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ABSTRACT

As an increasing number of noncoding RNAs (ncR-
NAs) have been suggested to encode short bioac-
tive peptides in cancer, the exploration of ncRNA-
encoded small peptides (ncPEPs) is emerging as
a fascinating field in cancer research. To assist in
studies on the regulatory mechanisms of ncPEPs,
we describe here a database called SPENCER (http:
//spencer.renlab.org). Currently, SPENCER has col-
lected a total of 2806 mass spectrometry (MS) data
points from 55 studies, covering 1007 tumor sam-
ples and 719 normal samples. Using an MS-based
proteomics analysis pipeline, SPENCER identified
29 526 ncPEPs across 15 different cancer types.
Specifically, 22 060 of these ncPEPs were experimen-
tally validated in other studies. By comparing tumor
and normal samples, the identified ncPEPs were di-
vided into four expression groups: tumor-specific,
upregulated in cancer, downregulated in cancer, and
others. Additionally, since ncPEPs are potential tar-
gets for neoantigen-based cancer immunotherapy,
SPENCER also predicted the immunogenicity of all
the identified ncPEPs by assessing their MHC-I bind-
ing affinity, stability, and TCR recognition probability.
As a result, 4497 ncPEPs curated in SPENCER were
predicted to be immunogenic. Overall, SPENCER
will be a useful resource for investigating cancer-
associated ncPEPs and may boost further research
in cancer.

GRAPHICAL ABSTRACT

INTRODUCTION

As reported in the ENCODE project, up to 80% of the hu-
man genome has the capacity to be transcribed into ncRNA
(1). ncRNAs are a class of RNA molecules that are widely
involved in many fundamental biological processes such as
genomic modulation (2), environmental responses (3), and
body development (4). A growing body of evidence has
shown that dysfunction of ncRNAs may lead to various hu-
man diseases including cancer (5,6). Hence, tremendous ef-
forts have been made to explore the relationship between
ncRNAs and cancer. Since ncRNAs are generally consid-
ered to lack the capability to encode functional proteins,
most relevant studies have focused on only the functional
role of ncRNAs as transcripts themselves in different can-
cer types (6). However, with the development of proteomics
and translatomics technologies, researchers in many studies
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have highlighted the coding potential of ncRNAs (7), and
identified a series of small biologically active peptides trans-
lated from short open reading frames (sORFs) in ncRNAs.
Moreover, accumulating evidence has revealed the impor-
tance of several ncPEPs in the pathogenesis and progression
of cancer (8). For example, the lncRNA HOXB-AS3 can en-
code a 53-amino acid (aa) peptide, and is reported to reduce
the growth of colon cancer (9). In addition, CASIMO1, a
microprotein of 10 kDa, encoded by another lncRNA, plays
a critical role in breast cancer cell proliferation and is impli-
cated in cellular lipid homeostasis (10). In addition to lncR-
NAs, some circRNAs can also be translated into functional
peptides implicated in cancer development. For example,
circPPP1R12A can be translated into a 73-aa protein that
promotes the metastasis of colon cancer (11). Therefore, an-
notating the expression status and functions of ncPEPs in
tumor samples may be a worthwhile strategy to decipher
the pathogenesis of cancer and provide valuable informa-
tion for cancer studies.

Recently, utilizing cancer immunotherapy to eradicate
cancer cells has become the most investigated subject in
cancer research (12). Cancer immunotherapy aims to en-
gage the immune system against targets that are expressed
in only tumor cells. One important class of such targets is
neoantigens, which can be processed and presented by the
major histocompatibility complex (MHC) on the cell sur-
face and recognized by T cell receptors (TCRs) to stimulate
a highly specific antitumor immune response (13). Cancer
immunotherapy based on neoantigens has become a new
popular research focus, and mutation-derived neoantigens
likely play a principal role in this concept (14). However,
the therapeutic effects of mutation-derived neoantigens are
limited to patients with tumors with a high-mutation bur-
den (15). Therefore, there is a great demand for a compre-
hensive analysis of cancer antigens and the identification
of new classes of neoantigens, especially for patients with
a low tumor mutational burden. Since some ncPEPs are
expressed in only tumor tissues (16), they have great po-
tential as novel neoantigens in the cancer immunotherapy.
Recently, the lncRNA meloe was demonstrated to produce
three polypeptides in melanoma, MELOE-1, MELOE-
2 and MELOE-3 (17). Moreover, MELOE-1 and MELOE-
2 were experimentally verified to have prominent immuno-
genicity, and potentially ideal tumor neoantigens for im-
munotherapy (18,19). Furthermore, a series of tumor vac-
cines targeting validated ncPEPs was recently developed,
and immunogenicity and efficacy were evaluated in mouse
models of cancer (20). Accordingly, identifying ncPEPs
from cancer tissues and evaluating their potential immuno-
genicity is a promising direction of cancer research, and
the results may provide new perspectives for cancer im-
munotherapy.

With increasing attention on ncPEPs, a large number
of novel ncRNA translation products have been identified
and validated. However, the relevant information is scat-
tered among innumerable published articles, which is in-
convenient for researchers exploring the functional roles of
ncPEPs. Currently, several databases, such as ncEP (21),
FuncPEP (22), ARA-PEPs (23) and cncRNAdb (24), have
been developed to collect and curate experimentally veri-
fied ncPEPs from published articles. In addition, some other

data resources, including sORFs.org (25), SmProt (26),
MetamORF (27) and PsORF (28), have collected potential
ncRNA-encoded sORFs or peptides from high-throughput
experiments such as ribosome profiling and mass spectra.
Although valuable information is provided by the above
data resources, they were constructed mainly for general
purposes, and more in-depth investigations on the func-
tional roles of ncPEPs in cancer development have not been
performed. At present, a specific resource for the system-
atic study of cancer-related ncPEPs remains absent. There-
fore, the development of an integrated database dedicated
to cancer-associated ncPEPs is urgent needed.

In this study, we present SPENCER (http://spencer.
renlab.org), a novel database that allows the exploration and
visualization of ncPEPs in cancer patients (Figure 1). An in-
tact set of cancer-related MS data was collected from mul-
tiple proteomic databases. By integrating all the validated
human protein sequences from UniProt and all the possible
sORF sequences translated from known ncRNAs, a com-
prehensive searchable database was constructed. Using this
database, MaxQuant (29) was applied to search for ncPEPs
from the collected MS data. To further investigate the un-
derlying relationship between ncPEPs and cancer, quantita-
tive analysis of each collected study was performed to iden-
tify ncPEPs that were differentially expressed between tu-
mors and paracancerous/normal tissues. Finally, to explore
the potential utility of ncPEPs as targets in neoantigen-
based cancer immunotherapy, we further evaluated their
immunogenicity using a robust pipeline and included the
prediction results in SPENCER.

MATERIALS AND METHODS

Identification of ncPEPs

Mass spectrometry datasets were collected from PRIDE
(30), MassIVE.quant (31), JPOST (32), Panorama (33),
PeptideAtlas (34) and iProX (35). Only cancer-related
datasets with tumors and normal/paracancerous tissues
were included in our study. Raw data and associated sam-
ple information were downloaded for subsequent analysis
(Supplementary Table S1).

To identify ncPEPs from the collected MS datasets, we
first constructed a human proteomic sequence database by
combining known protein sequences and predicted trans-
lation products from ncRNAs. In detail, we collected an
intact set of ncRNA transcript sequences from RNAcen-
tral (36) and identified 6 088 980 possible sORFs in the as-
sembled transcripts using a stand-alone version of NCBI’s
ORFfinder (37). Based on the identified sORFs, amino acid
sequences were translated using the standard codon table
of amino acids. Subsequently, sequences of these ncRNA-
encoded candidates were integrated with all the validated
human protein sequences retrieved from UniProt (38) to
construct a complete human proteomic database. Notably,
to remove redundancy from the proteomic database, we
conducted sequence alignments between every ncRNA-
encoded candidate and coding protein and filtered out
small peptides matching a validated protein sequence. Then,
MaxQuant (29) was applied to search for ncPEPs in each
collected MS data using the proteomic database. The pa-
rameters, including digestion, label type, and modification
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Figure 1. Overall design and construction of SPENCER. From published literature and available databases, we collected ∼450 000 ncRNA sequences and
∼60 MS datasets in SPENCER (upper left). MaxQuant was applied to search for ncPEPs in the collected MS data. Meanwhile, differential expression
analysis of the identified small peptides between tumors and normal/paracancerous tissues was performed. To investigate the potential roles of small
peptides in cancer, SPENCER integrates detailed annotation of the associated ncRNAs with information from external resources, including function,
category and structure (upper right). In addition, using a robust pipeline, the immunogenicity of all the identified ncPEPs was predicted based on three
feature scores. Finally, we integrated and visualized the data obtained above to build the SPENCER database (lower).

type, were set according to the detailed experimental infor-
mation of the MS data being analyzed. The false discov-
ery rate (FDR) of the peptide-spectrum match (PSM) was
set to 1% to reduce false identifications. Using the default
razor protein FDR, a peptide that could belong to differ-
ent proteins was assigned to the protein with the highest
likelihood. If a detected mass spectrum was assigned to an
ncRNA-encoded candidate, the corresponding peptide was
recognized as an ncPEP.

Expression quantification and differential expression analysis

For each identified ncPEP, the peptide intensity calculated
by MaxQuant was regarded as its expression level. To re-
duce the bias introduced by different processing methods
among samples, the peptide intensities were first normal-
ized. For label-free MS data, we used the delayed nor-
malization algorithm (39) to normalize peptide intensity.
For MS data acquired with labeling technologies such as
tandem mass tag (TMT), isobaric tag for relative and ab-
solute quantitation (iTRAQ), stable isotope labeling by
amino acids in cell culture (SILAC), and demethylation
labeling, the peptide intensities were normalized by com-
parison with the intensity of the reference channel. Based
on the normalized intensities, we then performed differen-
tial expression analysis for each identified ncPEP by com-

paring the normalized intensity between tumorous and
normal/paracancerous tissues. To determine the statistical
significance of results, a two-sample t-test was performed
for each peptide, and the Benjamini-Hochberg procedure
was used to calculate the adjusted P value. In addition, the
fold change (FC) in peptide expression was calculated as
the ratio of the average intensity between the tumor and
control groups. Peptides with an adjusted P value <0.05
and log2FC >1 were determined to be upregulated in can-
cer, while those with an adjusted P value <0.05 and log2FC
<−1 were considered downregulated in cancer. In partic-
ular, peptides exclusively expressed in the tumor samples
were considered tumor-specific. In addition to the above
three conditions, the remaining ncPEPs were labeled as oth-
ers. Finally, using the above results, we categorized the iden-
tified ncPEPs into the four groups.

Functional annotation of ncPEPs

To comprehensively study the potential role of ncPEPs
in cancer regulatory mechanisms, we annotated the pep-
tides with functional and structural information. We first
matched all the ncPEP transcripts with known ncRNAs
downloaded from 12 data resources (Supplementary Table
S2) to obtain basic information, including RNA type, gene
name, and genome location. Moreover, CPAT (40) was ap-



D1376 Nucleic Acids Research, 2022, Vol. 50, Database issue

plied to predict the coding potential of each ncRNA-origin
sORF. Meanwhile, we used the RNAfold tool in the Vi-
ennaRNA suite (41) to predict the secondary structure of
each ncRNA transcript. To validate the reliability of our
identified ncPEPs, a sequence similarity search strategy was
constructed to check whether the identified peptides had
been reported in other studies. A series of reported ncPEPs
were manually collected from other studies, covering trans-
lation products identified by ribosome profiling (Ribo-seq),
mass spectrometry, western blotting, immunostaining, and
in vitro experiments. Then, a global sequence alignment
was performed between the collected peptides and identified
ncPEPs. ncPEPs that matched the reported peptides were
marked as validated in SPENCER.

Immunogenic analysis

To assess the neoantigen potential of ncPEPs, we con-
structed an immunogenicity analysis based on the current
model of epitope immunogenicity, which proposes that a
peptide must first be presented by MHC-I and then rec-
ognized as foreign by T cells to elicit an antitumor T cell
response (42). According to this model, predicting the im-
munogenicity of a peptide requires a comprehensive evalu-
ation of both antigen presentation and T cell recognition.
Hence, previous research (43) identified three key param-
eters related to these two aspects, including MHC-I bind-
ing affinity, MHC-I binding stability and T cell recogni-
tion probability, which were systematically selected based
on data from a global consortium. Therefore, to improve
the prediction accuracy, we constructed a comprehensive
pipeline for predicting immunogenicity by integrating the
methods suggested by the above research.

Since it is generally accepted that MHC-I molecules bind
peptides 8–14 aa in length (44), we first divided each ncPEP
into 8–14-mer segments using a sliding window algorithm.
Specifically, peptides shorter than 8 aa were considered non-
immunogenic. Then, the scores of the three parameters for
all fragments were calculated. Notably, human MHC-I is
also known as the human leukocyte antigen I (HLA-I) com-
plex and can be designated into 12 supertype groups (45).
Since different supertypes of HLA-I complexes can rec-
ognize totally different antigen sequences, patient-specific
HLA-I genotypes should be provided when predicting the
immunogenicity of each peptide. However, due to the lack
of genome or exon sequencing data, we could not infer the
accurate HLA-I genotype of each patient. Therefore, we cal-
culated the three parameter scores of each ncPEP under all
known HLA genotypes to comprehensively assess their im-
munogenicity. The detailed methodology is described be-
low:

First, the MHC-I binding affinity was inferred as the
IC50 value for each peptide sequence under a specific HLA-
I genotype. With the default parameters, we used NetMHC-
pan 4.0 (44) to calculate the binding affinity score between
peptide fragments and each HLA-I genotype. In addition to
strong binding affinity, sufficient MHC-I binding stability
is also required to enable the presentation of the peptide-
MHC complex on the cell membrane through a series of
transport processes and, ultimately, recognition by CD8+ T

cells. Accordingly, netMHCstabpan (46) was used to pre-
dict the binding stability score between peptide fragments
and each HLA-I genotype. In addition, the TCR recogni-
tion probability of ncPEPs was calculated using the multi-
state thermodynamic model (Supplementary methods) de-
scribed by Łuksza et al. (47).

Finally, using the thresholds reported in a previous study
(43), ncPEPs that contained a fragment with MHC bind-
ing affinity <34 nM, MHC binding stability >1.4 h, and
T cell recognition probability >10–11 were predicted to be
immunogenic.

Database and web interface implementation

All the metadata in SPENCER are stored and managed in
MySQL tables. The server-backend was developed based on
Java and the web-frontend interfaces were implemented in
HyperText Markup Language (HTML), Cascading Style
Sheets (CSS), and JavaScript (JS). To provide visualization
of all analysis results, multiple statistical diagrams were gen-
erated by EChars on the website. In addition, the inter-
active heat maps showing the detailed expression levels of
tumor-specific and upregulated peptides were constructed
by Element UI toolkits. Furthermore, to intuitively visu-
alize the secondary structure of ncPEPs, the ViennaRNA
package (48) was integrated into the website interface. IBS
(49) was also applied to present the domain organization of
sORFs. Particularly, the Lorikeet spectral annotator (https:
//uwpr.github.io/Lorikeet/) was implemented to display the
MS evidence for each identified ncPEP.

RESULTS

Database content

SPENCER has collected 2806 cancer-related MS data
points from cancer patients in 55 studies across 15 cancer
types (Figure 2A and Supplementary Table S1). MaxQuant
was applied to search for ncPEPs in each collected MS
dataset, and identified a total of 29 526 ncPEPs from 1726
tissue samples across 15 different types of cancer (Sup-
plementary Table S3). The identified small peptides were
mainly translated from five types of ncRNAs, including
lncRNA, misc-RNA, sRNA, snRNA and rRNA (Figure
2B). Specifically, 19 831 peptides were translated from 6803
lncRNAs, 9688 from 34 misc-RNAs, 3 from 2 sRNAs, 2
from 1 snRNAs and 2 from 2 rRNAs. As a result, we found
that 1.53% (6842/448 331) of the ncRNAs could be trans-
lated into small peptides, which was consistent with the find-
ings of previous studies (50). According to differential ex-
pression analysis, ncPEPs in each study were divided into
four groups: tumor-specific, upregulated in cancer, down-
regulated in cancer, and others. As a result, we obtained
8060 (27.30%) tumor-specific small peptides, 446 (1.51%)
significantly upregulated small peptides, 447 (1.51%) down-
regulated small peptides, and 20 573 (69.68%) other small
peptides spanning 15 cancer types (Figure 2C, left side).

To date, many ncRNA translation products have been re-
ported in numerous other studies. To further verify the re-
liability of our identified ncPEPs, we collected a series of
ncPEPs reported in other studies and aligned them against

https://uwpr.github.io/Lorikeet/
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Figure 2. Overview of the data in SPENCER. (A) Statistics on the number of cancer-related proteomic MS datasets published each year. The green line
represents manually curated studies, and the pink line represents tumor patient samples. (B) The coding source of ncPEPs is shown in a bubble plot,
presenting 5 different RNA types, including lncRNA (blue), misc-RNA (green), sRNA (pink), snRNA (red), and rRNA (yellow). (C) The number of
total small peptides (left) and immunogenetic peptides (right) identified by SPENCER in different cancer types is shown in bar plots, with four groups:
tumor-specific (deep green), upregulated in cancer (pink), downregulated in cancer (red), and others (light green). (D) The proportions of peptides with
experimental evidence and immunogenicity are illustrated in a pie plot. (E) The occurrence frequency of tumor-specific and tumor-upregulated peptides
in patient samples of different cancer types is shown in a dot plot.
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the identified ncPEPs. As a result, 74.71% (22 060/29 526)
of the identified ncPEPs were reported in other studies
and were marked as validated in SPENCER (Figure 2D).
Furthermore, in consideration of the great potential of us-
ing ncPEPs as novel neoantigens in tumor immunotherapy,
SPENCER has also performed an immunogenicity analysis
of the identified ncPEPs. According to the previous pipeline
proposed by Well et al. (43), we assessed the immunogenic-
ity of all the identified ncPEPs using three feature scores:
MHC-I binding affinity, MHC-I binding stability, and T
cell recognition probability. We found that 15.23% (4497/29
526) of the ncPEPs were expected to have immunogenic po-
tential. (Figure 2C, right side). Of these, 3269 small pep-
tides were verified by experimental evidence, accounting for
11.07% of all the ncPEPs (Figure 2D). In addition, to fur-
ther explore the potential of using these ncPEPs to develop
novel cancer vaccines, the fractions of tumor-specific and
tumor-upregulated peptides in patients with different can-
cer types were calculated. Strikingly, we found that 83.78%
(24 736/29 526) of the ncPEPs were simultaneously ex-
pressed in multiple cancer types. Of these, 24.35% (6022/24
736) were tumor-specific, and 1.69% (418/24 736) were
upregulated in cancer. In addition, among these ncPEPs,
77.87% (19 263/24 736) were experimentally validated, and
3603 were predicted to be immunogenic (Figure 2E).

Web interface and usage

SPENCER provides a user-friendly web interface that en-
ables users to search, browse, and download all the cancer-
associated ncPEPs in the database. The main features of the
web interface are described in more detail in the following
sections.

Search

First, SPENCER has developed a ‘QUICK SEARCH’
module on the ‘HOME’ page for providing users with a di-
rect investigation of the curated data. In this module, a vari-
ety of options are provided for querying the database, such
as cancer type and tissue type. Additionally, detailed in-
formation on ncPEPs, including peptide ID, transcript ID,
gene ID, gene name and RNAcentral ID, can be searched
in this module. In addition, to allow a user to quickly ac-
cess ncPEPs of interest, SPENCER provides more detailed
options on the ‘Search’ page, such as expression group, im-
munogenicity, status, and ncRNA location. Users can con-
duct an advanced search to restrict the output by inputting
more accurate and detailed search conditions. Furthermore,
we annotated ncPEPs with the associated ID in other exter-
nal resources to provide more comprehensive information
on the peptides. Accordingly, users can search by PubMed
ID, Ensembl ID, GeneCard ID or another database ID to
ascertain whether their interested research focus/ncRNA
has translation products in SPENCER (Figure 3A). More-
over, to support sequence similarity searching for either nu-
cleotides or peptides of interest, the BLAST suite is inte-
grated into SPENCER on the ‘BLAST’ page (Figure 3B).
A complete set of parameters for BLAST searching are sup-
ported for further adjustment.

Browse

All ncPEPs can be surveyed on the ‘BROWSE’ page (Figure
3C). When choosing a particular ‘Cancer’ and ‘Tissues’ cat-
alog, SPENCER will provide a statistical table for the dis-
played ncPEPs and show histograms presenting the distri-
bution of ncPEPs in different expression groups and RNA
types. To reveal ncPEP expression differences between can-
cer and normal samples, we further constructed a section
providing a differential expression overview for each study
in SPENCER. This section contains a volcano map for pre-
senting the expression level of all the identified peptides. In
addition, an interactive expression heatmap was developed
to visualize the detailed expression level of tumor-specific
and upregulated peptides in each sample. If users are inter-
ested in detailed information on an ncPEP on the heatmap,
they can easily access the ncPEP specific page by clicking
on each cell in the expression heatmap. Moreover, this page
has an interactive result table spread over multiple subpages
displaying all ncPEPs in a certain ‘Cancer’ and ‘Tissues’ cat-
alog. SPENCER also provides a filter option box for the re-
sults table at the bottom of the page, allowing the user to
narrow an extensive set of results. Using this filter option
box, users can filter the data based on various criteria, in-
cluding expression groups, validation status, and immuno-
genicity.

Detail

To comprehensively display the source and structure of
ncPEPs, detailed data in SPENCER are stored at three lev-
els, including the gene, transcript, and peptide levels (Figure
3D). Users can access the relevant detail page for each level
by clicking on the associated gene name, associated tran-
script ID, peptide ID in the browse results. The ‘Gene’ page
provides a table of gene information and shows the gene ID,
gene name, description, genome location, strand, and cross-
reference with the target gene. In addition to the basic infor-
mation, an overview of gene-associated ncRNA transcripts
is provided on the ‘Gene’ page. On the ‘Transcript’ page,
SPENCER provides basic information about the transcript
and an overview of the peptides involved. Since several stud-
ies have shown that RNA secondary structure can affect
RNA translation (51), ViennaRNA (48) was applied to vi-
sualize ncRNA secondary structures to facilitate further re-
search on mechanisms (Figure 3D and E). In addition, to in-
tuitively display the positions of sORFs and translated pep-
tides in the transcript, a schematic diagram was constructed
using IBS (49). Detailed information, including sequence,
cancer type, tissue source, expression level, and the dataset
from which this result was derived, can be assessed on the
‘Peptide’ page. In particular, to fully understand the MS evi-
dence for the ncPEPs, a spectral visualization module is pre-
sented on the ‘Peptide’ page using the Lorikeet spectral an-
notator. This module shows the ion peaks and peptide se-
quence fragmentation for each annotated mass spectrum.
To promote the study of ncPEPs in cancer immunother-
apy, SPENCER displays the scores of three key immuno-
genicity parameters for each ncPEP under each HLA geno-
type on the ‘Peptide’ page. Furthermore, all curated data
in SPENCER are well referenced, allowing investigators to
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Figure 3. Basic functions of the SPENCER web interface. (A) The main patterns of the search interface of SPENCER. (B) The BLAST interface for
sequence similarity searching in SPENCER. (C) The browsing interface for ncRNA-encoded small peptides in SPENCER. (D) Results in SPENCER are
divided into three levels, including the gene, transcript and peptide levels. (E) The visualization tools in SPENCER.

independently verify findings in greater detail (Supplemen-
tary Table S2).

SUMMARY AND PERSPECTIVES

Progress in the research on ncPEPs has provided interesting
avenues for deciphering the mysteries of life and may ad-
vance further exploration of cancer development (52). Re-
cently, cancer-associated ncPEPs have shown considerable
potential as novel targets in the development of antitumor
drugs and therapy (53). Identifying and exploring ncPEPs
in tumors will benefit studies of cancer pathogenesis, diag-
nosis, and immunotherapy. Thus, we developed SPENCER,
a database of ncPEPs in cancer patients. SPENCER dis-
plays the expression profiles of ncPEPs at multiple levels
and helps to visualize the expression patterns of small pep-
tides in different cancer types.

At present, SPENCER contains 29 526 small peptides en-
coded by 6842 ncRNAs in 1,007 tumor patients across 15
types of cancer, and most of the associated sORFs were sig-
nificantly enriched in lncRNAs (P = 0.0023, OR = 1.5172,
hypergeometric test). Most noteworthy is that SPENCER
has integrated an immunogenicity prediction pipeline based
on the model proposed by Wells et al. (43) to further ex-
plore the potential of ncPEPs as targets for cancer im-
munotherapy. To date, the rules for predicting the immuno-
genicity of epitopes typically incorporate MHC-I binding
affinity as well as filters and ranking criteria obtained from
prior knowledge. Since the current immunogenicity pre-
diction focuses solely on MHC-I binding capability, and
ignores other mechanisms such as MHC-I binding sta-
bility and TCR recognition, false positives may be intro-
duced into the prediction results. To more precisely eval-
uate the immunogenicity of ncPEPs, our immunogenic-
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ity prediction pipeline integrates peptide features associ-
ated with MHC-I presentation and TCR recognition. In
addition, we implemented strict cutoffs derived from sys-
tematic testing across substantial patient samples from a
global consortium (43), which could improve the reliabil-
ity of the immunogenicity predictions. Among the pre-
diction results, some of the tumor-specific peptides were
predicted to contain known epitopes that have been vali-
dated in previous studies to stimulate an immune response.
For instance, the potential epitope in the peptide STDT-
GVSLPSYEEDQGSK showed a high similarity with a
known neoantigen that has been proven by a centralized
set of verification experiments, including HLA binding and
immunological analyses (43). In addition, two peptides
(HVISYSLSPFEQR and MRHVISYSLSPFEQR) specifi-
cally expressed in colon cancer were found to contain epi-
topes that were previously detected as neoantigens in hu-
man primary tumors; these epitopes could be used to de-
velop promising tumor vaccines (20). These results implied
that the immunogenicity prediction by SPENCER is accu-
rate and reliable for discovering potential tumor neoanti-
gens. By integrating the expression and immunogenicity sta-
tus of ncPEPs, SPENCER can provide promising targets
for cancer immunotherapy research. Based on the curated
dataset in SPENCER, we also found that many immuno-
genic peptides were expressed specifically in cancer tissues.
Moreover, the majority were expressed in multiple cancer
types and different patient samples. These widely expressed
and immunogenic ncPEPs are potential promising action-
able targets for tumor vaccines, which would benefit pa-
tients with various types of cancer.

In conclusion, SPENCER provides useful information
on ncPEPs to help experimental biologists interpret cancer-
related ncPEPs and explore molecular mechanisms in-
volving ncRNA in cancer. We will continue to improve
SPENCER in the following ways: (i) continuous collection
and analysis of newly published MS datasets of different
cancer types, (ii) refining of the functional and validated
status of peptides and (iii) adding an analysis pipeline for
proteomics data to identify ncPEPs and perform immuno-
genicity evaluations. We believe that with continuous im-
provement, SPENCER can become an effective tool to an-
alyze the functional roles of ncPEPs, and can contribute to
cancer diagnosis and treatment.
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