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Comparison of multichannel 
signal deconvolution algorithms 
in airborne LiDAR bathymetry 
based on wavelet transform
Yue Song1*, Houpu Li1*, Guojun Zhai2, Yan He3, Shaofeng Bian1 & Wei Zhou1,4

Airborne LiDAR bathymetry offers low cost and high mobility, making it an ideal option for shallow-
water measurements. However, due to differences in the measurement environment and the laser 
emission channel, the received waveform is difficult to extract using a single algorithm. The choice of 
a suitable waveform processing method is thus of extreme importance to guarantee the accuracy of 
the bathymetric retrieval. In this study, we use a wavelet-denoising method to denoise the received 
waveform and subsequently test four algorithms for denoised-waveform processing, namely, the 
Richardson–Lucy deconvolution (RLD), blind deconvolution (BD), Wiener filter deconvolution (WFD), 
and constrained least-squares filter deconvolution (RFD). The simulation and measured multichannel 
databases are used to evaluate the algorithms, with focus on improving their performance after 
data-denoising and their capability of extracting water depth. Results show that applying wavelet 
denoising before deconvolution improves the extraction accuracy. The four algorithms perform better 
for the shallow-water orthogonal polarization channel (PMT2) than for the shallow horizontal row 
polarization channel (PMT1). Of the four algorithms, RLD provides the best signal-detection rate, and 
RFD is the most robust; BD has low computational efficiency, and WFD performs poorly in deep water 
(< 25 m).

Airborne LiDAR bathymetry (ALB) is an active remote-sensing technology that plays an important role in 
shallow-water topographic surveys and measurements. It boasts advantages of low operating cost, strong maneu-
verability, and high measurement accuracy, and is thus widely applied to update coastal topographic maps, for 
coastal construction, to monitor shallow waters, and in other  fields1–3. ALB uses a strong penetrating green 
laser (532 nm) to scan waters less than 50 m deep. ALB emits blue and green laser beams and receives signals 
reflected off various targets. The characteristic information is extracted from the difference in signal strength, 
and the technique is applied to measuring water depth and underwater topography, as well as providing low-
quality classifications of the  seabed4–6. A laser beam transmitted over a few hundred meters passes through the 
air and water to the seabed and is reflected back to the receiver. Along this path, a variety of noises perturb the 
signal, including noise internal to the receiver, atmospheric refraction, backscattering from water bodies, and 
diffuse reflection from the seabed. ALB is more complicated than terrestrial LiDAR measurements. Therefore, 
to process full-waveform ALB data, a crucial step is to improve the signal-to-noise ratio (SNR) of the data and 
accurately extract the echo  signal7.

In early airborne laser scanning (ALS) systems, only the transmitted signal and echo position signal were 
accepted; the complete echo signal was not retained to avoid storing redundant data. Pe’Eri proposed the use of 
two waveforms for measurements in shallow waters. Near-infrared laser pulses are strongly reflected at the water 
surface, whereas a green laser beam penetrates the water more easily, after which it is reflected from the  seabed8. 
Wong proposed using low-pass filters to remove noise from the signal and thereby extract the signal reflected 
from the  seabed9,10. However, retaining only the transmitted and echo position signals may reduce target resolu-
tion, ranging accuracy, etc. Simultaneously, copious information about the water body (such as the turbidity) 
cannot be extracted from this measurement. The study of Mallet shows the importance of using full-wave laser 
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data to measure seafloor topography. He proposes that full-wave laser data are more conducive to extracting the 
target position and for research on backscattering from water  bodies3,11. Characterization of full-wave laser data 
is thus important to increase our understanding of the laser beam propagation. At present, processing algorithms 
for full-wave green laser data can be sorted into the following three categories:

• Target-detection method: Depending on the original waveform, the target-detection method extracts the 
reflected laser energy time point by identifying the mutation point of the continuous signal reflection energy. 
Common target-detection methods include peak detection (PD), first-order derivative (FD), and the average 
square function (ASDF)12–14. The algorithm is fast; however, it is susceptible to gross errors and noise. It is 
generally used to extract the initial value and extract the reflection time point after data preprocessing.

• Waveform decomposition method: The waveform decomposition method treats the laser waveform as a 
superposition of multiple mathematical functions and uses a combination of multiple mathematical func-
tions to fit the waveform, thereby restoring the true original signal. Commonly used fitting functions include 
Gaussians, logarithmic normal distribution functions, and quadrilateral  functions15–17. Gaussian functions 
are widely used for fitting; for example, Gaussian fitting based on the nonlinear least-squares  method18, Kai 
Guo based on Gaussian  fitting19, and Gaussian half-wave width to decompose the waveform and extract the 
effective part of the data to suppress noise, which somewhat improves the problem of Gaussian overfitting. 
 Wang14 compared quadrilateral fitting with mean variance fitting; however, the waveform fitting algorithm 
has difficulty in solving the problem of signal overlap, such as the overlap of surface and bottom echoes. The 
backscattering of the water body is an asymmetric waveform, making it difficult to fit the Gaussian function.

• Deconvolution algorithm: The deconvolution algorithm regards the received waveform as the convolution 
of the laser emission pulse and the target cross-section. Commonly used deconvolution algorithms include 
the Wiener filter  deconvolution20, Richardson–Lucy deconvolution (RLD)21, blind deconvolution (BD)14, 
and B-spline  deconvolution22. However, the deconvolution algorithm is more affected by noise, which leads 
to misjudgment of reflected echoes, and the data processing results are easily affected by ringing.

The three types of data processing methods for green lasers show that target detection is relatively simple and 
does not depend on the laser propagation process; however, their accuracy is poor. The waveform decomposition 
method provides an approximate fit to the full-waveform data, and most waveform fitting functions are sym-
metrical functions. The waveform decomposition method does not consider backscattering of the water body, 
which causes unsatisfactory fitting. In contrast, the deconvolution algorithm starts from the laser propagation 
and waveform formation process and uses the inverse transformation of the waveform formation to restore a 
more realistic target cross-section. If noise can be removed, the deconvolution algorithm is an ideal method for 
laser echo processing. At present, the wavelet theory is widely employed in digital signal  processing23.

This study first establishes a water-depth radar model (Wa-LiD) that is close/to reality according to the 
airborne laser propagation and formation process and then applies wavelet denoising to the simulation results 
to find the best denoising parameters. Subsequently, the denoised data are deconvoluted, the advantages and 
disadvantages of various algorithms are compared, and the influence of the parameters on the echo received by 
the laser is analyzed. Finally, the results of applying the algorithm to the simulation and measured data are com-
prehensively evaluated to determine the optimal deconvolution method. This lays the foundation for extracting 
water depth by airborne laser.

Materials and methods
Simulated and acquisition dataset. Simulated dataset. The Wa-LiD model is simulated by applying 
the reflection and refraction of different wavelengths in a complex water environment to form a reflected wave. 
The result of the simulation is close to the actual ALB waveform and can amplify the influence of various factors 
on the waveform, which facilitates the comparison of various parameters in waveform denoising and deconvolu-
tion. During the actual flight measurement, as noise-free waveform data is impossible to obtain, the accuracy 
of the algorithm is often evaluated using statistically relative truth values, and the simulation data can generate 
completely-noise-free simulation truth values, which promotes the accuracy of the algorithm. The evaluation, 
therefore, is particularly important to obtain laser simulation results that are closer to reality. The wavelength 
range of the Wa-LiD  model24 is 300–1500 nm. The laser used by the ALB system produces long-wave 1064 nm 
infrared light and 532 nm blue-green light. Infrared light cannot penetrate the water body and is reflected from 
its surface. Blue-green light penetrates the water body and reflects from the bottom. Therefore, the model uses 
532 nm green light, which has strong penetrability. The echo waveform of the ALB system can be expressed as 
the superposition of multiple echoes:

where ps(t) is reflection from the water surface, pc(t) is reflection from the water column scattering, pb(t) is 
reflection from the bottom, and pN (t) is the ALB system noise. The laser radar emission pulse can be expressed 
by a Gaussian  function20:

where T0 is the full width at half maximum of the transmitted pulse, and tx is the round-trip time required for 
the transmitted pulse to reach the target and return.
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(1) The water-surface reflection model
  After the laser pulse is emitted from the transmitter, it passes through the air and reflects from the water 

surface. The reflected energy received by the ALB detector can be expressed as the convolution of the 
transmitted pulse and the water surface echo energy ps:

where  \otimes indicates the convolution, and ps is

where Pe = E0
T0

 is the laser emission power, E0 is the laser emission energy, T2
atm is the atmospheric double-

pass loss factor, AR is the receiving area of the receiver, ηe is the optical emission efficiency of the laser 
transmitter, ηR is the optical receiving efficiency of the receiver, ilaser is the incident angle of the laser beam 
with respect to the normal of the water surface, H is the sensor height, and LS is the laser the transmission 
loss in traveling to the water surface.

  LS is expressed as

where kd is the diffuse reflection coefficient of the water surface, and ks is the specular reflection coefficient. 
The relationship between kd and ks is

where r is the water surface roughness, αBRDF is the geometric attenuation coefficient of the water surface, 
and Fr is the function that describes the Fresnel reflection of light from each microfacet.

(2) Water reflection model
  The echo reflection signal from depth D received by the ALB system receiver can be expressed as the 

convolution of the transmitted pulse and the instantaneous echo energy at D, which is expressed as

  The instantaneous echo energy at Di can be expressed as

where F is the field-angle loss factor, β(∅) is the volume scattering function. For LiDAR applications, the 
only scattering angle of importance is 180°, which could be made more specific to LiDAR by replacing 
β(∅) with β(π) . nw is the water refractive index, H is the sensor altitude,rlaser is the angle of refraction of 
the laser at the water surface, Di is the depth reached by the laser beam in the water, and k is the diffuse 
attenuation coefficient of the water.

(3) Underwater reflection model
  The echo energy at the bottom Z received by the ALB system receiver can be expressed as the convolution 

of the echo at Z and the transmitted pulse, with the echo energy at Z expressed as

where Rb is the bottom reflectance.
(4) ALB system noise model

The ALB system noise mainly includes the signal level of solar radiation and the internal noise of the instru-
ment. The signal level due to solar radiation is defined as Gaussian white noise with a mean of zero and a standard 
deviation of one convolved by an instant echo; pba can be expressed as

where Is is the intensity of the solar reflection from the water body, and �� is the bandwidth of the optical filter 
of the receiver.

The detector internal noise is defined as a normal distribution with a zero mean and a standard deviation 
σN (t) that varies according to the signal level
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where e is the electron charge (1.6× 10−19C),B is the electrical bandwidth of the detector, is the excess noise 
factor,Id is the dark current, and R� is the responsivity.

We use the above Wa-LiD model to simulate two types of echo waveform data with noise (Fig. 1b) and 
without noise (Fig. 1a).

Acquisition dataset. The measured data are acquired by the airborne laser ALB system (Mapper5000), devel-
oped by the Shanghai Institute of Optics and Fine Mechanics, the Chinese Academy of Sciences on Yuanzhi 
Island. Yuanzhi Island, with an area of approximately 0.3  km2, is a typical coral islet located in the Xisha Archi-
pelago. The Mapper5000 system uses a four-channel high-speed waveform acquisition card for wavelengths of 
1550, 1064, and 532 nm for echo collection. The sampling rate of each channel reaches 1 GSa/s, and the digital 
resolution is 10 bits. It includes three green channels [532  nm, photomultiplier tube (PMT)] and one near-
infrared channel [1064 nm, avalanche photodiode (APD)]. The three green channels are the shallow horizontal 
row polarization channel (PMT1), the shallow-water orthogonal polarization channel (PMT2), and the deep-
water channel (PMT3). We conducted a comparative analysis of the measured data from PMT1 and PMT2 and 
used the seabed echo signal extracted from the PMT3 data and the water-surface reflection signal received by 
the APD as the reference true value of the actual measurement for evaluating the performance of the algorithm 
for data processing.

Methods. In the processing of airborne laser waveform data, suppressing the noise of the waveform data is 
an important step in preprocessing the waveform. The basic idea of the convolution algorithm is to regard the 
received waveform as the convolution of the laser emission pulse w(ts) and the target cross-section C(t) with 
noise. Then, the received waveform can be expressed as

where n(t) is the noise on the received waveform. If the influence of the noise on the received waveform is reduced 
as much as possible before the waveform is deconvolved, the accuracy of the waveform after deconvolution can 
be significantly improved. This is because when n(t) is small enough, the received waveform can be regarded 
simply as a laser emission pulse convolution of w(ts) with the target cross-section C(t) . The waveform after 
deconvolution is closer to the target cross-section, such that the seabed terrain will be more accurately extracted. 
Numerous approaches exist to denoise the waveform, for example, using filters to remove high-frequency noise 
or setting thresholds for the half width and amplitude of the received  waveform25. However, the soft-threshold 
wavelet method produces better denoising of the deconvoluted waveform. Because the wavelet transform is a 
linear transform, the echo signal after orthogonal transform removes the correlation between the original signals 
to the maximum extent. The information from each component signal is retained, which provides a basis for the 
subsequent deconvolution to separate the cross-section.

Workflow. The experiment in this study consists of three steps. In the first step, the simulation results are used 
for the denoising experiment, and the simulation parameters are adjusted to maximize the approximation of 
the real received echo. The three main parameters in wavelet denoising (wavelet base, decomposition level, and 
denoising threshold) are compared and analyzed to obtain the optimal denoising parameters and lay the founda-
tion for the following deconvolution operation.

In the second step, the denoising data undergo four deconvolution operations, and the comparison with the 
direct deconvolution data demonstrates the necessity of denoising experiments. Simulation results are used to 
explore how the parameters affect the deconvolution algorithm. In the third step, the PMI1 and PMI2 channel 
data are used to evaluate the algorithm, where the surface position extracted from the APD data and the bottom 
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Figure 1.  ALB simulation waveform. (a) Noise-free simulation waveform, (b) Simulation waveform with noise. 
E0 = 20mJ , T0 = 5ns , ilaser = 0.3 , T2

atm = 0.9 , AR = 0.025m2 , ηe = 0.9 , ηR = 0.5 , kd = 0.1 , ks = 0.9 , Fr = 0.2 , 
Z = 10 m, β(∅) = 0.0014.



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:16988  | https://doi.org/10.1038/s41598-021-96551-w

www.nature.com/scientificreports/

position extracted from PMI3 are used as the true values of the measured data. Figure 2 shows a flow chart 
describing the experimental process.

Wavelet‑transform denoising algorithm. The wavelet transform is divided into high-and low-frequency coef-
ficients. The high-frequency coefficients reflect the noise and sudden changes in the signal, whereas the low-
frequency coefficients reflect the overall trend and correlation of the  signal26,27. Therefore, the high-frequency 
signal after wavelet transformation is subjected to wavelet threshold processing. The threshold processing func-
tion can be divided into hard and soft-threshold processing methods. The latter can be expressed as

where w is the wavelet decomposition coefficient,� is the threshold, and sign(w) is the sign of w. The soft-thresh-
old processing serves to “shrink” the wavelet coefficients, such that the input and output curves are continuous. 
Numerous researchers found that denoising with the soft-threshold function yields better results than the hard 
threshold  function28; hence, herein we employ the soft-threshold denoising method. The wavelet-denoising 
threshold is mainly divided into four parts:

(1) Unbiased risk-estimation threshold
  The original signal is arranged by taking the absolute value from small to large signals, squaring each, 

and using the square root of element k as the threshold. The risk expression generated by the threshold is

(13)w� =

{

[sign(w)](|w| − � )|w| ≥ �

0|w| < �
,

Figure 2.  Flow chart of experimental process.
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where N is the total number of data, and k is element k. Therefore, the element with the least risk serves as 
the unbiased risk-estimation threshold.

(2) Fixed threshold

(3) Heursure threshold

  When eta < crit, the fixed threshold is used; otherwise, the unbiased risk threshold is employed.
(4) Extreme value threshold

Waveform deconvolution algorithm. 

(1) Wiener filter deconvolution
  WFD assumes that the signal and noise are independent, and the Wiener filter F(t) is used to reduce the 

gap between the actual target cross-section c(t) and the evaluated target cross-section c(t)29. The Wiener 
filter F(t) can be expressed in the frequency domain as

where K is a parameter related to noise, whose value is to be determined through multiple experiments 
before using Wiener filtering. The time-domain estimate of the final cross-section is

(2) Constrained least-square filter deconvolution
  RFD is generally used for image restoration. WFD requires that the power spectrum of the undegraded 

image and noise be known. These two power spectra are usually difficult to estimate, while the RFD requires 
only the variance and mean of the  noise30. These parameters can be calculated from the given received 
waveform, which is the advantage of constrained least-square  filtering31. The core problem of RFD is to 
solve the problem of the sensitivity to noise of the degradation function. “Degenerate function” is a term 
used in image processing. In waveform signal processing, a degenerate function may be understood as the 
convolution of the transmitted signal and the target cross-section. To reduce the sensitivity to noise of the 
convolution, a minimum criterion function C with constraints is established,

where ∇2 is the Laplacian operator, which is used to express the smoothness of the waveform. The con-
straints are

(3) Richardson–Lucy  deconvolution32

  RLD uses an iterative process to deconvolute the signal, which restores the likelihood of the signal by 
using an expectation maximization algorithm in the time domain. Iteration i is expressed as

where ci+1(t) (t) and ci(t) represent iteration i + 1 and i, respectively.

(14)Risk(k) =

[

N− 2k +

k
∑

i=1

f (i)+ (N− k)f (N− k)

]

/N,

(15)� =
√

2ln(N).

(16)crit =

√

1

N

(

ln(N)

ln(2)

)

,

(17)eta = [

N
∑

j=1

∣

∣Sj
∣

∣

2
−N]/n.

(18)� =

{

0.3936+ 0.1829
(

lnN
ln2

)

,N > 32

0,N < 32.

(19)F
(

f
)

=

∣

∣Wt(f )
∣

∣

2

∣

∣Wt(f )
∣

∣

2
+ K

,

(20)p(t) = FFT−1

(

Pr(f )F
(

f
)

Wt(f )

)

.

(21)C =

M−1
∑

0

[∇2w(t)]
2
,

(22)�pr(t)− Dp(t)�2 = �pN (t)�
2.

(23)ci+1(t) = ci(t)

[

wt(t)⊗
wr(t)

ci(t)⊗ wt(t)

]

,



7

Vol.:(0123456789)

Scientific Reports |        (2021) 11:16988  | https://doi.org/10.1038/s41598-021-96551-w

www.nature.com/scientificreports/

(4) Blind deconvolution

BD is similar to RLD, except that the received signal is iterated under the assumption that the point spread 
function is not known, and the point spread function (transmitted signal) and the horizontal cross-sectional 
waveform are estimated at the same time, such that the gap between the original and the estimated cross-sections 
is reduced after multiple  iterations33. Iteration k − 1 yields the cross-section ck−1 ; wtk is obtained by using the 
Richardson–Lucy formula, and ck is obtained from wtk . Repeated iterations give finally c and wt . The iteration 
formula is as follows:

Results
Experimental comparison of wavelet-denoising parameters. The quality of the wavelet-transform 
denoising algorithm depends mainly on the choice of wavelet base, the decomposition level, and the threshold. 
These three parameters are compared and verified by simulation results to provide a good data basis for the 
deconvolution algorithm.

Experiment to compare wavelet basis. Herein, we use four common wavelet bases for experiments, namely, 
Haar, Daubechies, Coiflets, and Symlets wavelets (abbreviated haar, db, coif, and sym wavelets). The choice 
of wavelet base mainly considers orthogonality, tight support, symmetry, vanishing distance, and regularity. 
Orthogonality indicates that the inner product of every pair of wavelet bases is zero, hence all four are orthogo-
nal functions. Supportability means that, if the function can only take a value near zero, the range of values is 
called a “compact support set.” Symmetry refers to whether the wavelet-basis function is symmetric, and vanish-
ing distance ensures that as many wavelet coefficients as possible are zero or as small as possible. The nonzero 
wavelet coefficients help to eliminate noise, and regularity refers to the smoothness of the wavelet-basis function. 
Taking a water depth of 10 m as an example, we compare four wavelet-denoising effects under different SNRs 
(Fig. 3). The SNR is a parameter that reflects the intensity of noise on the signal. It is expressed as

where Ps is the average power of the noise-free signal, and Pv is the average power of the noise.
To compare the denoising effects of the four wavelet bases, this study employs the goodness of fit to reflect 

the degree of similarity between the denoising and the original signal. The goodness of fit can be expressed as:
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Figure 3.  Effect of different wavelet-basis functions on waveform denoising.
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where N is the number of signal samples, f (ti) is the denoising signal, and yi is the original noise-free signal.
Table 1 shows that the Haar wavelet is more symmetric than other wavelet-basis functions and has a smaller 

range of tightly supported sets. However, it is less regular than the other three wavelet bases. In the experiment, 
we used the fourth-order Daubechie wavelet base (db4) and the fourth-order Coiflets wavelet base (coif4). 
Figure 3 shows that, in the case of a low SNR and after Haar wavelet denoising, the waveform is rectangular, 
and other wavelet-basis denoising is relatively smooth. However, judging from the denoising of the four basic 
functions in Fig. 4, all four show better denoising effects when the signal-to-noise ratio is high. With decreas-
ing SNR, the db4 and Haar wavelet bases produce better denoising than the coif and sym4 wavelet bases. For 
the denoising effect of the red waveform data in the fourth row of Fig. 3, the SNR is 2.90 dB, and the data after 
denoising by the db4 and Haar wavelets can still identify clearer reflections from the water surface and from the 
bottom. However, considering that the Haar wavelet is a rectangular wave, and the original waveform data are 
Gaussian-like waveforms, to avoid introducing further errors and to accurately extract the reflection position of 
the bottom echo, herein we employ the db4 wavelet basis to denoise the ALB laser echo.

Selection of wavelet‑denoising threshold and decomposition layer number. This section uses the db4 wavelet-
basis function to evaluate the denoising effect of the four soft thresholds. The data are acquired from a water 
depth of 10 m as an example, and SNR = 16.91 dB.

To clarify the comparison after denoising, Fig. 4 shows the difference between the four denoising methods and 
the original noise-free signal after six-layer wavelet decomposition and denoising. The unbiased risk-estimation 
threshold denoising performs the worst, followed by the extreme threshold denoising; the best denoising is 
provided by heuristic threshold denoising and fixed threshold denoising, which provide equivalent denoising.

The wavelet decomposition level is related to the data capacity and is one of the main parameters that affect 
denoising. Therefore, we obtain the optimal number of denoising decomposition layers of ALB by increasing 

Table 1.  Wavelet-basis function performance.

Wavelet function Haar Daubechies Coiflets Symlets

Abbreviation haar db coif sym

Orthogonality Yes Yes Yes Yes

Compacted support Yes Yes Yes Yes

Symmetry Yes Approximate symmetry Approximate symmetry Approximate symmetry

Order of vanishing moments 1 N 2 N N

Regularity Poor Good Good Good

Figure 4.  Denoising deviation diagram of various thresholds: (a) unbiased risk-estimation threshold denoising, 
(b) fixed threshold denoising, (c) heuristic threshold denoising, (d) extreme value threshold denoising.
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the number of decomposition layers one by one. The denoising accuracy is quantified by the root mean square 
error (RMSE):

where N is the number of signal samples, f (ti) is the denoising signal, and yi is the original noise-free signal.
Figure 5 shows the RMSE for the first to fifteenth order decomposition levels of the four threshold wavelet-

denoising algorithms. These results show that the accuracy of the four soft-threshold wavelet-denoising methods 
has improved rapidly in the first six-order decomposition. Heuristic threshold denoising provides the highest 
accuracy (i.e., lowest RMSE) in the sixth order, which tends to remain stable at higher orders. At levels 7–15, 
the algorithms of other threshold denoising have poorer accuracy than the heuristic threshold accuracy, and 
the accuracy of the three threshold denoising methods that are rigrsure denoising, sqtwolog denoising and 
minimaxi denoising, are reduced after the six-layer decomposition. To summarize, for soft-threshold wavelet 
denoising, heuristic threshold denoising provides the best echo signal denoising, and six decomposition layers 
are optimal for denoising.

Experiment to compare deconvolution algorithms. To explore how the wavelet-denoising algorithm 
affects the deconvolution algorithm, Fig. 7 shows how the deconvolution operation affects the data before and 
after wavelet denoising and compares the effect of data deconvolution.

Figure 6 shows that the data after wavelet denoising yields a better deconvolution. Figure 6a,b,e,f show that 
the waveform of the denoising data becomes smooth after deconvolution, and the reflected echo is retained. 
Because the deconvolution operation can improve the data resolution, it also amplifies the impact of noise on 
the data. In Fig. 6a, significant noise interference appears around the bottom reflection echo. However, wavelet 

(28)RMSE =

√

√

√

√

1

N

N
∑

i=1

(f (ti)− yi)
2,

Figure 5.  RMSE of denoising accuracy as a function of decomposition level to compare accuracies of wavelet 
threshold denoising decomposition levels.

Figure 6.  Comparison of deconvolution algorithms. The first row (a), (b), (c), and (d) show the deconvolution 
effect without wavelet denoising. The second row (e), (f), (g), and (h), is the effect picture of deconvolution 
operation after wavelet denoising.
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denoising removes the interference, thereby improving the strength of the bottom reflection. The effect of wavelet 
denoising is clearer with the WFD and RFD algorithms. Before wavelet denoising, the noise of the WFD and RFD 
algorithm solution results is completely fused with the target reflection signal, and effective information cannot 
be extracted. After wavelet denoising, the noise is suppressed, and the target reflection becomes more evident.

Discussion
Comparative analysis of simulation data. To further analyze how processing affects each deconvolu-
tion algorithm, we add the following algorithm-evaluation indicators to evaluate how processing affects the 
deconvolution algorithm:

(1) Root mean square error of water-depth slope distance
  Because the deconvolution algorithm restores the cross-sectional shape of the target, evaluating the 

accuracy of the water-depth data better reflects the quality of the algorithm. The RMSE of the water-depth 
slope distance is expressed as:

where Z ′

i and Zi are the estimated aquatic slope distance and the true water depth slope distance, respec-
tively, and N is the number of samples.

(2) Correlation coefficient
  We calculate the correlation coefficient (CORR) between the deconvolution result and the true reflected 

echo:

where M ′

i is the waveform processed by the algorithm, and Mi is the reflection from the bottom. The closer 
the correlation coefficient is to unity, the stronger the correlation is between the two.

(3) Water-depth goodness of fit

  The water depth goodness of fit Rz2 describes the degree of fit between the extracted water depth and 
the actual water depth. The fitting improves as Rz2 approaches unity.

(4) The time T required to evaluate the computational efficiency of the algorithm.

Table 2 lists the results of the deconvolution of 100 sets of wavelet denoising and denoising simulation data. 
The RFD algorithm is the most accurate and requires the shortest calculation time. The accuracy of the WFD 
algorithm is relatively poor, but over the course of the experiment, the RFD algorithm must repeatedly adjust the 
convolution parameters to achieve the optimal effect. The RLD algorithm deconvolutes the waveform through 
iteration, which takes a relatively long time. However, unlike the RLD algorithm, the BD algorithm assumes 
that the point spread function is not known; hence it must be estimated before running the BD algorithm. This 
increases the calculation time and reduces the accuracy.

Based on the deconvolution performance of each algorithm, we further explore how changes in the main 
parameters of the laser echo affect the algorithms (see Figs. 7, 8, 9).

Water depth is one of the main factors that affect the accuracy of extraction of the water-depth slope distance. 
If the water is too shallow, the surface reflection overlaps with the bottom reflection, and the water depth cannot 
be extracted. If the water is too deep, the bottom reflection is masked by noise, making it impossible to extract 
an effective reflection signal. This is apparent from the deviation values extracted from the four groups in Fig. 7: 
The extraction of the water-depth slope distance is more accurate for water depths of 3–20 m, after which the 
accuracy begins to decrease. For depths greater than 25 m, the accuracy decreases significantly. Of the four 
deconvolution algorithms, the RFD algorithm is the most stable against water-depth interference, whereas the 
WFD performance is relatively unstable (WFD is most affected for the water depths of 0–5 m).
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√
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Table 2.  Comparison of performance of deconvolution algorithms.

Evaluation parameter RLD BD WFD RFD

RMSE (m) 0.1015 0.4220 0.6059 0.0435

CORR 0.8226 0.8791 0.8262 0.8516

Rz
2 0.9910 0.8837 0.9663 0.9664

T (s) 0.8194 0.9249 0.3681 0.4345
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Figure 8 shows that the BD algorithm performs poorly when considering water-surface roughness. However, 
compared with the influence of the other parameters, the water-surface roughness produces only a small effect 
on the four deconvolution algorithms. This result is attributed to the fact that the rough water surface primar-
ily affects the water-surface reflection, which is the first reflection received by the receiver, and it only transits 
through air, resulting in a strong signal. Consequently, this signal is only slightly affected by water depth. How-
ever, in the process of converting the water-depth slope distance to the actual water depth, the water-surface 
roughness becomes one of the main factors affecting the actual water-depth conversion, because a rougher water 
surface leads to a greater difference between the slope distance and the actual water depth.

Noise is also an important factor affecting water-depth extraction. When the SNR < 20 dB, the extraction 
accuracy of the water-depth slope varies differently for the four deconvolution algorithms (WFD is the least 

Figure 7.  Influence of water depth on accuracy of water-depth extraction: (a) RLD processing, (b) BD 
processing, (c) RFD processing results, and (d) WFD processing results (the graphs show the absolute value of 
the bias).

Figure 8.  Effect of water-surface roughness on accuracy of water-depth extraction. (a) RLD processing, (b) BD 
processing, (c) RFD processing, and (d) WFD processing (graphs show the absolute value of the bias).
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stable, and RLD is the most stable). When SNR > 40 dB, the four algorithms perform well. Performing wavelet 
denoising before convolution thus improves the SNR and the accuracy of water-depth extraction.

Comparing the four deconvolution algorithms shows that RLD and BD are affected similarly by convolu-
tion, and the same is true of WFD and RFD. The RLD and RFD algorithms are more robust, whereas the WFD 
algorithm is not. Although RFD is affected by intermittent pulses, it experiences a slight peak broadening, which 
is conducive to the extraction of peak time intervals. The RFD algorithm is relatively stable.

Comparative analysis of measured data. Before processing, the PMI1 and PMI2 channel data, the 
infrared channel, and the deep-water channel data are preprocessed: The reflection from the water surface is 
extracted from the APD data, and the bottom reflection is extracted from the PMI3 deep-water channel data. 
These data are used as the true values for the measured data. On the one hand, a comparison of the measured 
data explores the performance and difference of the deconvolution algorithm in the positive channel and the 
orthogonal channel. On the other hand, it tests the effectiveness of the algorithm proposed herein, and the 
deconvolution algorithms are compared with the traditional peak detection method (PD), which is to extract 
the peaks directly from the original data, such that the PD algorithm does not need to calculate the two param-
eters of goodness of fit and correlation coefficient. Based on the characteristics of the laser reflection waveform 
and the simulation results, we divide the reflection data into three groups of water-depth slopes: 0–5 , 5–25, 
and > 25 m. Each group of data has 5000 original reflection signals. The experiments were conducted on the 
PMT1 and PMT2 channel data (see Tables 3, 4, 5, 6, 7, 8).

Tables 3 and 4 show the accuracy of shallow-water waveform extraction using the extraction results of the 
four algorithms: The RLD and BD algorithms are more accurate than the WFD and RFD algorithms. Because 
the BD algorithm is a deconvolution operation for which the original function is assumed to be unknown, the 
calculation time is significantly longer than that of the other algorithms, and the accuracy of the BD algorithm 
approaches that of the RLD algorithm, Although the PD algorithm has a shorter running time, its accuracy is 
significantly lower than that of the deconvolution algorithms. The comparison of extracting via PMT1 chan-
nel data versus PMT2 channel data shows that the latter is more accurate than the former, and the accuracy of 
the WFD algorithm applied to PMT2 is significantly improved. A comprehensive analysis shows that the RLD 
algorithm works best with PMT2 channel data for extracting shallow-water depth.

Figure 9.  Influence of SNR on accuracy of water-depth extraction: (a) RLD processing, (b) BD processing, (c) 
RFD processing, and (d) WFD processing (graphs show the absolute value of the bias).

Table 3.  Algorithm extraction compared with measured data (water-depth slope distance is 0–5 m, PMT1).

Evaluation parameter PD RLD BD WFD RFD

RMSE (m) 0.5299 0.1537 0.1545 0.3841 0.1945

Rz
2 – 0.9405 0.9435 0.9924 0.9318

CORR – 0.8279 0.8293 0.0789 0.7246

T (s) 0.1363 14.7515 35.8408 11.4099 14.8150
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Tables 5 and 6 show the extraction accuracy of medium water depth, which is significantly improved com-
pared to the accuracy of the shallow-water experiment. Of the four deconvolution algorithms, the BD algorithm 
is the most accurate, but has the longest calculation time. The accuracies of the RLD and RFD algorithms are 
similar to each other, and the correlation coefficient of RLD is better than that of RFD, but the computational 
efficiency of RFD is better than that of RLD. Both RLD and RFD algorithms perform well for extracting medium 
water depth. The accuracy of the PD algorithm is slightly improved, but the accuracy is still far lower than that of 
the deconvolution algorithms. Comparing the precision of the extraction via PMT1 with that via PMT2 shows 
that PMT2 channel data are more conducive to deconvolution processing, which improves the accuracy of all 
four algorithms.

Table 4.  Algorithm extraction compared with measured data (water-depth slope distance is 0–5 m, PMT2).

Evaluation parameter PD RLD BD WFD RFD

RMSE (m) 0.5462 0.1537 0.1545 0.2089 0.1945

Rz
2 – 0.9405 0.9435 0.9143 0.9318

CORR – 0.8279 0.8293 0.9079 0.7246

T (s) 0.1155 14.7713 35.4752 14.6952 14.7664

Table 5.  Algorithm extraction compared with measured data (water-depth slope distance is 5–25 m, PMT1).

Evaluation parameter PD RLD BD WFD RFD

RMSE (m) 0.4445 0.0293 0.0289 0.2437 0.0420

Rz
2 – 0.9975 0.9985 0.7806 0.9786

CORR – 0.9225 0.9237 0.0698 0.3206

T (s) 0.1016 16.1511 48.9224 12.7001 15.1381

Table 6.  Algorithm extraction compared with measured data (water-depth slope distance is 5–25 m, PMT2).

Evaluation parameter PD RLD BD WFD RFD

RMSE (m) 0.4923 0.0279 0.0279 0.2315 0.0282

Rz
2 – 0.9968 0.9970 0.8258 0.9999

CORR – 0.9150 0.9151 0.0805 0.8057

T (s) 0.1028 17.6797 48.4024 12.3284 16.7678

Table 7.  Algorithm extraction compared with measured data (WFD did not detect weak bottom reflection; 
water-depth slope distance is > 25 m, PMT1).

Evaluation parameter PD RLD BD WFD RFD

RMSE (m) 1.3606 0.2547 0.2561 – 0.4530

Rz
2 – 0.7326 0.7345 – 0.8244

CORR – 0.9221 0.9229 – 0.7904

T (s) 0.1381 19.1912 50.5954 – 17.0388

Table 8.  Algorithm extraction compared with measured data (WFD did not detect weak bottom reflection; 
water-depth slope distance is > 25 m, PMT2).

Evaluation parameter PD RLD BD WFD RFD

RMSE (m) 1.5700 0.2624 0.2666 – 0.3935

Rz
2 – 0.6678 0.6672 – 0.8880

CORR – 0.8960 0.8957 – 0.7598

T (s) 0.1111 18.6591 50.5167 – 17.1501
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Tables 7 and 8 do not evaluate the extraction parameters of the WFD algorithm, because the bottom reflec-
tion is weak. After deconvolution, numerous waveforms involve no reflection from the bottom, such that the 
algorithm’s performance in deep waters is unavailable. In deep waters, the RLD algorithm provides the most 
accurate deconvolution extraction, although the accuracy of the BD algorithm approaches that of the RLD 
algorithm; however, the accuracy of the PD algorithm decreases most rapidly. For water depth > 25 m, the RLD 
and BD algorithms provide better results with PMT1 data, whereas the RFD algorithm provides better results 
with PMT2 data.

These results are apparent upon comparing the three groups of extraction parameters. The slope distance is 
most accurate for the extracted water depth of 5–25 m. The extraction accuracy decreases for a water-depth slope 
distance less than 5 m or greater than 25 m. The measured data are consistent with the simulated results, which 
truly reflect how the parameters affect the algorithm. Although the PD algorithm has a shorter operation time, 
its accuracy is exacerbated compared to that of the deconvolution algorithms, and it is considerably affected by 
the water depth. The deconvolution algorithm based on wavelet denoising is more conducive to the water-depth 
extraction of the ALB system.

Among the four deconvolution algorithms, although the WFD algorithm provides poor extraction accuracy 
for water depths greater than 25 m, the other three algorithms all show provide good accuracy and robustness. 
The BD algorithm requires a long computation time, making it rather inefficient. The RLD algorithm processes 
PMT1 (PMT2) data for water depths less than (greater than) 25 m. However, because the RLD algorithm is itera-
tive, the RFD algorithm is more efficient. Further, the RFD algorithm applied to the PMT2 data leads to more 
accurate results than when applied to the PMT1 data, such that either the RLD or the RFD algorithm must be 
used, depending on the actual situation.

Conclusion
This study compares the simulated results with measured data for wavelet transforms, soft-threshold selection, 
and deconvolution. The main conclusions may be summarized as follows:

(1) For selecting wavelet bases, both the db4 wavelet and Haar wavelet bases offer good noise suppression. 
The Haar wavelets form a rectangular wave, and that the laser emission waveform is Gaussian. To avoid 
introducing more errors and to accurately extract the position of the bottom reflection, the db4 wavelet 
base must be used to denoise the ALB laser echo.

(2) To select a soft threshold, the heuristic threshold denoising method is equivalent to the fixed threshold 
denoising method, and both are better than the extreme threshold denoising method. Based on layer-by-
layer decomposition, the heuristic threshold is best for echo signal denoising, and six decomposition layers 
are optimal for denoising.

(3) A comparative analysis of data deconvolution before and after wavelet denoising shows that, after wavelet 
denoising, the WFD and RFD algorithms perform significantly better for extracting reflections from the 
target, and the performance of RLD and BD algorithms likewise improves after wavelet denoising. The 
deconvolution experiment with the SNR model shows that a high SNR guarantees effective deconvolution. 
Therefore, performing a wavelet transform before the deconvolution experiment improves the deconvolu-
tion, which is particularly helpful for the RFD algorithm.

(4) The echo parameter has a varying effect on the algorithm: The RLD and RFD algorithms are more robust 
against such variations, whereas the WFD algorithm is less robust. Although RFD produces intermittent 
pulses, it has only small peak broadening, which facilitates the extraction of peak time intervals. Further-
more, the algorithm is stable.

(5) For multichannel data in actual experiments, both the RLD and the RFD algorithms are effective and robust. 
Although the accuracy of the BD algorithm is similar to that of the RLD algorithm (or even superior to a 
certain extent), it requires a longer calculation time and thus has low computational efficiency, making it 
unsuitable for large-scale data calculation. The RFD algorithm is more suited for PMT2 data than for PMT1 
data. Compared with the RLD algorithm, RFD avoids the iterative process, and the solution accuracy is 
similar to that of RLD. Thus, RFD provides a new opportunities for ALB deconvolution algorithms.
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