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Background: Kawasaki disease (KD) is the leading cause of acquired heart disease in

children. However, distinguishing KD from febrile infections early in the disease course

remains difficult. Our goal was to estimate the immune cell composition in KD patients

and febrile controls (FC), and to develop a tool for KD diagnosis.

Methods: We used a machine-learning algorithm, CIBERSORT, to estimate the

proportions of 22 immune cell types based on blood samples from children with KD

and FC. Using these immune cell compositions, a diagnostic score for predicting KD

was then constructed based on LASSO regression for binary outcomes.

Results: In the training set (n = 496), a model was fit which consisted of eight types of

immune cells. The area under the curve (AUC) values for diagnosing KD in a held-out test

set (n= 212) and an external validation set (n= 36) were 0.80 and 0.77, respectively. The

most common cell types in KD blood samples were monocytes, neutrophils, CD4+-naïve

and CD8+ T cells, and M0 macrophages. The diagnostic score was highly correlated to

genes that had been previously reported as associated with KD, such as interleukins and

chemokine receptors, and enriched in reported pathways, such as IL-6/JAK/STAT3 and

TNFα signaling pathways.

Conclusion: Altogether, the diagnostic score for predicting KD could potentially serve as

a biomarker. Prospective studies could evaluate how incorporating the diagnostic score

into a clinical algorithm would improve diagnostic accuracy further.

Keywords: Kawasaki disease, diagnosis, biomarker, CIBERSORT, immune cell, LASSO model

INTRODUCTION

Kawasaki disease (KD) is an acute febrile inflammation of infants and children with an unknown
etiology and is the leading cause of acquired heart disease for children in developed countries (1–
3). Some of its complications such as coronary aneurysms, thrombotic occlusion, and myocardial
infarction may be fatal (4). KD is a clinical diagnosis and no specific diagnostic test exists at
present. It can sometimes be difficult to distinguish KD from other febrile illnesses, including from
infectious etiologies, which may have the same clinical features or occur concomitantly (5), leading
to sometimes delayed treatment and complications (6, 7).
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Several biomarkers for KD have been identified, but they
either have a low specificity or have not yet been validated in
a sufficiently large dataset (8–13). As KD is an inflammatory
disease, there are some immunological biomarkers that show
promise (8). However, since they are based on either flow
cytometry or immunohistochemical staining, these biomarkers
remain challenging to standardize and implement into routine
clinical practice. Because of these limitations, researchers
have begun to look for new diagnostic approaches, including
approaches based on high-throughput screening (10, 13, 14).
However, the role of the composition of the whole blood immune
cells in these approaches remains unclear.

As a novel algorithm based on transcriptomic profiling,
Cell-type Identification by Estimating Relative Subsets of RNA
Transcripts (CIBERSORT) has been shown to be highly accurate
in identifying immune cell types. It remains unknown whether
CIBERSORT could be used in distinguishing between KD and
FC. Therefore, our objective was to characterize the immune cell
composition in KD patients through CIBERSORT and contrast
it to those of infectious febrile controls (FCs) to develop a
diagnostic score as a potential biomarker for diagnosing KD.

MATERIALS AND METHODS

Data Sources and Pre-processing
Data obtained from microarray samples generated using
Illumina R© and Stanford Functional Genomics Facility
were obtained from the Gene Expression Omnibus (GEO,
https://www.ncbi.nlm.nih.gov/geo). Therefore, there was no
requirement for institutional review board approval. All KD
blood samples were collected from children with KD diagnosed
based on the American Heart Association criteria (4), and
all FC blood samples were collected from children with a
fever and then restricted to cases of definite bacterial, definite
viral, and “uncertain” infections (4, 11, 13, 14). Samples from
healthy controls were only used in batch-effect removal but
were excluded from model building and validation (see below).
To construct the discovery cohort, we incorporated four GEO
datasets (GSE73461, GSE73462, GSE73463, and GSE68004),
including 301 KD, 408 FC and 208 healthy control (HC) samples.
Dataset GSE15297, which contained 23 KD and 18 FC samples,
was used as the validation cohort.

Raw data from Illumina R© microarray were processed using
the “lumi” R package (15). Probes were filtered to include only
those with a detection p-value smaller than 0.01 in at least one
sample in every group, and the largest level of probe was selected
for a gene detected by multiple probes. Sample outliers and batch
effects were identified and assessed using principal component
analysis. One sample from GSE73461 was identified as an outlier
and excluded (Supplementary Figures 1A,B). The “ComBat”
function in the “SVA” R package (16) was applied to correct for
batch effects between the datasets. Healthy controls were used in
batch-effect removal but were excluded from model building.

Supplementary Table 1 gives an overview of the data.
Corresponding authors were contacted for further information
where necessary.

Estimation of Immune Cell Composition
To estimate the proportions of immune cells, we applied
CIBERSORT (17), a deconvolution algorithm that can enumerate
cell type composition in gene expression data and produce a
p-value for the deconvolution for each sample using a Monte
Carlo approach. This algorithm was run with the default LM22
signature matrix downloaded from the CIBERSORT portal
and 1,000 permutations using the “CIBERSORT” R package.
Only samples with CIBERSORT p-value smaller than 0.05
were included.

Functional and Pathway Enrichment
Analysis
We also investigated enriched biological processes and pathways
between high- and low-diagnostic score groups by running a gene
set enrichment analysis (GSEA) (18) using the “clusterProfiler”
and “DOSE” packages (19) in R. Reference gene sets were
downloaded from the MSigDB database of the Broad Institute
(20) including “h.all.v7.4,” “c2.cp.kegg,” and “c2.cp.biocarta,”
which were applied to quantity activities of the corresponding
pathways. Target terms were identified with the strict cut-off 0.05
in the enrichment p-values based on 1,000 permutations. The
p-values were adjusted for multiple testing using the Benjamini-
Hochberg procedure.

Unsupervised Clustering
In order to classify all febrile patients into different molecular
subtypes, we performed unsupervised clustering using the
“ConsensusClusterPlus” R package (21). The consensus
clustering was based on the K-means algorithm, with 1,000
iterations using 80% of the samples selected randomly. The
optimal cluster number was determined using the consensus
cumulative distribution function.

Statistical Analysis
Samples in GSE73461, GSE73462, GSE73463, and GSE68004
were combined into the discovery cohort and subsequently
randomly separated into training and test set (7:3) for identifying
and evaluating the models. The test set will be referred to as the
“held-out test set” in the following. For external validation, the
GSE15297 dataset was used.

The least absolute shrinkage and selection operator (LASSO)
algorithm for binary outcomes implemented in the “glmnet”
R package (22) was applied to identify the most important
diagnostic immune cells using the training set. The optimal value
of the penalty regularization parameter λ was determined using
10-fold cross-validation and the 1-SE criterion. Subsequently, the
identified variables were used as covariates in logistic regression
to obtain the diagnostic prediction model. Note that the LASSO
already delivers a fully specified model, which is why using
logistic regression as a second step would not have been necessary
to arrive at a diagnostic prediction model. However, for the
case of continuous outcomes this two-step procedure has been
shown to deliver less biased coefficient estimates compared to
the LASSO (23). Prediction performance was evaluated using
receiver-operating characteristic (ROC) curves. Optimal cut-off
points were determined by maximizing Youden’s index using the
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FIGURE 1 | Flow chart of the study design. KD, Kawasaki disease; FC, febrile

control; HC, healthy control; PCA, Principal component analysis; CIBERSORT,

cell-type identification by estimating relative subsets of RNA transcripts;

LASSO, least absolute shrinkage and selection operator.

“OptimalCutpoints” R-package (24). For continuous variables,
group comparisons were performed using the Wilcoxon test
because there were indications of violations of the normality
assumption for these data. For categorical variables, Fisher’s
exact test was used. Spearman’s rank correlation coefficient was
used to analyze correlations between the diagnostic score and
the expression levels of genes. All statistical tests were two-
sided. P-values and false discovery rates smaller than 0.05 were
considered statistically significant.

RESULTS

Patient Characteristics
Figure 1 provides a detailed overview of the workflow. After
applying the filter criteria, 708 children (417 males and 291
females) were included in the discovery cohort, containing 300
KDs and 408 FCs (92 definite bacterial, 141 definite viral, and 175
uncertain infections), which was subsequently randomly divided
into a training set and a held-out test set. For external validation,
we used the GSE15297 dataset, including 23 KDs, eight definite
bacterial infections and five definite viral infections. Baseline
demographic and clinical characteristics of the patients are listed
in Table 1.

TABLE 1 | Clinical characteristics in the different datasets.

Discovery* Validation

Entire set Training set Test set Validation set

Number of patients 708 496 212 36

Age, months 27.0 (9.0–59.0) 27.0 (9.0–54.0) 29.0 (8.0–66.0) NA

Sex

Male 417 (58.9) 291 (58.7) 126 (59.4) 23 (63.9)

Female 291 (41.1) 205 (41.3) 86 (40.6) 13 (36.1)

Outcome

Kawasaki disease 300 (42.4) 210 (42.3) 90 (42.5) 23 (63.9)

Febrile controls 408 (57.6) 286 (57.7) 122 (57.5) 13 (36.1)

Pathogens in febrile controls

Definite bacterial 92 (22.5) 70 (24.5) 22 (18.0) 8 (61.5)

Definite viral 141 (34.6) 95 (33.2) 46 (37.7) 5 (38.5)

Uncertain 175 (42.9) 121 (42.3) 54 (44.3) 0

Data are presented as median (IQR), or n (%); NA, not applicable.

*There were no significant differences between children in Training and Test sets.

Composition of Immune Cells in KD and
FC Blood Samples
We used the CIBERSORT algorithm to analyze the composition
of immune cells in each individual sample. The proportions
of activated mast cells (p = 0.035), M0 macrophages (p <

0.001), monocytes (p = 0.035), and neutrophils (p < 0.001)
were significantly higher in KD samples than in FC samples. In
contrast, the fractions of M1 and M2 macrophages, activated
mast cells, plasma cells, CD4+-naïve and CD8+ T cells,
and γδ T cells (all p < 0.001) were lower in KD samples
(Figure 2A). In general, the five most common cell types in
KD blood samples were monocytes, neutrophils, CD4+-naïve,
CD8+ T cells, and M0 macrophages, accounting for over three
quarters of all cell types. Furthermore, we also investigated the
ratio of CD4+ to CD8+ T cells, since it was reported as a
potential distinction between the KD and the infectious febrile
children (25, 26). Compared to the FC group, KD patients
had significantly higher ratios of CD4+/CD8+ T cells (p <

0.001; Supplementary Table 2). Figure 2B further illustrates that
the immune cell composition landscape significantly differed
between KD and FC samples. In addition, we compared them
to the healthy control group (HCs). For most cell types, higher
fractions seen in the comparison of HC and KD were also seen in
the comparison of FC and KD, and vice versa. An exception was
the fraction of plasma cells, which was lower in the comparison
of HC and KD, but higher in the comparison of FC and KD
(Supplementary Figure 2).

Derivation and Validation of the Diagnostic
Score
To begin, we extracted the proportions of immune cells
with highly significant differences (p < 0.01) to construct
our diagnostic model. Using LASSO regression for binary
outcomes, we narrowed the candidate cell types down to eight
variables, where the penalty regularization parameter λ was
determined using 10-fold cross-validation and the 1-SE criterion
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FIGURE 2 | Summary of the immune cell types inferred using the CIBERSORT algorithm. (A) The compositions of immune cells of the KDs (red) vs. the FCs (blue) in

the discovery cohort. Wilcoxon test: *p < 0.05; ***p < 0.001; ****p < 0.0001; ns, not significant. (B) Stacked bar plots indicating the estimated proportions of 11

immune cells with significant difference (KD vs. FC) and other cell types for each sample in the discovery cohort.
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FIGURE 3 | Diagnostic score model construction and validation. (A) Results of the 10-fold cross-validation for tuning parameter selection in the LASSO model. The

error bars show necessarily biased (27) estimates of the standard errors of the cross-validation estimates. (B) LASSO coefficient paths of the fractions of the

candidate immune cells. Vertical lines are drawn at the values optimal according to the minimum (left line) and the 1-SE (right line) criterion, and the red numbers

represent the numbers of selected variables according to the respective criteria. (C–E) Diagnostic score model performance assessed by ROC curves in the training

(C), test (D), and validation (E) set. LASSO, least absolute shrinkage and selection operator; SE, standard error; ROC, receiver-operating characteristic; AUC, area

under ROC curve.

(Figures 3A,B). These eight variables were subsequently used in
logistic regression to obtain the diagnostic prediction model. The
scores of the selected cell types for this model were continuous
variables. The estimated coefficients of the model can be found
in Supplementary Table 3. ROC curves were used to evaluate
the overall performance of the model. The area under the curve
(AUC) was 0.76 in the training set (Figure 3C) and 0.80 in the
held-out test set (Figure 3D).

To investigate the diagnostic potential of the diagnostic score
in external prediction settings, we evaluated its performance on
the independent dataset GSE15297, which resulted in an AUC of
0.77 (Figure 3E), that is, a value very similar to that obtained for
the held-out test set.

Model Performance Diagnosis and
Association With KD Related Genes
Using violin plots, we compared the disease-specific distributions
of the diagnostic score in the training, test, and validation data to
evaluate the model’s ability to distinguish KD from other febrile
conditions due to infections (Figure 4A). Here, we also derived
an optimal cut-off point of −0.295, which was determined by
maximizing Youden’s index. The plot shows that the diagnostic
score was higher in KD samples in each of the datasets. The
distributions of the diagnostic score are very similar between
the training and test data but differ in the validation data.
The values of the diagnostic score had different distributions
between the discovery cohort and the validation cohort.We think
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FIGURE 4 | Distribution of the diagnostic score and biological functional analysis. (A) Distribution of the diagnostic score in the different studied datasets. In each set,

the box plot inside the violin plot represents the median value and the interquartile range of the diagnostic score, and the black point indicates the mean value. The

(Continued)
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FIGURE 4 | horizontal dashed red line represents the cut-off used to discriminate patients as having KD (above the line) or infectious diseases (below the line). (B)

Comparison of diagnostic scores between male (blue) and female (red) patients. (C) Correlation heat map between the diagnostic score and the expression levels of

genes previously reported to be associated with KD. (D–F) Gene set enrichment analysis (GSEA) displays biological processes and pathways using the gene sets of

“h.all.v7.4” (D), “c2.cp.kegg” (E), and “c2.cp.biocarta” (F). In each figure, the top eight results ordered by enrichment score are shown in different colors.

this difference is due to the different microarray platforms
underlying the discovery and validation datasets. The different
gene-probe compositions and different preprocessing pipelines
underlying the validation dataset might lead to different data
input in the CIBERSORT algorithm. However, the diagnostic
score remains valid because, for every dataset, the diagnostic
score values of KDs are significantly higher than those of FCs
and the cut-off point separates the two diseases quite well. In
addition, we investigated the association of the diagnostic score
with gender and found that the diagnostic score values did not
vary significantly between male and female children (p = 0.57)
(Figure 4B). Correlation analysis showed that the diagnostic
score correlated significantly positively with the expression levels
of most genes previously reported to be related to KD (28,
29) (Figure 4C). To further provide a practical quantitative
tool that allows for application of our diagnostic model in
clinical practice, we constructed a nomogram incorporating these
immune cell predictors (Supplementary Figure 3A). Lastly, we
calculated calibration curves and decisions curves separately for
the training, test, and validation data. The calibration curves
revealed a good correspondence between predicted and actual
outcome values and the decision curves suggested that the net
benefit of treatment based on the decision of the model is larger
than that of treating all or no patients for most possible risk
thresholds (Supplementary Figures 3B–G).

Biological Functions Associated With the
Diagnostic Score
To assess biological plausibility, we performed GSEA, focusing
on three reference gene sets. Downloaded from the MSigDB
database, these gene sets consisted of well-defined biological
processes (Hallmark: “h.all.v7.4”) and two canonical pathways
(KEGG: “c2.cp.kegg”; BioCarta: “c2.cp.biocarta”). In this
analysis, we used the previously mentioned cut-off point for the
diagnostic score. Hallmark inflammatory pathways including
IL-6/JAK/STAT3 signaling, TNFα signaling, inflammatory
response, the complement, and reactive oxygen species pathways
were enriched in the high-diagnostic score group compared
to the low-diagnostic score group (Figure 4D). Similarly,
KEGG pathway analysis suggested an enrichment for the
complement and coagulation cascades. On the other hand, a
low diagnostic score was associated with gene replication and
repair, as well as protein biosynthesis processes (Figure 4E).
Likewise, BioCarta pathways analysis indicated that immune-
related pathways (granulocytes and β-arrestin/Src pathways)
were relatively over-expressed in the high-diagnostic score
group, whereas acquired immune response pathways appeared
to be mainly enriched in the low-diagnostic score group
(Figure 4F).

Molecular Subtypes of Febrile Children
To identify possible patterns of molecular subtypes of
all febrile condition cases, we carried out unsupervised
consensus clustering on the entire discovery cohort. Notably,
four potential molecular subtypes were found using the
consensus cumulative distribution function (Figure 5A;
Supplementary Figures 4A,B). In addition, assessment of the
distribution of the diagnostic score in the identified subtypes
(Figure 5B) showed that molecular subtypes would be associated
with the diagnostic score. Moreover, Subtype I was considered
a high-risk subtype of KD, whereas Subtype II seemed to have
received risk score values similar to those associated with
infectious illnesses (Figure 5B; Supplementary Table 4).

DISCUSSION

In this study, we developed a diagnostic score for KD, consisting
of the fractions of eight immune cells, selected based on a
combination of machine learning techniques. The diagnostic
score was able to differentiate well between KD and FC patients
(AUC= 0.8). We also elucidated the roles of the immune-related
genes and pathways in KD, such as interleukins and chemokine
receptors, as well as IL-6/JAK/STAT3 and TNFα signaling
pathways and identified molecular subtypes of febrile children
using unsupervised learning. Nevertheless, the practicability and
generalizability of this model might be limited because all
analyzed data were obtained from a public database, which is why
our results should be further validated – ideally prospectively.

Effects of the immune microenvironment on the pathogenesis
of KD have been well-reported in many studies, and most
of them underscore the importance of the innate immune
system in the acute phase of KD. Particularly, levels of
monocytes/macrophages and neutrophils were markedly
upregulated in children with KD (25, 30, 31). Our results were
also in agreement with these reports from high-throughput
studies (30, 31). In our diagnostic score, the proportion of
macrophages and neutrophils weighed heavy. Due to the
lack of experimental validation, we conducted computational
analysis for biological functions, which were necessarily
speculative. Our results showed that a high diagnostic score
might also be associated with innate immune-related genes and
signaling pathways such as S100 proteins, certain chemokines,
IL-6/JAK/STAT3 signaling, and TNFα signaling pathways.
Furthermore, the imbalance in T cell subsets was reported as
explanatory for the differences between KD and FC. Furukawa
et al. (26) and Ding et al. (25) suggested that KD patients have
a significantly higher ratio of CD4+/CD8+ T cells compared to
the FC group. Our results were consistent with this finding to
a certain extent. Nevertheless, Xu et al.’s findings (32) suggest
that B cell subsets have a role in KD. In contrast, we found that
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FIGURE 5 | Molecular subtypes of the febrile condition cases obtained based on their gene expression profiles. (A) Heat map of the consensus matrix with four

clusters obtained using unsupervised clustering. (B) Distribution of the diagnostic score in different molecular subtypes; p-values are only shown for comparisons with

statistically significant differences.

the presence of plasma cells had a negative influence on the
probability for KD in our diagnostic score, and there seemed
to be no significant difference between the proportions of
memory or naïve B cells between the two groups. This may
be the case because Xu et al. compared KD cases to healthy
controls instead of FCs, and also because certain B cell subsets
can indicate the presence of an infection. Genes in the same
disease subtypes have similar expression patterns. Therefore,
we also applied unsupervised consensus clustering to identify
molecular subtypes with similar gene expression patterns.
Among the identified subtypes, Subtype I and Subtype II were
mainly predicted to be KD and FC, respectively, providing
genetic evidence for the validity of our model.

KD is currently diagnosed based on clinical criteria plus,
in some instances, additional non-specific laboratory testing
(4, 7, 10). However, KD can sometimes be confused with
other febrile illnesses, including infections, because of their
mutual clinical manifestations, and this may result in delayed
treatment from which complications may arise (6, 7, 33).
Conversely, given the gravity of the diagnosis, overtreatments
with intravenous immunoglobulin or other immunosuppressants
may occur in incorrectly diagnosed cases (13). A biomarker
that accurately distinguishes KD from infectious febrile disease
would therefore be a major advancement, reducing inappropriate
treatment and allowing for early intravenous immunoglobulin
therapy in true cases. We developed the present diagnostic
model as a contribution to such a biomarker, applying machine-
learning methods to high-throughput data rather than clinical

features. ROC curve analysis suggested that our diagnostic
model performs has also an acceptable performance in external
prediction settings. However, prospective studies would be
necessary to compare the performance of the diagnostic score
model with that of the established clinical algorithm for KD.
Rather than comparing the current clinical practice with the
present model head-to-head, one could develop an integrated
model with both clinical and CIBERSORT features which
may potentially offer better test characteristics than either
by itself. The clinical algorithm, at present, only suggests
measuring C-reactive protein and erythrocyte sedimentation rate
in cases with an intermediate likelihood of KD (4). This new
model could have a significantly better diagnostic performance,
particularly for patients with only two or three of the clinical
criteria present.

As an immunological disease, KD may be identified
using immunological methods. However, flow cytometry or
immunohistochemistry seem to be unsuitable for routine use
(8). High-throughput methodsmay be well-suited to characterize
the “immune landscape” for KD vs. FC classification. Although
some KD biomarkers based on transcriptomic profiling do
exist (10, 13, 14), they did not leverage the power of profiling
the immune cell types presented. As a combination of high-
throughput transcriptomic profiling with “immune landscape”
estimation, CIBERSORT seems to be a possible solution to
this dilemma.

We acknowledge some limitations of this study. First, a
diagnostic score was developed from publicly available datasets,
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where it was difficult to obtain all demographic and clinical
information for each patient. However, the variability of gene
expression patterns may be accompanied by the diversity of
demographic features such as ethnicity. Second, combining
data from different microarray datasets leads to batch-effect
affected data. However, principal component analysis suggested
that most of the present batch effects have been remedied
by employing the “ComBat” algorithm. Third, bias may be
associated with the fact that the time since disease onset
varied between patients. Unfortunately, the information on
the time since disease onset was not complete in the used
datasets from GEO database. In future efforts, “days of illness”
should be an important factor in data collection. Fourth,
bias may have been introduced, because some KD patients
may have been mislabeled as not having KD or vice versa.
Finally, in view of the recent pandemic of pediatric COVID-19
and the related sever syndrome (multisystem inflammatory
syndrome in children, MIS-C), missed or delayed diagnosis
of KD is quickly attracting concern (34–36). Thus, in future
analyses it would be interesting to apply the analysis flow
considered in this paper to the diagnosis of MIS-C and other
diseases similar to KD. In the current work, it was not
possible to compare the diagnostic score with these diseases
due to the lack of sufficient gene expression data on them.
However, in the near future, we plan to integrate cohorts on
these diseases to improve our model and expand its scope
of application.

CONCLUSION

In summary, using CIBERSORT cell type compositions,
we developed a diagnostic score model which has the
potential to serve as a biomarker for early diagnosis of KD.
However, prospective studies are necessary to validate the
diagnostic score further and ideally incorporate it into a
new clinical algorithm to more accurately diagnose or rule
out KD.
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