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Quantum correlated 
heat engine in XY chain 
with Dzyaloshinskii–Moriya 
interactions
M. Asadian, S. Ahadpour* & F. Mirmasoudi

In this paper, we consider a heat engines composed of two interactional qubits with spin-orbit 
interaction (Dzyaloshinskii–Moriya (DM)) subject to an external magnetic field, so that each qubit is 
coupled with cold or hot source. One intention of this work is to investigate the following question: is 
it possible the effects of DM lead to improve basic thermodynamic quantities in this heat engine are 
coupled to local environments that are not necessarily at equilibrium? Moreover, we study whether 
or not quantum correlations can be helpful in the performance of quantum work engines. For this 
end, we investigate the effects of the temperature and the interaction rate of each qubit with its 
surrounding environment on quantum correlations such as quantum coherence and quantum discord 
and quantum entanglements, as well as the generated work. Finally we compare three quantum 
correlations (entanglement, discord, and coherence) with thermodynamic parameters and show that 
the output work is positive for what values of the magnetic field so that this cycle can be considered as 
a thermal machine.

In recent years, there has been a revolution in the thermodynamic concepts, which is referred to as a new found 
among the physical theories. In this theory, the spread of information is described through quantum systems. 
This new theory, under the title of quantum thermodynamics, attempts to express thermodynamic concepts 
such as work, heat, efficiency, and so on by using quantum information  theory1–4. A primary relation exists 
between thermodynamics and information theory. The laws of thermodynamics are a set of universal rules that 
explain the interaction between temperature, heat, work, energy, and entropy. The laws of thermodynamics are 
not only valid in the case of steam engines, but also for any other problem, including the sun, black holes, liv-
ing things, and even the whole world. Thermodynamic rules are used only to express that a process is feasible 
or not. Quantum thermodynamics works to develop quantum  machines5–8. The most important application of 
quantum thermodynamics is quantum heat engines and one of the famous cycles in the quantum thermodynamic 
is the Carnot  cycle9–11. The most common cyclic process is the Otto  cycle12–14. The Otto cycle is the basis of all 
the heat engines performed based on the internal combustion process and hence it is of critical importance. 
In the following, we will begin to describe the basic processes (strokes) related to the classical form of the Otto 
cycle, in which the active material is a two-level system. The name of Otto cycle is retrieved from the German 
engineer Nicholas Otto, who worked for the manufacturing of the first four-stroke engine based on the initial 
design presented by Alphonse Beau de Rochas. Here, we want to discuss the role of quantum correlations in 
quantum  thermodynamics15. First, Alicki defined the weak connection between heat and work in thermody-
namic processes, namely under the influence of slowly varying external conditions. He assumed that a change 
in the Hamiltonian and state of the sub-system is necessarily associated with the work and heat,  respectively16. 
Afterward, more appropriate definitions are presented for thermodynamic work and  heat17–20. Different quantum 
matters such as  qubits21–25,  qudits26–29,  photons30–32, harmonic  oscillators13,33,34, and so on are used in the field of 
heat engines. In this paper, a system is considered with two qubits a and b as the working matter. We consider 
an Otto cycle with the working matter in the form of two coupled qubits. We compare the behavior of quantum 
correlation and thermodynamic parameters together. This model we have considered show that there is a con-
nection between quantum correlations and positive work in cycle.

The paper is organized as follows. In "Model system: the quantum Otto engine" Section, we give the model 
and calculate the density matrix for a system composed of two interactional qubits with spin-orbit interaction 
in the Otto cycle. In "Work definition" Section, we define work and calculating the work, heat and efficiency of 
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a heat cycle for our proposed model. In "Quantum correlations" Section, we recall briefly entanglement, discord 
and coherence measures of the quantum correlations and we derive the analytical expression to the entanglement, 
discord and coherence and show how creating quantum correlations can be limited by the thermodynamics of 
the system. Finally, we give the conclusions in "Conclusion" Section.

Model system: the quantum Otto engine
Here we consider a system consisting of two interacting qubits a and b as the working material a four- level 
quantum Otto engine, which is described by XY Hamiltonian considering the spin-orbit interaction and mag-
netic  field35:

where σ[x,y,z]j denotes the Pauli operators that affect the qubits j = a, b , Jx and Jy are the strength of the antifer-
romagnetic couplings, B is the intensity of the magnetic field, and D is the spin-orbit interaction factor. We set 
Jx = Jy = J and assume that the dynamics of the working matter density operator ρ have the Markovian property, 
and can be stated by Lindblad master equation as  follows36:

Accordingly, Lai = 2aiρ
+
ai
− {a+i ai , ρ} and ai is the jump operator that describes the operation of the baths, and 

gi is the dissipation rate associated with the Lindblad term Li in the above equation. It is assumed that Lindblad 
operators of Ljσ+ with coefficient gj+ = γjnj , and Ljσ− with coefficient gj− = γj(nj + 1) are the jump operators in 
two general forms of raising operator σ+ = |1��0| and lowering operator σ− = |0��1| . The coefficients γj is the 
interaction rate of each qubit with its surroundings and nj is the population of the corresponding equilibrium 
temperature (the average particle number) which is defined by the following equation:

where Bj and Tj are the magnetic field and temperature for the bath coupled to qubit j, respectively. In the present 
paper, we consider different temperatures for the cold and hot baths coupled with two qubits. So, nCa and nCb

 are 
the population of the corresponding equilibrium temperature of the cold bath coupled with qubits a and b in the 
cooling process, and nHa and nHb

 are the population of the corresponding equilibrium temperature of the hot 
bath coupled with qubits a and b in the heating process. It is assumed that γa = γ1 and γb = γ2 (breakdown rates) 
take on different values. In this generalized Otto cycle, during the compression (expansion) stroke the magnetic 
field and spin-orbit interaction factor are changed, for both qubits, from B1 to B2 and D1 to D2 ( B2 to B1 and D2 to 
D1 ) with B2 > B1 and D2 > D1 . Under this condition, by following  Ref36 the density matrix can be expressed as,

where r’s and α are reported in Appendix. The working substance undergoes a generalized Otto  cycle37. The four 
stages of the cycle are as follows: 

1. Adiabatic compression (Isentropic): The system is compressed, and work is done on the system. This stroke 
consists of volume and temperature variations, while entropy will remain constant throughout it. The material 
is isolated from the environment, and some of the Hamiltonian parameters Jx , Jy , B or D changes accordingly 
to involve an increase in the energy gap.

2. Isochoric heating: The temperature increases while the volume of the system (working substance) is constant. 
That means heat is absorbed from the source. During the evolution, the working matter proceeds to a steady 
state of Equation (2) with ρ̇ = 0.

3. Adiabatic expansion (Isentropic): The stroke power when a useful work comes out of the engine. Again, this 
stroke involves volume and temperature variations, and entropy is constant. The material is isolated from 
the environment, and some of the Hamiltonian parameters Jx , Jy , B or D gets its previous value. This leads 
to a decrease in the energy gap, which means approaching the classic case.

4. Isochoric cooling: The environment is cooled in a constant volume and returns to its initial state, and it is 
ready to start the cycle again. To understand all aspects of the Otto-quantum cycle, we should examine how 
this four-stroke cycle is performed in the work environment which is a quantum system.

We note that for Hamiltonian Eq. (1) the parameter P(t) changes depending on the evolution of each of the 
parameters Jx , Jy , B or D. This parameter revolves from the initial P1 to the final value P2 through the equation 
P(t) = P1 + (P2 − P1)t/τ , where τ is the duration of the work stroke. In the following, we will study the quan-
tum work and three quantum correlations (entanglement, coherence, and discord) for this density matrix and 
compare the behavior of these three quantum correlations. We also present the variation of the work against 
different parameters.

(1)H = (Jxσxaσxb + Jyσyaσyb )+ B(σza + σzb )+ D(σxaσyb − σyaσxb )

(2)ρ̇ = −[H , ρ] +
∑

i

giLai (ρ).

(3)n̄j = (e2Bj/Tj − 1)−1

(4)ρs =
1

α







r11 0 0 0
0 r22 ir23 0
0 − ir23 r33 0
0 0 0 r44
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Work definition
In classical thermodynamics, we can define work as the potential energy of an external device that can be stored 
for later uses. In quantum systems, work is defined as a change in the energy of two  systems17. To assess the work 
extracted or produced by the engine during the cycle we employ the definition of work based on the two-time 
measurement protocol. We now change the Hamiltonian from Hin to Hfin in time while the system is isolated 
from any environment. Hin and Hfin are the initial Hamiltonian with eigenvalues Eini  and the final Hamiltonian 
with eigenvalues Efini  , respectively. Assuming ρτ = UρsU

+ we can obtain final state, in this equation ρs is the 
initial state of the system in the process and ρτ is the final state of the process where U is a unitary operator. Now, 
the mean work can be obtained as:

An important property in the Otto cycle is that it is isolated during the expansion and compression processes, 
and the change of energy is only in the form of external work. On the other hand, both work and heat variation 
may occur in cooling and heating processes and for unbalanced reservoirs. −W1 and −W2 represent the extracted 
work during the expansion and compression processes, and Q1 and Q2 are the heat obtained by the environment 
during heating and cooling processes. We assume Q > 0 when the heat is absorbed from the environment and 
the energy level increases in the system. Heat fluctuations cause the system to excite and the system leaves the 
ground state. Which means an increase in energy levels. So, we have for the cyclic evolution:

And the total derived work is equal to:

In this case, efficiency is defined as the ratio of the extracted work (if positive) to the total heat absorbed by the 
 source15:

Assuming that the heating process corresponds to connecting the two qubits with two local baths with thermal 
occupation n̄H and the cooling process with n̄C , on condition n̄b = 0 , the following equations are obtained. Now, 
we assume ρC and ρH are the stable states for cold and hot baths with rCij  and rHij  elements, respectively. The total 
work is given by the following equation:

We remark here that heat absorbed is minus the energy balance of the system during the heating of the system 
from n̄C to n̄H . Thus, for the heat absorbed from two hot sources, using Eq. (7), we have:

And the efficiency is defined as follows:

It is straightforward to see that the efficiency only is under the effect of the magnetic field is identical on both 
spins can be controlled by it. But, the external work and heat not only depend on the magnetic field but also 
Dzyaloshinskii–Moriya. How one can detect the adiabatic process in this system? For the illustrating purpose, we 
will assume two different outlines for the adiabatic stages: At first, the Dzyaloshinski-Moriya (DM) anisotropic 
antisymmrtric interaction is altered between two values ( D1 → D2 → D1 ) at a magnetic field, and next the fixed 
magnetic field is changed between two values ( B1 → B2 → B1 ) at a Dzyaloshinski-Moriya (DM) anisotropic 
antisymmrtric interaction. We calculate the total work for different parameters such as the interaction rate of the 
first qubit with its environment and the interaction factor between the spin-orbit and magnetic field. In Fig. 1, 
there is work for γ1 ≥ 0 and it is maximum at 1 ≤ γ1 ≤ 2 . In Fig. 1, the output work is positive for 1 ≤ B2 ≤ 6 , so 
this idea can be implemented as a practical heat engine. Also we observed that the derived total work decreases 
by increasing the spin-orbit interaction factor. In Fig. 2 contour plots of the total work is plotted as a function γ1 
and γ2 . It is clear that for T2 = 4 for γ1 ≈ 1 and γ2 ≈ 0.2 the total work have the maximum possible value. Also, 
we observe that by increasing the temperature of hot bath from T2 = 2 to T2 = 4 , the total work is increased. 
Considering the Dzyaloshinskii–Moriya interactions, despite the increase in the population of the corresponding 
equilibrium temperature, the total work is still there. From Eq. (11), we see that increasing the magnetic field has 
a very positive effect on system efficiency. But increasing the temperature has no effect on efficiency, efficiency 
is sensitive to changes in magnetic field. We remark here that the two-time energy measurement protocol may 
affect both the work produced and the quantum correlations of the working substance, which is the main focus 
of this paper.

(5)W = Tr(ρτHfin)− Tr(ρsHin),

(6)W1 +W2 + Q1 + Q2 = 0.

(7)WT = −(W1 +W2) = Q1 + Q2.

(8)η =
WT

∑

Qi>0 Qi
.

(9)WT = (B2 − B1)(r
C
11 − rH11 + rH44 − rC44).

(10)Q1 = B2(r
C
11 − rH11 + rH44 − rC44).

(11)η =
WT

Q1
= 1−

B1

B2
.
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Quantum correlations
In this section, we investigate the effects of quantum correlations at the end of the two isochoric processes of the 
Otto cycle. We discuss the quantum correlations in our system by analyzing the behavior of the entanglement, 
quantum discord and quantum coherence. Since, the elements of our density matrix are independent of the 
magnetic field, the quantum correlations will not be dependent on the magnetic field. Depending on the inter 
qubit couplings, the reservoir temperatures, and the decay rates, the steady state might become entangled. To 
measure the amount of the latter we employ the concurrence.

Quantum entanglement. Entanglement is one of the important and Unintuitive phenomena in the 
quantum world. The entanglement is the property shared between two or more systems showing correla-
tions that cannot be described by classical physics, and this kind of correlation does not exist in the macro-
scopic world. Two particles may be very far from each other, but they can relate to each other, and whatever 
happens to one, it immediately causes a change in the other one. In quantum mechanics, the entanglement 
relates to quantum correlations that are rooted in the inseparable nature of the state vector of the quantum 

Figure 1.  Plots of the total work for an Otto cycle operating between T1 = 1 and T2 = 4 using the steady state. 
(Top left): We fix J = 1 , D1 = 0 , D2 = 5 , γ1 = 0.1 , γ2 = 5 , n̄b = 0 and vary the magnetic field from B1 = 1 to 
B2 reported on the horizontal axis. (Top right): We fix J = 1 , γ1 = 0.1 , γ2 = 5 , D2 = 5 , B1 = 1 and B2 = 2 ; and 
vary the D1 from 0 to 5. (Bottom): We fix J = 1 , B1 = 1 , B2 = 2 , D1 = 0 , D2=5, γ2 = 5 , nb = 0 and we change 
interaction rate of first qubit with its surrounding ( γ1 ) from 0 to the value reported on the horizontal axis.

Figure 2.  Contour plots of the total work for an Otto cycle corresponding to T2 = 2 (left) and T2 = 4 (right) as 
a function of γ1 and γ2 , with J = 1 , B1 = 1 , B2 = 2 , T1 = 1 , n̄b = 0 , D1 = 0 and D2 = 5 for both panels.
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 system15,38–40. If ρ is the density matrix of two qubits, so �i represent the roots of matrix ρρ̃ where ρ̃ is defined 
as ρ̃ = (σya ⊗ σyb )ρ

∗(σya ⊗ σyb ) . Also, the concurrence as an entanglement measure, can be calculated with 
C(ρ) = max(0,

√
�1 −

√
�2 −

√
�3 −

√
�4) , where �1 > �2 > �3 > �4 . Because our matrix is X-state, concur-

rence is obtained as follows:

where t1 = 2(
√
r23 × r32 −

√
r11 × r44) and t2 = 2(

√
r14 × r41 −

√
r22 × r33).

In Fig. 3 contour plots of the concurrence obtained from Eq. (12) is plotted as a function γ1 and γ2 . We observe 
that the entanglement gets smaller by increasing the temperature. Even, the maximum amount of entanglement 
in this case is a small amount. We can see in Fig. 3 that the entanglement persists only for very low values of n̄.

Quantum discord. A bipartite quantum state consists of classical and conventional correlations. These cor-
relations are jointly measured by their quantum mutual information which is a theoretical measure of the total 
correlation in a bipartite quantum state. In particular, if ρAB is the density operator of a compound binary system 
AB and ρA(ρB) describes the density operator of term A(B), thus the quantum mutual information is defined 
 as40,

where S(ρ) = −Tr(ρ log2 ρ) is the von Neumann entropy. Quantum mutual information may be written as the 
sum of the classical correlation C(ρAB) and the quantum correlation Q(ρAB) that is L(ρ(AB)) = C(ρAB)+ Q(ρAB)
41–44. This quantum term Q(ρ) is called quantum  discord42. This is a different kind of quantum correlation com-
pared to the entanglement since the separable mixed modes (i.e., without entanglement) can have a nonzero 
quantum discord. Quantum discord is not always bigger than the  entanglement45,46. The quantum discord (QD) 
for the X-state matrix is obtained as  follows43:

that Q1 and Q2 are obtained as follows, 

(12)C(ρ) = max[0, t1, t2],

(13)L(ρ(AB)) = S(ρA)+ S(ρB)− S(ρAB)

(14)QD(ρAB) = min(Q1,Q2),

(15a)ǫ1 =
1

2

[

(r11 + r44)+
√

(r11 − r44)2 + 4|r14|2
]

,

(15b)ǫ2 =
1

2

[

(r11 + r44)−
√

(r11 − r44)2 + 4|r14|2
]

,

(15c)ǫ3 =
1

2

[

(r11 + r33)+
√

(r22 − r33)2 + 4|r23|2
]

,

(15d)ǫ4 =
1

2

[

(r22 + r33)−
√

(r22 − r33)2 + 4|r23|2
]

,

(16)H(x) = −x log2 x − (1− x) log2 (1− x),

Figure 3.  Contour plots of the concurrence of state ρ in Eq. (4) corresponding to n̄b = 0 and n̄a = 1 (left) and 
n̄a = 2 (right) as a function of γ1 and γ2 , with J = 1 and D = 1 for both panels.
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In Fig. 4 using the Eq. (14) contour plots of the quantum discord is plotted as a function γ1 and γ2 . We find 
from Fig. 4 which quantum discord is sensitive to reservoir temperatures. It is important to note under what the 
condition quantum discord can be sustain more. Moreover, by compareing Figs. 3 and 4 we can find with increas-
ing the interaction rate of the second qubit with its environment, the entanglement becomes more tangible and 
the quantum discord first increases, then decreases. Also, with increasing the population of the corresponding 
equilibrium temperature, both entanglement and quantum discord are decreasing.

Quantum coherence. The quantum coherence derived from the superposition of quantum states differen-
tiates quantum from classical mechanics. The quantum coherence contained between different parts of quantum 
systems is the basis for the creation of quantum  correlations47–49. The quantum coherence, which arises from 
the superposition principle, is one of the best non-classical features of a quantum system. Based on the research 
works conducted in this  field50–52, quantum coherence is achieved through the following equation:

where ρ is the quantum state density matrix, k is an observable, and [ , ] is the displacement. Minimum skew 
information achievable on a single local measurement defined as,

The minimization is performed over all local maximally informative observable (or nondegenerate) 
KA = KA ⊗ IB . We use a closed form of the quantum coherence for 2⊗ d quantum systems which is intro-
duced by Girolami as,

where  �max  i s  the  maximum eigenvalue  of  the  3× 3 matr ix  χ  with  the  e lements 
χij = Tr{√ρ(σiA ⊗ IB)

√
ρ(σjA ⊗ IB)} and σi(i = 1, 2, 3) represent the Pauli matrices.

In Fig. 5 using the Eq. (21) contour plots of the quantum coherence is ploted as a function γ1 and γ2 . We find 
from Fig. 5 which quantum coherence is sensitive to reservoir temperatures. It is important to note under what 
the condition quantum coherence can be sustain more. We observe that by increasing the interaction rate of 
any qubit with its environment, the quantum coherence further increases compared to the entanglement (see 
Figs. 3, 4 and 5 ). As can be seen, the quantum coherence is decreasing in terms of the population of the cor-
responding equilibrium temperature such as the entanglement and the quantum discord. Also, for constant γ1 , 
by increasing the γ2 , the entanglement becomes more perceptible and the quantum discord the first increases 
then decreases. But the quantum coherence further increases compared to the entanglement. To compairing the 

(17a)d1 = H

(

1+
√

[1− 2(r33 + r44]2 + 4(|r14| + |r23|)2
2

)

,

(17b)d2 =
∑

i

rii log2 rii −H(r11 + r33),

(18)Qj = H(r11 + r33)+
4

∑

i=1

ǫi log2 ǫi + dj .

(19)I(ρ, k) = −
1

2
Tr[√ρ, k]2

(20)uA ≡ minKAI(ρAB,K
A)

(21)uA = 1− �max(χ)

Figure 4.  Contour plots of the discord of state ρ in Eq. ( 4) corresponding to n̄b = 0 and n̄a = 1 (left) and 
n̄a = 2 (right) as a function of γ1 and γ2 , with J = 1 and D = 1 for both panels.
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behavior of quantum correlations and quantum work, we draw Fig. 6 and set D = D1 . Figure 6 shows the plots 
of three quantum correlations and the total work, as a function spin-orbit interaction factor D. Based on this 
Figure, DM interaction parameter releases the positive work condition compared to export quantum correla-
tions in the XY chain under the condition that D1 → D2 in adiabatic process. In the area D > 2.2 even when the 
concurrence is absent, quantum correlation can be exported by way discord, so that positive works happening in 
our cycle as long as D  = 0 . As a result, Fig. 6 shows that the discord of system decreases as the total work done 
by the system decreases. We can see a clear relation, for this type of engine, between quantum correlations and 
energetic performances.

Conclusion
In summary, we proposed a composite system composed of two interactional qubits with spin-orbit interaction. 
We discussed the work extraction from the engine and its efficiency as well as the role of quantum correlations, 
characterized by the quantum entanglement, quantum discord and quantum coherence in the thermodynamical 
processes. The density matrix and quantum correlations are calculated for the state XY, and we observe that three 
quantum correlations decrease by increasing the population of the corresponding equilibrium temperature. We 
also saw that, in the absence of entanglement in the system, the work done in the system is not necessarily zero, 
while discord can be a powerful tool for identifying positive work in the system. We also see that with increas-
ing the spin-orbit interaction factor, three quantum correlations and the total work decrease. Therefore, three 
quantum correlations behavior in terms of the Dzyaloshinskii–Moriya interactions coefficient are the agree on 
the total work behavior. We have identified for what range of magnetic fields, we can consider this system as a 
heat engine. Our work show new light on the study of the work extraction from the engine and its efficiency as 
well as the role of quantum correlations. Interestingly, we have shown that it is possible to make a direct link 
between the work and the quantum correlations, entanglement, coherence and discord in during the Otto cycle.

Figure 5.  Contour plots of the coherence of state ρ in Eq. (4) corresponding to n̄b = 0 and n̄a = 1 (left) and 
n̄a = 2 (right) as a function of γ1 and γ2 , with J = 1 and D = 1 for both panels.

Figure 6.  Plots of the total work, coherence, concurrence and discord for an Otto cycle operating between 
T1 = 1 and T2 = 4 using the steady state. We fix J = 1 , γ1 = 0.1 , γ2 = 5 , D2 = 5 , n̄a = 2 , n̄b = 0 , B1 = 1 and 
B2 = 2 , and change D.
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