induces strong inflammatory cascades
(Brodlie et al., 2011). Thus, the abundance of
sphingomyelins found in this study represents a
large reservoir of ceramide induced inflammatory
signaling that could be harmful to the lungs. In
support of these findings, elevated levels of ceramide
have been measured in the epithelial membrane of
CF mice and late-stage CF patients (Teichgräber
et al., 2008; Brodlie et al., 2011; Ziobro et al., 2013).
Recent studies suggest that CFTR is directly involved
in the regulation of ceramide metabolism, because
CFTR knockouts accumulate ceramide in the
epithelium (Bodas et al., 2011; Ziobro et al., 2013).
Our findings support previous studies that have
focused on the human enzyme acid sphingomyeli-
nase, which converts sphingomyelin to ceramide
and is activated by microbial products and
inflammatory cytokines (Sakata et al., 2007).
P. aeruginosa also produces a phospholipase that
can act as a sphingomyelinase (Truan et al., 2013).
These enzymes have been suggested as a target for
novel therapies to reduce lung inflammation
(Teichgräber et al., 2008; Ziobro et al., 2013),
because their mechanistic action can contribute to
the harmful hyperinflammation characteristic of CF
disease. In addition, sphingolipids have been shown
to have a CFTR-dependent role in vasoconstriction
through hypoxia signaling (Tabeling et al., 2015), a
potentially important link between sphingolipids
and the host response to the hypoxic CF lung that
drives microbial physiology (Quinn et al., 2014).
Sphingolipid accumulation is not specific to CF
disease, it has also been observed in other inflam-
matory lung diseases, such as asthma (Ammit et al.,
2001), emphysema (Petrache et al., 2005) and
chronic obstructive pulmonary disorder (Telenga
et al., 2014). Regardless of its disease specificity or
source of production, the exceptionally high abun-
dance of these molecules in CF sputum further
supports that targeting sphingomyelinases can be a
potentially efficacious treatment for CF.

The molecular networking approach in this study
revealed that CF sputum is a heterogeneous milieu of
host, microbial and xenobiotic chemical products.
Xenobiotics were in high relative abundance in
sputa. Common drugs used to treat CF patients were
identified including antibiotics, antifungals and
antidepressants. We also observed metabolism of
these drugs, including desulfation, methylation,
hydroxylation, acetylation and removal of sugars.
The ability of molecular networking to visualize
the chemistry and metabolism of drugs in the
same sample along with microbial products can
inform physicians about which microbes are
active in a particular sample and their antibiotic
resistance mechanisms. This is important knowledge
and can influence subsequent treatment regimes.
Furthermore, this analysis can be done on a patient-
by-patient basis to allow for precision care. Metabo-
lomics studies are often limited by the need to
analyze a particular targeted group of compounds.
Application of molecular networking to metabolo-
mics greatly increases the comprehensiveness and
ability to study the effects of small molecules on host
and microbial physiology together with one method.

Conclusions

This study described the chemical makeup of
CF sputum and found that the most abundant
molecules were sphingolipids. Drugs targeting the
conversion of sphingolipids to ceramide, such as
amitriptyline, already prescribed for some CF
patients (Riethmüller et al., 2009) and detected in
this study, may be efficacious in reducing the
overall hyperinflammation across individuals.
There was a marked discrepancy in 16S rRNA gene
sequencing, clinical culture and metabolomics
results for the detection of P. aeruginosa in a
sputum sample. Clinical decisions for antibiotic
use are currently based on results from routine
microbiological culture on selective media.
This study indicates that treatment decisions based
on culture results need to consider that culture-
based detection of a bacterium does not imply that
it is actively growing and producing potentially
damaging metabolites in the patient. Metabolomics
methods can detect microbial metabolites unique to
particular bacteria or groups of bacteria and could
aid clinical decisions by providing evidence that a
particular pathogen is active in a clinical sample.
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