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Information processing in the nervous system critically relies on temporally precise spiking

activity. In the auditory system, various degrees of phase-locking can be observed from

the auditory nerve to cortical neurons. The classical metric for quantifying phase-locking

is the vector strength (VS), which captures the periodicity in neuronal spiking. More

recently, another metric, called the correlation index (CI), was proposed to quantify the

temporally reproducible response characteristics of a neuron. The CI is defined as the

peak value of a normalized shuffled autocorrelogram (SAC). Both VS and CI have been

used to investigate how temporal information is processed and propagated along the

auditory pathways. While previous analyses of physiological data in cats suggested

covariation of these two metrics, general characterization of their connection has never

been performed. In the present study, we derive a rigorous relationship between VS

and CI. To model phase-locking, we assume Poissonian spike trains with a temporally

changing intensity function following a von Mises distribution. We demonstrate that VS

and CI are mutually related via the so-called concentration parameter that determines

the degree of phase-locking. We confirm that these theoretical results are largely

consistent with physiological data recorded in the auditory brainstem of various animals.

In addition, we generate artificial phase-locked spike sequences, for which recording and

analysis parameters can be systematically manipulated. Our analysis results suggest that

mismatches between empirical data and the theoretical prediction can often be explained

with deviations from the von Mises distribution, including skewed or multimodal period

histograms. Furthermore, temporal relations of spike trains across trials can contribute to

higher CI values than predicted mathematically based on the VS. We find that, for most

applications, a SAC bin width of 50 ms seems to be a favorable choice, leading to an

estimated error below 2.5% for physiologically plausible conditions. Overall, our results

provide general relations between the two measures of phase-locking and will aid future

analyses of different physiological datasets that are characterized with these metrics.

Keywords: phase-locking, circular statistics, temporal coding, auditory brainstem, autocorrelogram, spike train

analysis, periodic signals, frequency-following response
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1. INTRODUCTION

Temporal coding is found virtually everywhere in the brain,
underlying numerous sensory, cognitive, and motor functions
of the nervous system (Paton and Buonomano, 2018). Well-
timed neuronal spiking is essential for vision (Rucci et al., 2018),
audition (Grothe et al., 2010; Heil and Peterson, 2015; Yin
et al., 2019), balance (Cullen, 2012), olfaction (Gire et al., 2013),
gustation (Hallock and Di Lorenzo, 2006), touch (Saal et al.,
2016), electrosensation (Carr and Friedman, 1999; Baker et al.,
2013), as well as spinal pattern generation (Catela et al., 2015),
motor control (Lehman and Bartussek, 2017; Sober et al., 2018),
cerebellar motor learning (De Zeeuw et al., 2011), and memory

formation and consolidation (Dragoi, 2020). Loss of temporal
precision in neural activity is related to cognitive and behavioral

deficits (Balci et al., 2009). When action potentials of a neuron

occur preferentially at a certain phase of a periodic stimulus,

A B

C

E

D

FIGURE 1 | Characterization of phase-locked spiking response. (A) Exemplary phase-locked spike trains recorded in a nucleus magnocellularis (NM) neuron of an

American alligator. The raster plot shows the occurrence of spikes for 51 (out of 63) repetitions of a 100 ms pure tone stimulus at the unit’s CF (1200 Hz). Sound

stimulation starts at 0 ms. (B) Schematic drawing for the construction of a phase histogram. For each recorded spike, the corresponding phase at the reference

frequency is calculated. Then, a histogram is constructed to show the number of spikes for each phase bin. A steep peak indicates strong phase-locking, whereas a

flat phase histogram reflects a lack thereof. (C) Phase histogram for the response in (A) with its vector strength (VS) value. (D) Schematic drawing for the construction

of a normalized shuffled autocorrelogram (SAC). Each spike timing within one spike train (here, exemplary trial 1) is compared to the spike timings of all other trains

(here, trial 2 and 3) by measuring pairwise temporal distances of the spikes (colored arrows). This procedure is repeated for every recorded spike train. All resulting

temporal distances, also called delays, are binned into a histogram and normalized to a dimensionless entity with an average of one. The correlation index (CI)

corresponds to the value of the SAC at delay zero. (E) SAC for the response in (A) with its CI value.

such a neuronal spiking pattern is called “phase-locked” (see Carr
and Friedman, 1999; Ashida et al., 2010, for typical examples).
In the auditory system, phase-locking to tonal stimuli plays a
fundamental role, for example, in detecting the location of a
sound source (Grothe et al., 2010; Ashida, 2015; Yin et al., 2019).

Phase-locking of a spike train (Figure 1A) can be captured in
a phase histogram (Figure 1C) that visualizes the spiking rate at
each phase of the periodic reference signal (see Figure 1B for
the schematic construction of a phase histogram). In order to
quantify the degree of phase-locking, a metric called the “vector
strength” (VS: Goldberg and Brown, 1969; Fisher, 1993; van
Hemmen, 2013) has been widely used (for examples, see Joris
et al., 2004; Ashida et al., 2010; Heil and Peterson, 2015, 2017).
Here, each spike is converted into a vector on a unit circle
with a corresponding phase; all these phase vectors are summed
up to a mean spike vector, whose length is the value of VS.
Mathematically, VS (sometimes called “synchronization index”
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or “synchronization coefficient”) is equal to the absolute value of
the Fourier component of the spike train at the reference signal
frequency (f ) normalized by the total number of spikes (Johnson,
1974; Ashida et al., 2010). By definition (detailed in Materials and
Methods), the value of VS is between zero and one: from no to
perfect periodicity at f . Certain types of neurons in the cochlear
nucleus, for instance, exhibit enhanced phase-locking compared
to their peripheral auditory nerve inputs, which is manifested in
an increase of VS (Joris et al., 1994; Köppl, 1997; Wei et al., 2017).

In addition to VS, another metric called the “correlation
index” (CI: Joris et al., 2006) was more recently introduced
to quantify neuronal synchrony. The value of CI is defined
as the height of the central peak of a normalized shuffled
autocorrelogram (SAC; Figure 1E), whose construction is
depicted in Figure 1D (a more detailed description is given in
Materials and Methods). If a set of spike trains has no temporally
reproducible spiking pattern across trials, its CI value equals
one. A large CI value indicates highly reproducible spiking
responses over repeated trials (Joris et al., 2006). In contrast to
VS, which is narrowband (i.e., only the spectral component at
frequency f is considered), CI is generally broadband, as it is
a collective measure of multiple frequency components (Parida
et al., 2021). SACs and CIs can be applied to both periodic and
aperiodic signals and were used for characterizing the temporal
coding properties of auditory nerve (AN) fibers (Dreyer and
Delgutte, 2006; Heinz and Swaminathan, 2009; Huet et al., 2018;
Heeringa et al., 2019), various neurons in the cochlear nuclei
recorded in vivo (Gai and Carney, 2008; Steinberg and Peña,
2011; Recio-Spinoso, 2012; Keine et al., 2016) and in vitro (Street
and Manis, 2007; Kreeger et al., 2012), and neurons in the
auditory midbrain (Shackleton et al., 2009; Zheng and Escabí,
2013).

While both VS and CI represent the degree of synchronized
neuronal spiking activity, it is not known how these two
measures are related to each other. Previous analyses of
physiological data suggested that they should covary according to
some monotonic, non-linear relationship (Dreyer and Delgutte,
2006; Joris et al., 2006). Parida and colleagues mathematically
related peristimulus time histograms (PSTHs) to VS and CI
under very general conditions (Parida et al., 2021). In the
present study, we derive a mathematically rigorous relationship
between VS and CI under certain assumptions for phase-
locking. Our theoretical results will be validated with spike
train data that were either recorded from different types of
auditory neurons or simulated with available auditory neuron
models. These results provide a foundation for comparing past
and future experimental data quantified with these measures
of phase-locking.

2. MATERIALS AND METHODS

In this section, we summarize our theoretical formulations
and describe the methods for validating our mathematical
results. A full derivation of the equations is provided in
Supplementary Materials.

2.1. Mathematical Analysis
2.1.1. Von Mises Distribution
A key assumption for our mathematical formulation and the
modeling of phase-locked spike trains is that the neuron
fires action potentials according to an underlying von Mises
distribution (Fisher, 1993). Such an assumption has been adopted
in previous modeling studies of auditory neurons for half a
century (e.g., Siebert, 1970; Colburn, 1973; Johnson, 1974; Ashida
and Carr, 2010). A more recent study confirmed that most
phase histograms of cat auditory nerve fibers can be reasonably
described by the vonMises distribution (Peterson andHeil, 2020).
Here, we consider a vonMises density function pκ ,f , whose period
is T = 1/f , with f being the stimulus (or reference) frequency, as

pκ ,f (t) =
1

T · I0(κ)
exp

(

κ cos(2π ft − µ)
)

, (1)

where µ is the mean direction (or the preferred spiking
phase) and κ ≥ 0 is the concentration parameter. Generally,
a large κ corresponds to a high degree of phase-locking
(numerical examples are shown in Figures 2A1–C3). I0(κ) =
1
2π

∫ π

−π
exp(κ cos(x)) dx is the modified Bessel function of order

zero, which serves as the normalization constant for pκ ,f , such

that
∫ T
0 pκ ,f (t) dt = 1. Without loss of generality, we set µ = 0

for the rest of this paper.
For generating phase-locked spike trains, we used an

inhomogeneous Poisson process with a periodic time-varying
intensity function

λ(t) = Tλ̄ · pκ ,f (t) , (2)

where T is the length of the stimulus period, and λ̄ the mean
spike rate of the neuron (see Ashida et al., 2010). In the following
analyses, VS, SAC, and CI do not depend on λ̄. We note that the
presented results are asymptotically true with sufficiently many
spikes collected. When only few spikes are considered, the results
would be biased (Kutil, 2012). Furthermore, phase histograms of
real neurons do not necessarily follow the von Mises distribution
because of refractory periods and harmonic distortions (e.g.,
Avissar et al., 2013; Peterson and Heil, 2019). We will revisit this
point in the Discussion.

2.1.2. Vector Strength
As reviewed in Ashida et al. (2010), the vector strength of
a neuronal spike train in response to a periodic signal with
frequency f is calculated as the length of the mean phase vector
(X, Y) of all collected spikes (Goldberg and Brown, 1969), namely

VS =
√

X2 + Y2 with X = 1
N

∑N
j=1 sin(2π ftj) and Y =

1
N

∑N
j=1 cos(2π ftj), where tj denotes the timing of the j-th spike

and N is the total number of spikes. For our theoretical analyses,
we used the continuous extension of the definition of vector
strength (see Ashida et al., 2010, 2013), according to which VS
was computed as a function of κ by

VS(κ) =
1

T · I0(κ)

∫ T

0
exp

(

κ cos(2π ft)
)

cos(2π ft) dt =
I1(κ)

I0(κ)
,

(3)
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A1 B1 C1 D

A2 B2 C2 E

A3 B3 C3 F

FIGURE 2 | Relationship between vector strength (VS) and correlation index (CI). (A1,B1,C1) Phase-locked spike trains simulated with an inhomogeneous Poisson

process whose periodic intensity function is von Mises distributed. The raster plots show the spike occurrences for three different phase-locking strengths, namely

κ = 0.65 (A1), κ = 1.56 (B1) and κ = 5.85 (C1). (A2,B2,C2) Corresponding phase histograms for the simulated spike trains in (A1–C1). The resulting empirical VS is

shown, together with its back-calculated κ and estimated CI value. (A3,B3,C3) SACs for the spike trains in (A1–C1) with corresponding empirical CI values. In

(A1–C1), only 51 trials are shown for clarity, while 400 trials of 150 ms trains were used for (A2–C2) and (A3–C3). (D) Value of VS as a function of κ for the von Mises

distribution. (E) Value of CI as a function of κ for the von Mises distribution. (F) Relation between VS and CI for varied concentration parameters κ of the underlying

von Mises distribution.

where I1(κ) = 1
2π

∫ π

−π
exp(κ cos(x)) cos(x) dx is the modified

Bessel function of order one. VS monotonically increases with κ

(Figure 2D).

2.1.3. Normalized Shuffled Autocorrelogram and

Correlation Index
SACs are obtained by measuring all pairwise spike intervals
across all non-identical spike trains (see Figure 1D). The
peak value of the normalized SAC at delay zero is the CI,
which captures the degree of reproducibility in spike trains
for repeated stimuli. Assuming that spike trains to repeated
stimulus presentations are independent and identically von
Mises distributed, we can derive a formula for SAC, which

is only dependent on the concentration parameter κ and
the time delay s (see Supplementary Material for detailed
derivations). Namely,

SACκ (s) = T ·

∫ T

0
pκ ,f (t) · pκ ,f (t − s)dt

=
1

T · I0(κ)2

∫ T

0
exp

(

κ
(

cos(2π ft)+ cos(2π f (t − s))
)
)

dt

=
1

I0(κ)2
·
1

T

∫ T

0
exp

(

2κ cos(π fs) · cos
(

2π f
(

t −
s

2

)))

dt

=
I0(2κ cos(π fs))

I0(κ)2
. (4)
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For its center peak at delay s = 0, we find

CI(κ) = SACκ (0) =
I0(2κ)

I0(κ)2
. (5)

CI increases monotonically as a function of κ (Figure 2E).
Knowing the relationship between the concentration parameter
κ with VS and CI, we can now relate VS and CI via κ (Figure 2F).
We note that there is no closed formula that directly relates VS
and CI without using κ . Therefore, to estimate the value of CI
from the value of VS, for example, Equation (3) is solved for κ ,
and the obtained value of κ is then substituted into Equation (5).

2.1.4. Effects of Data Length D and SAC Bin Width ω

To evaluate the scattering of the data around the theoretical VS-
CI curve, we examined the effect of the data length D and the
bin width ω on the SAC and CI value. Here we refer to the
“data length” as the time length of each single spike train used
for the calculation of SAC. Assuming that it is equally likely
for a unit to fire during each stimulus phase, the data length D
introduces a linear decay to the side peaks of the SAC with delay
s, which can be combined with the SAC in Equation (4) by the
multiplicative factor

ζD(s) =

{

1−
∣
∣ s
D

∣
∣, |s| < D

0 , |s| ≥ D
, (6)

such that

SACκ ,D(s) = SACκ (s) · ζD(s) .

This equation indicates that CI is not affected by the data length
D, as it is the value of SAC at s = 0.

The derivation of the CI in Equation (5) implicitly assumed
a sufficiently small ω. Therefore, by design, the value of the
von Mises density pκ ,f does not change within each bin. This is
different when introducing binning of a finite size, which leads
to a bias in the calculation of CI. The effect of binning can be
formulated as the convolution of pκ ,f with a rectangular window
function. This effectively induces the averaging of function values
in each bin. Thus, CI becomes a function of ω, κ and f (see
Supplementary Material for detailed derivation):

CIω(κ) = 1+ 2

∞
∑

n=1

(
In(κ)

I0(κ)

)2

︸ ︷︷ ︸

strength of
n-th harmonic

(
sin(πnfω)

πnfω

)

︸ ︷︷ ︸

decay factor

, (7)

For large bin widths ω, the CI value decays toward 1, as the
second term of Equation (7) monotonically decreases with ω.
For sufficiently small ω, the decay factor is (close to) 1, since
sin(πnfω) ≈ πnfω, thus leading to very small bias.

2.2. Data Analysis
To validate our theoretical findings, we analyzed spike trains
from three different sources: (1) simulated spike trains with an
inhomogeneous Poisson process, (2) simulated auditory nerve
(AN) and globular bushy cell (GBC) data, and (3) spike timing

data recorded from auditory neurons in vivo. To calculate the
SACs and CI values, custom-written Matlab scripts were used
that followed the procedure described in Joris et al. (2006). Unless
otherwise stated, we used ω = 50 µs for the SAC bin width.

2.2.1. Spike Train Generation
Phase-locked spike trains were generated using an
inhomogeneous Poisson process with the time-dependent
intensity function in Equation (2). This simple model does
not include refractory periods (see Discussion for the possible
effects of refractory periods on VS and CI). A total of 46 units
were generated with target VS values evenly spaced between
0.05 and 0.95 (with a step of 0.02), for which the value of κ

was back-calculated using Equation (3). The frequency f was
fixed to 500 Hz. For each κ , 150 ms long spike trains were
generated 400 times. The average firing rate was set to 200
spikes/s and the time resolution for spike generation was 2 µs
(i.e., ω/dt = 25). Figures 2A1–C1 shows exemplary rasters of
simulated spike trains with target VS values of 0.31, 0.61 and
0.91. Their corresponding phase histograms (Figures 2A2–C2)
and SACs (Figures 2A3–C3) are shown below the rasters.

2.2.2. AN/GBC Model Data
To simulate AN fiber responses, an auditory periphery model
(Bruce et al., 2018) was used, which was shown to replicate
physiological spiking patterns of AN in cats. To simulate
tone-driven spiking patterns of GBCs, an adaptive coincidence
counting model was used, which was fed with the simulated AN
output (Ashida et al., 2019). AN fiber spike trains were generated
for tonal waveforms with frequencies ranging from 200 to 3,000
Hz in steps of 100 Hz at sound pressure levels of 40 and 70 dB
SPL. The spontaneous spike rate of the AN model was set to
70 spikes/s, so that we could reuse the simulated spike trains of
this high spontaneous rate AN fiber model as inputs to the GBC
model. The characteristic frequency of the model was always the
same as the stimulus frequency. The simulated time length of
each trial was 190 ms and the sound stimulation started at 25
ms with a 5 ms cosine ramp. Sampling frequency was 100 kHz
(dt = 10 µs). For each combination of sound frequency and level,
8000 repetitions were generated. The first 400 trials were used
for further AN data analyses. The entire 8000 repetitions served
as inputs to simulated GBCs. Assuming that each GBC received
inputs from 20 AN units (Ashida et al., 2019), we had 400 trials
for each GBC simulation. For both AN and GBC, the resulting
spike trains were analyzed over a 150 ms window, excluding the
first 15 ms onset response to avoid possible effects of spike rate
adaptation on VS and CI.

2.2.3. In vivo Recordings From Auditory Brainstem

Neurons
Similarly to Ashida and Carr (2010), we re-analyzed our previous
in vivo recording data from nucleus magnocellularis (NM)
and nucleus laminaris (NL) neurons in birds and reptiles.
Corresponding experimental procedures were described in Carr
et al. (2009) for alligators, in Köppl and Carr (2008) for chickens,
and in Carr and Köppl (2004) for barn owls. To induce phase-
locked spiking responses, NM and NL neurons in these animals
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were driven with repeated tonal stimulation at their best (or
characteristic) frequencies. In total, we re-analyzed 142 units (57
from alligators, 34 from chickens, and 51 from owls). Stimulus
duration was 50 or 100 ms, except for two units with 200 and
400 ms stimulation. Stimulus presentation was repeated 50–400
times. To eliminate the effect of the stimulus onset, we excluded
the initial 15 ms of the spiking response for each stimulus
presentation. Units with a total number of collected spikes fewer
than 400 or with an average driven firing rate lower than 30
spikes/s were excluded from further analyses, leaving us with
125 units. From the spike timing data of each of these units, we
calculated VS and CI according to the methods described above.
In addition to our own data, we adopted the empirical VS-CI plot
of Joris et al. (2006) for comparison, in which in vivo recording
data from trapezoid body (TB) fibers in cats were presented.

2.2.4. Data Length D and SAC Bin Width ω Analysis
To test the effect of the data length D on the SAC and CI, we
simulated 2,000 Poissonian spike trains of one unit responding
to a 100 ms long 500 Hz pure tone stimulus with a temporal
resolution of 2 µs. The target VS value was 0.8 and themean firing
rate λ̄ was set at 200 spikes/s. We calculated the SAC for spikes
in the time interval between 30 and 80 ms after the stimulus
onset with the bin width ω = 50 µs, such that ω/dt = 25.
The simulation results were then compared with our theoretical
findings in Equation (6).

To evaluate the effect of the SAC bin width ω, we created
400,000 trials of inhomogeneous Poissonian spike trains, each of
which was 100 ms long, locked at 500 Hz with an average rate
of 200 spikes/s and a target VS of 0.6. To calculate the mean and
standard deviation of SAC and CI, we divided them into 1000
repetitions, each containing 400 trials. The temporal resolution
of the spike trains was dt = 2 µs. In total, 88 different bin width
values ranging from ω = 2 to 2,000 µs were used. As shown
in Results (section 3.4), deviation from the theoretical value
critically depends on the value of ω/dt. Therefore, we divided the
values of ω into the four groups “odd” (N = 23), “even” (N =

23), “non-integer” (N = 32), and “large” (N = 10), according
to the value of the ratio ω/dt. The group “large” contains all bin
widths with ω/dt ≥ 550. For each repetition and each bin width
ω, SAC and CI were computed and compared with the theoretical
CI decay in Equation (7).

3. RESULTS

The main goal of the present study is to establish a clear
relationship between VS and CI. After a brief mathematical
description of their relationship, we test the validity of
our theoretical formulation with published auditory neuron
models and physiologically recorded in vivo data. Finally, we
investigate potential causes for deviations between theoretical
and empirical results.

3.1. Mathematical Formulation of the
Relation Between VS and CI
In order to relate VS and CI by mathematical expressions, we
assumed that phase-locked spike times can be described by

the arrival times of an inhomogeneous Poisson process with
a periodic, time-dependent intensity function λ(t) that was
based on the von Mises distribution (Equation 2). This function
captures the periodic spike rate change at frequency f , the degree
of phase-locking quantified with the concentration parameter
κ , and the mean discharge rate λ̄ of the neuronal response.
A large value of κ generally corresponds to prominent phase-
locking, which is indicated in the vertical alignment of spikes in
raster plots (compare Figures 2A1–C1). Temporal fidelity and
reproducibility of spike timings can be visualized with phase
histograms (Figures 2A2–C2) or SACs (Figures 2A3–C3).

As summarized in Materials and Methods and detailed in
Supplementary Material, we obtained the formulae VS(κ) =

I1(κ)/I0(κ) (Equation 3) and CI(κ) = I0(2κ)/I0(κ)
2 (Equation

5). Here, both metrics depend only on the concentration
parameter κ of the von Mises distribution (Figures 2D,E). Since
both VS and CI are monotonic functions of κ , we can connect VS
and CI using their one-to-one relationship with κ (Figure 2F). CI
is a monotonically increasing function of VS (and vice versa), and
VS = 0 corresponds to CI = 1. Next, we compare these results to
simulated and in vivo data.

3.2. Validation of Theoretical Results
3.2.1. Simulated Data
In order to validate the theoretical relationship between VS
and CI, we simulated spike trains for varied degrees of phase-
locking (three examples are shown in Figures 2A1–C3) using an
inhomogeneous Poisson process as described in the Materials
and Methods section. From these sequences, we computed
VS and CI values, and compared them with the theoretical
prediction shown in Figure 2F. When the underlying spiking
distribution is von Mises, the theoretical findings match the
empirical calculations of simulated data (Figure 3A). Hence, the
validity of our analytical results is confirmed with sufficiently
long trials containing sufficiently many spikes.

3.2.2. AN/GBC Model Data
We generated spike data using AN and GBC models driven by
tonal stimulation of frequencies from 200 to 2,000 Hz at 40 and
70 dB SPL and determined VS and CI of these simulated traces.
Overall, their trend closely follows the mathematical prediction
(Figure 3B). There are a few instances, however, that notably
deviated from the theoretical curve. These instances indicate
either higher CI or lower VS than what is estimated from
the theoretical relationship (e.g., arrows in Figure 3B). We will
examine this discrepancy in section 3.3.

3.2.3. In vivo Data
Finally, we analyzed auditory brainstem neuron data from three
different species and two different neuron types. The animals
were presented with pure tone stimuli at the unit’s presumed CF.
The empirical data points generally followed the trend of the
theoretical curve (Figure 3C). However, considerable scattering
of the VS-CI points around the theoretical prediction is evident.
Most of the deviating data points appear to the right of the
theoretical line, indicating a degraded VS, an increased CI, or
both. The same holds true for cat TB data originally collected
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A B

C D

FIGURE 3 | Validation of the theoretical relation between VS and CI. In each panel, the theoretical VS-CI relationship is shown with a black solid curve, while simulated

or recorded data are shown by different types of symbols. The gray dotted lines indicate 0.7× (theoretical CI) and 1.4× (theoretical CI) for each value of VS. (A) VS

and CI values for numerically calculated von Mises distributions. Results from 46 simulated units that are locked at 500 Hz with target VS values ranging from 0.05 to

0.95 (in steps of 0.02) are shown. (B) Simulated auditory nerve (AN) and globular bushy cell (GBC) responses with 58 units each. The stimulus frequency was fixed to

the unit’s CF that ranged from 200 to 2,000 Hz, each tested at 40 and 70 dB SPL. (C) VS-CI relationship from 125 auditory brainstem neurons of three animal

species. (D) VS-CI relationship in 564 tonal responses of cat TB fibers. Data points were adapted from Joris et al. (2006) with permission. Arrows in (B,C) indicate the

examples used in Figure 4.

by Joris et al. (2006) (Figure 3D). While most data points fall
into a reasonable range around the mathematical reference, there
are some units with potentially reduced VS or increased CI. In
summary, both simulated and empirical data were consistent
with our theoretical relations between VS and CI. Possible
reasons for the deviation include violations of the mathematical
assumptions and systematic calculation errors of the empirical
VS and CI values, which we further investigate in the following
two subsections.

3.3. Violation of the Mathematical
Assumptions
Deviation from the theoretical relationship between VS and
CI can happen, when the underlying spiking pattern does
not obey the von Mises distribution function. Example rasters
are shown in Figures 4A1–E1. The phase histograms of
such units include skewed (Figures 4A2,B2) or bimodal
(Figures 4C2,D2) phase distributions. Similar phase histograms
were also observed in, e.g., cat AN fiber recordings, primarily

due to harmonic distortions originating from the auditory
periphery (see Peterson and Heil, 2019, and references therein).
In one of the alligator NL neurons (Figure 4D1), both
the spike rate and the spike timing depend on interaural
time differences, leading to a bimodal phase histogram
(Figure 4D2).

Such violations of the theoretical assumption of a symmetrical,
unimodal von Mises distribution result in SACs that are
also skewed (Figures 4A3,B3) or with multiple side peaks
(Figures 4C3,D3). Consistent with the observations by Joris et al.
(2006), we find that units with these types of phase histograms
show a reducedVS. The CI, on the other hand, seemsmore robust
to such changes, as the SAC can capture temporal structures
that are not frequency specific (Parida et al., 2021). In other
words, CI can be large when there is trial-to-trial reproducibility
in the spiking responses even without periodic patterns. In
the cases presented here, low frequency units (typically below
500 Hz) predominantly showed such phase histograms, which
often present more than one peak in one stimulus cycle (i.e.,
peak splitting).
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A1 B1 C1 D1 E1

A2 B2 C2 D2 E2

A3 B3 C3 D3 E3

FIGURE 4 | Violation of the theoretical assumptions for the VS-CI relationship. Each column shows the response of a unit whose CI value deviates from the theoretical

value estimated from its VS. Corresponding data points are indicated by arrows in Figures 3B,C. (A1–E1) Raster plots. The sound stimulus starts at time zero.

(A2–E2) Phase histograms with VS values, from which the value of κ was back-calculated and then the value of CI was estimated. (A3–E3) SACs with CI values. Note

the difference between the estimated CI in (A2–E2) and actual CI in (A3–E3). To the alligator NL units, pure tone stimuli were presented binaurally with an interaural

time difference ranging from –2,000 to +2,000 µs in a step of 250 µs, repeated three times (D1–D3); or from –1,000 to +1,000 µs in a step of 100 µs, repeated 5 times

(E1–E3); only 51 repetitions are shown in (E1), but all repetitions are used for (E2,E3).

In addition to these relatively apparent examples, the value
of CI can be higher than the theoretical prediction, when
there is some hidden temporal structure between trials. Such
an example is shown in Figure 4E1. In this case, the neuron
was stimulated binaurally with a time difference between the
two ears that was systematically varied across trials. The spike
rate of this neuron varies according to the interaural time
difference (ITD: Figure 5A), which is a representative response
of an NL neuron (Carr et al., 2009). In contrast to the previous
example (Figures 4D1,D2), the stimulus-dependent variation of
spiking pattern in this neuron is hardly noticeable in the phase
histogram (Figure 4E2). The CI value of this neuron, however,
was substantially higher than the naive expectation from the

VS (Figure 4E3). In order to investigate how such a large CI
value was achieved, we generated artificial spike trains with the

same phase histogram as this neuron (Figure 5B). In contrast

to the ITD dependence of the actual NL neuron (Figures 4E1,

5A), the simulated spike trains contained no additional structures
in their repeated trials. For delays between –10 and +10 ms,

the empirical SAC (Figure 5C, blue) presents higher peaks than

the simulated SAC (Figure 5C, red), indicating that spikes of
this alligator NL unit were more likely to occur at the same
or neighboring cycles than an inhomogeneous Poisson process
having the same phase histogram. For larger delays, however,

empirical spike coincidences drop below the simulated data. In
sum, the deviation of the empirical CI from the theoretically
expected value suggested an additional temporal structure in the
spike trains of this NL unit and the comparison of empirical
and simulated SACs revealed increased spike coincidences
across trials.

3.4. Data Length and Bin Width Analysis for
the SAC and CI
The choice of parameters for CI calculation can lead to
an additional deviation from the theoretical prediction. We
investigated the effects of the data length D and the SAC bin
width ω on CI by deriving Equations 6 and 7. The limited
data length D of spike trains linearly scales down the heights
of the side peaks in the SAC (Figure 6A) with a multiplicative
factor 1 − |s/D|. This decay of SAC reflects the fact that
spike coincidences are not counted for spikes that could occur
before the beginning or after the end of the time interval
used for the calculation of SAC. Therefore, the decay of SAC
is stronger for smaller D (Figure 6B). The value of CI, or
the SAC peak at s = 0, is nevertheless unaffected by the
data length D. We also note that the value of VS is generally
unaffected by D, as long as a sufficient number of spikes
is collected.
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A B C

FIGURE 5 | Comparison of empirical and simulated data. (A) ITD-tuning curve of the 700 Hz alligator NL unit used for Figures 4E1–E3. Error bars represent standard

deviations (5 repetitions for each ITD). (B) Phase histograms and (C) SACs of the same NL unit (blue) and simulated spike train (red) that was generated with an

inhomogeneous Poisson process whose intensity function is modeled with the empirical phase histogram without any additionally assumed trial-to-trial relations.

A B

FIGURE 6 | Effects of limited data length on the heights of the side peaks of the SAC. (A) (Black) Theoretical SAC for a spike train of an infinite length for a 500 Hz

stimulation. (Blue) SAC for a 50 ms long interval of a simulated spike train with theoretical decay of SAC peak heights (dotted blue). (Green) SAC for a 40 ms long

interval of a simulated spike train with theoretical decay of SAC peak heights (dotted green). The concentration parameter κ was 2.8713 corresponding to a VS of 0.8.

(B) More examples for different data lengths of 30 (red) and 20 (orange) ms.

The calculation of VS is affected by the recording time
resolution (Ashida and Carr, 2010). Similarly, CI is impacted by
the SAC bin width ω. For experimental data of cat AN and TB
fibers, Joris et al. (2006) had already shown a decay of CI with
increasing bin widths ω, which was theoretically confirmed in
our calculation (Equation 7). The true CI is underestimated for
large ω and decays toward 1 for ω ≫ 100 µs for this 500 Hz
example (Figure 7A), because a large ω effectively works as a
low-pass filter by averaging out the spike rate in each bin. Since
the decay factor in Equation (7) is a function of the product ωf ,
the decay of CI starts at different values of ω, depending on the
frequency f . The decaying part of the curve in Figure 7Awill shift
to the left (smallerω) if the frequency is increased. This frequency
dependence is further investigated below.

Using a small bin width ω, however, is not always optimal for
error reduction. If ω is too small, the SAC becomes more variable
leading to strong deviations from the theoretical CI value (ω <

50 µs in Figure 7A). For small ω, three different cases should be
considered, depending on the value of the ratio between the SAC
time bin and spike timing resolution dt. When the value of ω/dt
is an odd integer, the simulated data closely follow the theoretical

value (Figure 7B). In this case, the number of data points in each
SAC bin is constant (Figure 7C). When the value of ω/dt is an
even integer, however, the calculation of CI can be erroneous
(Figure 7D), because the time points that are located on the
border of two neighboring SAC time bins are pushed into one of
the bins possibly in an uneven way, depending on the rounding
algorithm used in the specific analysis program (Figure 7E). We
note that this rounding issue might appear differently, if the CI
bin were not centered at 0 µs. Finally, if the quotient ω/dt is not
an integer, the error can be large (Figure 7F), because the number
of time points can vary between SAC bins (Figure 7G).

Based on these theoretical considerations, we aim to derive a
recommendation for the choice of reasonable SAC bin widths.
In addition to ω, the error in CI depends both on the frequency
f and the concentration parameter κ that controls the degree
of phase-locking (Equation 7). For a given frequency, more
prominent phase-locking, reflected in large κ values, leads to a
more pronounced CI decay (Figure 8A) because the strength of
the n-th harmonic (see Equation 7) monotonically increases with
κ . This observation allows us to estimate upper CI error bounds
by only considering the maximal value of κ that is physiologically
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A B C

D F

E

G

FIGURE 7 | Effects of the SAC bin width ω on CI. (A) CI values for 88 different SAC bin widths. Spike trains simulated with a von Mises distribution (frequency = 500

Hz; concentration κ = 1.5157; target VS = 0.60; mean spike rate = 200 spikes/s; time step dt = 0.002 ms; duration = 100 ms; and 400 repetitions) were used. The

amount of error or bias in CI depends on the ratio between the spike sampling time step dt and the SAC bin width ω, namely ω/dt, being either (B) odd integer, (D)

even integer or (F) non-integer. The gray dotted line represents the estimated CI (= 1.8120) based on the underlying κ value. The dark blue line shows the mean CI

values with error bars indicating the standard deviation for the simulated spike trains. The theoretical decay of CI with large ω is illustrated by the cyan curve (see

Equation 7). (C,E,G) Schematic illustrations for the effects of the SAC bin width ω. (C) For an odd integer ratio ω/dt, each bin has the same number of time points. (E)

When ω/dt is an even integer, the number of time points in each bin may or may not be equal depending on the rounding algorithm. (G) For a non-integer ω/dt, the

number of time points differs between two neighboring bins.

plausible at each frequency. Using published data in cats (Joris
et al., 1994), we obtained an empirical approximation for the
maximum values of VS at each frequency (Figure 8B, blue line)
and calculated the corresponding κmax (Figure 8C). The values
of κmax for AN fibers also matched the estimation by Peterson
and Heil (2019, see their Figure 9). Our results suggest that a
bin width of ω = 50 µs keeps the relative error below 2.5 % for
frequencies in the range of 200 and 5,000 Hz (Figure 8D). The
error is largest for frequencies between 2,000 and 3,000 Hz.

In summary, the SAC bin width ω should be chosen to
be equal to or smaller than 50 µs to avoid a substantial
underestimation of CI. Furthermore, the amount of error in CI
calculation depends on the ratio between the bin width ω and
the spike sampling time step dt. The bias is smallest in the odd
integer case (Figures 7B,C) and highest in the non-integer case
(Figures 7F,G).

4. DISCUSSION

In the era of large-scale recording and simulation, the ability
to compare data has become a fundamental issue in various
scientific fields, including biology (Cao et al., 2005; Vogt,

2009; Mallott et al., 2019) and neuroscience (Mulugeta et al.,
2018; Bzdok et al., 2019). A number of practical suggestions
have been made and implemented toward effective integration
of multiple datasets (e.g., Poldrack and Gorgolewski, 2014;
Zehl et al., 2016; Tratwal et al., 2020). These ongoing efforts,
however, do not necessarily guarantee that neurophysiological
data that were published decades ago can be compared with
more recent data quantified with different methods. As reviewed
in the Introduction, VS has served as a practical measure
of phase-locking, since it was introduced more than half a
century ago (Goldberg and Brown, 1969). More recently, the
use of CI has been increasingly common, since SACs and
CIs can be defined for a wider variety of stimuli than VS,
including non-periodic acoustic stimulation (Joris et al., 2006).
To facilitate comparisons between phase-locked spiking data
quantified with VS and those with CI, the present study
established a mathematical relationship between these measures
(Figure 2F). Our mathematical formulation assumed a von Mises
distribution characterized with the concentration parameter κ

that systematically affects both VS and CI (Figures 2D,E).
Our theoretical predictions generally agreed with measured

(Figures 3C,D) or simulated (Figures 3A,B) spiking data of
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A B C

D

FIGURE 8 | Estimation of the binning error in CI calculation depending on the bin size ω, frequency f , and concentration parameter κ. (A) Theoretical CI decay (see

Equation 7) for four different frequencies and seven different κ values. CI ratio was calculated as CIω/CI. (B) Empirical VS values measured in cats and their maximum

values approximated by a function VSmax = min{0.986, 1− (f/5700)1.5}. Symbols show cat TB fiber recordings (Joris et al., 1994). Diamonds: phase-locked units;

open triangles: presumed GBCs with primary-like-with-notch PSTHs; filled triangles: histologically confirmed GBCs. Dashed green line indicates the maximal VS

values for cat AN fibers (Johnson, 1980). Figure adapted from Ashida et al. (2019). (C) Estimation of κmax from VSmax in (B) calculated with Equation (3). (D) Upper CI

error bounds for different bin widths calculated with the estimated κmax shown in (C). Relative errors were computed as (CI− CIω )/CI. The gray dotted horizontal line

highlights the relative error of 2.5 %.

several different auditory neurons, even though spike timings
in real neurons do not necessarily follow the von Mises
distribution (Peterson and Heil, 2019). Real neurons and
modeled AN fibers, for example, have refractory periods,
while von Mises distributed spike trains do not. Recordings
of auditory nerve fibers showed that refractoriness can affect
VS especially at low frequencies (below 800 Hz; Avissar et al.,
2013; Peterson and Heil, 2019). Furthermore, spiking timing
of auditory nerve fibers and cochlear nucleus neurons are
generally more regular than pure Poissonian spike trains
(Rothman et al., 1993; Heil and Peterson, 2017). The AN
and GBC models we used (Bruce et al., 2018; Ashida
et al., 2019) include refractory periods and show more
regular spiking than the Poisson process. Nevertheless, our
simulation results with these models showed a good agreement
with the curve for the von Mises distribution (Figure 3B),
suggesting that the violations of these mathematical assumptions
may only have limited effects on the theoretical VS-CI
relationship. More systematic analyses on the effects of
refractoriness and regularity on SAC would be a topic of
future studies.

Deviations of data points from the theoretical curve
may originate from a skewed (Figures 4A2,B2) or bimodal
(Figures 4C2,D2) phase distribution (Peterson and Heil,

2019). In auditory nerve recordings in vivo, such bimodal
distributions were observed, for example, with low-frequency,
high-intensity acoustic stimulation (Johnson, 1980; Wei et al.,
2017) which induces considerable harmonic distortions in
the peripheral response (Peterson and Heil, 2019, also see
references therein for more examples). In addition to these
relatively apparent cases, the value of CI can be higher than
what is expected from VS, even if the phase distribution
resembles a von Mises distribution. In our example (Figure 4E2),
spikes across trials were more likely to occur in the same or
neighboring stimulus cycles than naively expected from the
period histogram that only retains the phase information of
spikes in each period (Figures 5B,C). These results indicate
that the applicability of our theoretical results is limited
to unimodal (von-Mises-like) phase distributions without
additional trial-to-trial coincidences due to variations of the
stimulus parameters. A more appropriate fitting of skewed
or bimodal phase distribution would require modifications
of the fitting function by, e.g., summing multiple unimodal
distributions or introducing additional shape parameters to
create asymmetry (Gatto and Jammalamadaka, 2007; Umbach
and Jammalamadaka, 2009; Abe and Pewsey, 2011; Kim and
SenGupta, 2013). In the cat auditory nerve, for example,
additional one or two distortion components would be necessary
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to account for the observed spiking patterns (Peterson and Heil,
2019).

In addition to the violation of theoretical assumptions,
multiple sources of errors can affect the calculation of CI. While
the length D of each trial would not affect the value of CI
(Figure 6), the size of the SAC time bin ω can constitute a
major error source (Figure 7). If ω is too large, the resulting CI
value becomes smaller than the theoretical estimation, because
the SAC peak is reduced by averaging within the time bin.
A similar effect was shown for the calculation of VS (Ashida
and Carr, 2010). For small ω, the calculation of CI can be
error-prone, especially when the number of data points is not
uniform across SAC bins (Figures 7D,F). In other words, the
size of SAC bins should be selected in a way that the number
of time steps in each bin becomes constant (Figures 7B,C).
Considering these factors, we support the selection of ω =

50 µs (or some similar value), which was used by the original
study of Joris et al. (2006), provided that the recording time
step is sufficiently small (e.g., 10 µs or less). In our in vivo
recording data, however, the spike times were usually sampled
at a lower rate (48 kHz, corresponding to a 20.8 µs time step)
due to technical restrictions. Hence, the discrepancy between the
theoretical prediction and empirical data (Figure 3C) could be
(at least partly) due to the effect of the SAC bin size. Furthermore,
the number of repeated trials needs to be large enough to have
sufficiently many spike coincidences in each SAC time bin.
Otherwise, the empirical CI value may differ from the theoretical
prediction, which is exemplified by larger error bars for small
ω (Figure 7B). Moreover, for an estimation of CI from VS,
even a small error in VS may result in a large error of CI,
especially for VS > 0.95. This is because the value of VS is
bounded by one, while the value of CI can be infinitely large
(Figure 2F).

Comparisons of multiple measures may reveal hidden
structures of spike trains. As demonstrated in Figures 5B,C,
a comparison of the VS-CI relationship with the theoretical
prediction may help us discover additional spiking patterns that
may not be found with a period histogram or SAC alone. While
CI contains broadband spectral information, VS is a measure
at a specific frequency (Parida et al., 2021). Expanding the
concept of VS is possible by introducing multiple reference
frequencies (van Hemmen and Vollmayr, 2013). For spectrally
rich acoustic stimuli, such as natural sounds, locking to more
than one frequencies may have to be considered (Joris et al.,
2004). Even though the use of natural stimuli is increasing
common in neuroscience, response patterns to simple stimuli
still provide fundamental information about the functionality
of the sensory system (e.g., Rust and Movshon, 2005). It is
not always clear, however, how neuronal responses to simple
stimuli can be related with those to complex stimuli. Future
investigation on the relationship between CI and frequency-
dependent VS under physiologically reasonable mathematical
conditions might be useful to bridge between fundamental
spiking patterns of auditory neurons and responses to broadband
acoustic stimulation.

A number of measures have been developed to quantify the
degree of correlation between spike trains, including SACs and

its variations (reviewed in Cutts and Eglen, 2014). Nevertheless,
quantitative relationships between these measures are not always
clear. Gai and Carney (2008) compared CI, the Victor-Purpura
spike distance metric, and mutual information to quantify time-
locked spiking patterns recorded in the cochlear nucleus. Our
theoretical method used in this study may also be applied to
temporal measures other than VS and CI. Such an analysis would
not only reveal the mathematical relations behind these measures
but also provide practical information on which measure to
use for quantifying temporal information processing in the
nervous system.
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