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Objective: To examine the response of a calorie-restricted Dietary Approaches to Stop

Hypertension diet on indicators of cardiometabolic health in a cohort of sedentary obese

older adults.

Design: This was a controlled-feeding trial with a parallel design. Each participant

consumed either 3 oz (85 g; n = 15) or 6 oz (170.1 g; n = 13) of lean fresh beef within a

standardized calorie-restricted DASH-like diet for 12-weeks. Fasted blood samples were

collected and used to measure conventional biomarkers of cardiovascular, metabolic and

inflammatory health.

Participants: Caucasian older (70.8 years), obese (BMI: 32 ± 6.9 kg/m2; WC: 101 ±

16.4 cm) females (n = 17) and males (n = 11) from the rural community of Brookings,

South Dakota.

Results: 28 participants completed the 12-week feeding trial, with no differences

(p > 0.05) among the biomarkers of cardiometabolic health between the 3 and 6 oz beef

intake groups. However, when the beef intake groups were combined, all biomarkers

changed concentration in response to the intervention diet. Total cholesterol (p < 0.001),

LDL-C (p = 0.004), HDL-C (p < 0.0001), insulin (p = 0.014), glucose (p = 0.008),

HOMA-IR (p < 0.05), IL-12 (p < 0.001), and CRP (p = 0.006) all decreased in response

to the study diet. IGF-1 (p < 0.001) and IL-8 (p = 0.005) increased in response to

the intervention. Correlations among cardiometabolic biomarkers and body composition

measures were observed. By study end, the decrease in insulin (R2
= 0.22; P = 0.012)

and HOMA-IR (R2
= 0.22; P = 0.01) was positively correlated with the decrease in waist

circumference. The increase in IGF-1 was significantly correlated with the decrease in

waist circumference (R2
= 0.21; p = 0.014). The increase in IGF-1 was significantly

correlated with the increase in sit-to-stand (R2
= 0.21; p = 0.016). The increase in IL-8

was significantly correlated with decreases in total cholesterol (R2
= 0.24; P = 0.008),

LDL-C (R2
= 0.17; P = 0.031) and glucose (R2

= 0.44; P = 0.0001).

Conclusions: These findings suggest that a DASH-like diet with restricted calories

may potentially improve biomarkers of cardiometabolic health in sedentary obese older

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://doi.org/10.3389/fnut.2021.647847
http://crossmark.crossref.org/dialog/?doi=10.3389/fnut.2021.647847&domain=pdf&date_stamp=2021-03-19
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles
https://creativecommons.org/licenses/by/4.0/
mailto:cydperry@iu.edu
https://doi.org/10.3389/fnut.2021.647847
https://www.frontiersin.org/articles/10.3389/fnut.2021.647847/full


Perry et al. Cardiometabolic Changes With a DASH Calorie-Restricted Diet

adults. These results also point to interrelationships between body composition changes

and changes in cardiometabolic biomarkers. Lastly, regardless of meat intake amount,

positive impacts on cardiometabolic biomarkers were observed in this cohort of older

adults with an obese phenotype.

Keywords: older adults, calorie restriction, DASH diet, obesity, cardiometabolic health

INTRODUCTION

Cardiometabolic disease is an umbrella term that describes a
cluster of modifiable risk factors (i.e., hypertension, abdominal
adiposity, dyslipidemia, and increased fasting glucose and
triglycerides) that increase a person’s risk for developing
cardiovascular disease, type-2 diabetes, and metabolic syndrome
(1, 2). The older adult population is particularly vulnerable to
cardiometabolic disease as they are more likely to experience
co-existing risk factors (3). Currently, 41% of adults aged 65
years and older in the United States are obese and 80% have
at least one chronic disorder related to cardiometabolic disease
(4, 5). Furthermore, the older adult population is projected
to increase to 98 million by the year 2060 (6). With 47
million Americans experiencing cardiometabolic disorders (7)
and the health risks associated with the growing older adult
population, it is important to begin implementing targeted
intervention strategies that decrease risk factors associated
with cardiometabolic disease that will in turn result in the
reduction of cardiovascular disease and type-2 diabetes in
older adults.

Diet quality is an influential factor in the development
of cardiometabolic disease (8, 9) and dietary patterns are
vital to the quality of life and survival in older adults
(10). Unhealthy diet is one of the leading risk factors for
cardiometabolic disease in the United States (11) and accounts
for at least 45% of all cardiometabolic deaths (12, 13). With
the current diet-related cardiometabolic disease health costs
estimated to be $50.4 billion and individual costs being
highest among men >65 years (14), effective diet therapies
need to be implemented to address this health issue in
older adults that in turn reduce the economic burden that
ensues. In a 12-week controlled-feeding study examining body
composition and muscle strength changes in response to a
DASH-like diet in obese older adults, we observed improvements
characterized by reductions in body fat, waist circumference,
and blood pressure (15). Additionally, handgrip strength was
well-maintained with an increase in strength-to-weight ratio
(15). Extending the scope of these findings and given the
role that abdominal adiposity and blood pressure play on
cardiometabolic health, our objectives for this study were
two-fold: (i) to evaluate changes in blood biomarkers of
cardiovascular, metabolic, and inflammatory health in response
to a calorie-restricted DASH study diet in obese adults 65 years
and older; and (ii) to assess associations between cardiometabolic
biomarkers and body composition measures in this cohort of
older adults.

MATERIALS AND METHODS

Study Participants
Participant characteristics, recruitment and study diet were
previously reported (15). Briefly, sedentary adults aged 65-years
and older were recruited from Brookings, South Dakota from
June 2017 to August 2018 (15). Interested volunteers completed a
questionnaire that included date of birth, medication use, vitamin
and mineral use, and drug and alcohol use prior to the start of
the study. Participation on this study depended on the following:
(1) age; (2) upward mobile ability; (3) eating one meal per day
at the on-site location; (4) not consuming foods and beverages
outside of those provided by research personnel; and (5) provide
blood samples at 5 timepoints throughout the intervention. A
full characterization of body composition measurements and
outcomes has been previously published (15). The study was
conducted in accordance with the Declaration of Helsinki.
The protocol was reviewed and approved by the Institutional
Review Board for Human Study Participant Use at South Dakota
State University (Approval #: IRB-1712006-EXP) and informed
consent was obtained from all participants before entry into the
study (ClinicalTrials.gov Identifier: NCT04127240).

Study Design and Diet Intervention
This was a human controlled-feeding trial with a parallel design
in which females (n = 17) and males (n = 11) aged 65-
years and older were assigned to consume either 3 oz (85 g;
n = 15) or 6 oz (170.1 g; n = 13) of lean fresh beef per
day within a standardized DASH-like diet as they entered the
study. As previously described, the study diet was created using
Nutritionist Pro software and based on the DASH eating plan
by the National Heart, Lung and Blood Institute, National
Institutes of Health (16) and the 2015–2020 Dietary Guidelines
for Americans for daily caloric intake for older sedentary adults
(17). All participants consumed the same standardized DASH-
like diet with the exception of the meat intake amounts. The
3 or 6 oz amounts were equally provided among the three
major meals: breakfast (1 or 2 oz), lunch (1 or 2 oz), and
dinner (1 or 2 oz) for a total of 3 or 6 oz for the entire day.
All foods were purchased by research personnel from the local
grocery store. All food items were weighed out to the nearest
gram and prepared at the South Dakota State University food’s
laboratory. All participants were required to eat at least one
meal per day in the food’s laboratory Monday through Friday; all
other meals, snacks, and beverages were provided as takeaways.
The caloric intake for this study was based upon the 2015–
2020 Dietary Guidelines for Americans for daily caloric intake for
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sedentary adults aged 61 years and older (17). The participants
that were assigned 3 oz of beef consumed 1,700 calories per day.
The 6 oz beef intake group consumed 1,900 calories per day.
With beef intake groups combined the participants consumed
on average 1,800 calories per day. As previously described, the
composition of the study diet included the following estimated
(based upon Nutritionist Pro software) daily servings: 7 servings
of grains (all whole grains); 5 servings of vegetables; 4 servings
of fruits; 3 servings of dairy (low-fat); 4.5 servings of lean meat
(average of 3 and 6 oz intakes); 4 servings/week of legumes; 0
servings of sweets. These serving sizes were within the DASH
eating plan by the National Heart, Lung and Blood Institute,
National Institutes of Health (15, 16). Additionally, as an average
of the two meat intake groups, the study diet provided an
estimated 1,895 mg/d of sodium, 585mg magnesium, 4,395mg
potassium, and 1,187mg calcium, 59% carbohydrates, 21% fat,
20% protein, and 8% saturated fat (15). Since all participants
consumed a daily multivitamin/multimineral supplement an
additional 50mg magnesium, 80mg potassium, and 220mg
calcium was provided.

Since participants were required to eat one meal in the
food’s laboratory Monday–Friday, investigators had consistent
interactions with study participants throughout the study period,
which enhanced the compliance to the dietary regimen. In
addition, participants verified consumption of each food item
by completing a daily checklist provided by the investigators. A
multivitamin/multimineral supplement for seniors was provided
daily to ensure adequate micronutrient intake.

Blood Sample Collection and Analytical
Measurements
Fasting blood samples were collected in two 10-mL serum
separator clot activator tubes (SST Vacutainer; Pulmolab) and
two EDTA-coated tubes (Pulmolab) by a trained phlebotomist.
The two 10-mL EDTA-coated tubes were put on ice immediately
after blood collection and centrifuged within 90min at 1,055
× g for 15min at 4◦C. The SST tubes were kept at room
temperature, allowed to clot, and centrifuged at 650 × g for
15min at room temperature. All of the samples were aliquoted
into 1.8-mL cryostat vials (CryoTube; NUNC) and stored
at−80◦C.

Quantification of total cholesterol, LDL-cholesterol (LDL-C),
HDL-cholesterol (HDL-C), insulin, glucose, insulin-like growth
factor 1 (IGF-1), and C-reactive protein (CRP) were performed
by the Human Nutritional Chemistry Service Laboratory at
Cornell University (Ithaca, NY). The Dimension Xpand plus
integrated chemistry automated analyzer (Siemens Healthineers)
was used to measure total cholesterol (intra- and interassay CV
1.9 and 8.2%, respectively), LDL-C (intra- and interassay CV 1.3
and 1.0%, respectively), HDL-C (intra- and interassay CV 1.4 and
2.6%, respectively) and glucose (intra- and interassay CV 0.8 and
1.3%, respectively). The Immulite 2000 automated immunoassay
system (Siemens Healthineers) was used to measure CRP (intra-
and interassay CV 4.5 and 4.1%, respectively), IGF-1 (intra- and
interassay CV 4.2 and 7.0%, respectively) and insulin (intra- and
interassay CV 5.5 and 3.4%, respectively).

Meso Scale Discovery (Meso Scale Diagnostics, LLC, USA)
measured interleukin-8 (intra- and interassay CV 4.7 and
4.4%, respectively) and interleukin-12 (intra- and interassay CV
5.8 and 6.8%, respectively) using the V-plex proinflammatory
panel 1 human kit on the Meso QuickPlex SQ 120 with
electrochemiluminescence detection.

The homeostatic model assessment of insulin resistance
(HOMA-IR) was used to quantify insulin sensitivity using the
following formula: fasting plasma glucose (mmol/l) times fasting
serum insulin (µIU/mL) divided by 22.5.

Body Composition and Muscle Strength
Measurements
Body composition and muscle measurements were previously
detailed and reported (15). Briefly, body mass index was
calculated as total body weight in kilograms divided by height
in meters squared. A Gulick tape was used to measure abdominal
waist circumference. The measurement was taken at the smallest
part of the abdomen, above the umbilicus and below the xiphoid
process to the nearest 0.1 cm at the end of normal expiration
using standard procedures. Total body weight and percent body
fat were measured by bioelectrical impedance (InBody 270,
InBody USA, Cerritos, California). Handgrip strength (kg) was
quantified by the maximum grip force of the right and left hand
using a hand-held dynamometer (Smedley III analog). Right and
left grip strength data were summed to provide a composite score.
Grip strength relative to total body weight was calculated by
dividing grip force by the body mass (kg) of the participant at
each time point.

Statistical Analysis
Differences in baseline characteristics between males and females
and for beef intake groups were determined by Independent
Samples T-test. Differences in cardiometabolic and body
composition characteristics between beef intake groups at week
12 was determined by Independent Samples T-test. Linear mixed
models with a random intercept for each participant and Time
(weeks 0, 3, 6, 9, and 12) as the fixed effect was used to
determine changes in the primary outcome variables across the
intervention. An unstructured covariance matrix was assumed.
The primary outcome of interest was the difference between
baseline and week 12. When indicated by a significant Time
effect, pairwise differences at specific time points were identified
using the Bonferroni adjustment for multiple comparisons. To
adjust for the influence of changes in body weight across
the intervention on cardiometabolic variables, we repeated the
analyses of the time effect by including body weight as a covariate
in linear mixed model. To check the robustness of the primary
outcomes, we performed sensitivity analyses with the exclusion
of the three normal weight BMI participants. In addition to
pooling data for males and females, data are displayed separately
by sex. Relations between variables of interest were determined
by Pearson’s correlation coefficient. Stepwise multiple regression
analysis was performed to identify the independent determinants
of the change from baseline in wait circumference, IGF-1 levels,
and IL-8 levels. In each multiple regression model, variables
with a related probability of >0.10 were removed. Statistical
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significance was set at p < 0.05. Data are presented as means
(SD) and analyzed with SPSS version 24 (IBM Inc., Armonk,
NY, USA).

RESULTS

Baseline (Week 0) Characteristics of Study
Participants
Twenty-eight participants aged 70.8 years (range = 65–84
years) completed the 12-week controlled-feeding study and
were included in the final analysis. Baseline characteristics of
cardiometabolic and body composition measures separated by
beef intake amounts are presented in Table 1. There were no
statistically significant differences (p > 0.05) detected between
the 3 oz (85 g) and 6 oz (170.1 g) meat intake groups at baseline
for age, cardiometabolic biomarkers or body composition
measures. Baseline characteristics of cardiometabolic biomarkers
separated by sex are presented in Table 2. At baseline, females
had statistically higher total cholesterol (p = 0.02) and HDL-
C (p < 0.0001) compared to males. No statistical differences
(p > 0.05) were detected for LDL-C, insulin, glucose, HOMA-
IR, IGF-1, IL-8, IL-12, and CRP between females and males.
Baseline body composition characteristics separated by sex has
been previously reported (15). Briefly, at baseline males had
greater (p< 0.05) body fat, waist circumference and grip strength
compared to females.

Prior to entry into the study, participants provided
information regarding medication use. Self-reported medication
use is shown in Supplementary Table 1.

Cardiometabolic and Body Composition
Changes in Response to the Study Diet
Effects of meat intake on cardiometabolic and body composition
outcomes at week 12, are presented in Table 3. By week
12 of the intervention there were no statistically significant
differences (p > 0.05) between the 3 oz (85 g) and 6 oz
(170.1 g) meat intake groups on cardiometabolic outcomes or
body composition measures.

Cardiometabolic changes in response to the intervention diet
with both meat intake groups combined are shown in Table 4.
Throughout the 12-week intervention period, significant changes
in response to the study diet across the intervention period were
detected. Significant decreases were observed in all participants
within the 12-week intervention period for total cholesterol
(p < 0.001); LDL-C (p = 0.004); HDL-C (p < 0.001); insulin
(p = 0.014); glucose (p = 0.008); HOMA-IR (p < 0.05); IL-
12 (p < 0.001) and CRP (p = 0.006). Significant increases in
response the study diet was detected for IGF-1 (p < 0.001);
and IL-8 (p = 0.005). For all the biomarkers listed in Table 4,
observed power for the effect of diet across time was high.
Power for the favorable changes across time for total cholesterol,
LDL-C, HOMA-IR, IL-12, IGF-1, IL-8, and CRP were >90%.
Observed power for glucose was 80 and 75% for insulin. After
performing sensitivity analyses with the exclusion of the 3 normal
weight BMI participants, it can be concluded that the statistically
significant decreases for total cholesterol (p < 0.001); LDL-C

TABLE 1 | Baseline characteristics of study participants separated by meat intake

group.

Variables 3 oz meat

intake group

(n = 15)

6 oz meat

intake group

(n = 13)

p-value

Age (years) 70.6 (5.9) 71.1 (6.0) 0.8341

Female 8 9 –

Male 7 4 –

Cardiometabolic markers

Total cholesterol (mg/dL) 189.5 (37.3) 171.0 (37.9) 0.2053

LDL-C (mg/dL) 109.4 (29.4) 98.7 (28.2) 0.3364

HDL-C (mg/dL) 53.4 (14.7) 55.0 (19.7) 0.8058

Insulin (µIU/mL) 13.7 (7.0) 13.9 (9.8) 0.9622

Glucose (mg/dL) 105.8 (20.9) 110.2 (26.4) 0.6277

HOMA-IR 3.70 (2.14) 4.24 (4.29) 0.6684

IGF-1 (ng/mL) 96.1 (22.9) 93.3 (17.9) 0.7221

IL8 (pg/mL) 6.20 (2.52) 6.35 (3.18) 0.8887

IL12 (pg/mL) 0.99 (1.12) 0.79 (0.71) 0.7624

CRP (mg/L) 2.69 (2.46) 4.26 (5.36) 0.3173

Body composition

Total body weight (kg) 92.7 (16.8) 87.1 (18.2) 0.4417

Body mass index 32.1 (6.1) 30.4 (6.5) 0.4883

Waist circumference (cm) 100.2 (13.7) 96.0 (14.8) 0.4147

Body fat (%) 36.2 (10.1) 36.2 (10.7) 0.9860

Handgrip strength (kg) 68.4 (22.1) 59.0 (15.2) 0.2032

Sit-to-stand (reps) 11.9 (1.8) 10.5 (2.0) 0.0640

Data are presented as means and standard deviations with the exception of the number

of females and males. Independent samples T-test was performed to determine group

differences in the baseline characteristics by meat intake group.

TABLE 2 | Baseline cardiometabolic characteristics separated by sex.

Variables Females

(n = 17)

Males

(n = 11)

p-value

Total cholesterol (mg/dL) 194.3 (36.1) 160.1 (32.3) 0.02

LDL-C (mg/dL) 108.3 (31.4) 98.5 (24.9) 0.39

HDL-C (mg/dL) 62.6 (16.2) 41.2 (6.8) <0.0001

Insulin (µIU/mL) 13.3 (9.4) 15.2 (6.4) 0.57

Glucose (mg/dL) 104.7 (23.3) 112.7 (24.0) 0.39

HOMA-IR 3.9 (3.9) 4.3 (2.1) 0.78

IGF-1 (ng/mL) 91.2 (24.0) 100.4 (12.2) 0.25

IL8 (pg/mL) 6.4 (3.4) 6.0 (1.5) 0.73

IL12 (pg/mL) 0.86 (0.6) 1.0 (1.3) 0.71

CRP (mg/L) 3.4 (2.5) 1.8 (1.2) 0.09

Baseline body composition characteristics separated by sex has been previously reported

(15). Data are presented as means and standard deviations. Independent samples T-test

was performed to determine group differences in the baseline characteristics between

females andmales. The bold values indicate the biomarkers that are statistically significant.

(p = 0.001); HDL-C (p < 0.003); insulin (p = 0.02); glucose
(p= 0.0037); HOMA-IR (p< 0.0111); IL-12 (p< 0.002) and CRP
(p = 0.02) remained. Sensitively analyses also revealed that the
significant increases in IGF-1 (p < 0.001) and IL-8 (p = 0.007)
remained after excluding the normal weight BMI participants.
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TABLE 3 | Cardiometabolic and body composition characteristics of obese older adults at week 12.

Variables 3 oz meat

intake group

(n = 15)

Percent change

from baseline

6 oz meat

intake group

(n = 13)

Percent change

from baseline

p-value

Cardiometabolic markers

Total cholesterol (mg/dL) 176.5 (30.9) −6.9 (17.2) 164.9 (42.6) −3.6 (12.4) 0.4203

LDL-C (mg/dL) 104.7 (31.7) −4.3 (7.8) 94.6 (27.6) −4.2 (2.1) 0.3796

HDL-C (mg/dL) 49.5 (10.5) −7.3 (28.6) 49.7 (17.0) −9.6 (13.7) 0.9757

Insulin (µIU/mL) 10.2 (6.2) −25.5 (11.4) 11.5 (7.1) −17.3 (27.6) 0.5994

Glucose (mg/dL) 96.2 (19.2) −9.1 (8.1) 100.4 (27.5) −8.9 (4.2) 0.6364

HOMA-IR 2.43 (1.64) −34.3 (23.4) 3.25 (3.24) −23.3 (24.5) 0.3961

IGF-1 (ng/mL) 104.1 (21.0) 8.3 (8.3) 100.2 (17.1) 7.4 (4.5) 0.5913

IL-8 (pg/mL) 7.30(4.00) 17.7 (58.7) 7.00 (3.42) 10.2 (7.5) 0.8318

IL-12 (pg/mL) 0.82 (0.98) −17.2 (12.5) 0.80 (0.65) 1.3 (8.5) 0.9502

CRP (mg/L) 2.76 (2.60) 2.6 (5.7) 3.11 (5.03) −27.0 (6.2) 0.8159

Anthropometric measures

Total body weight (kg) 86.7 (14.4) −6.5 (14.3) 82.1 (17.0) −5.7 (6.6) 0.4495

Body mass index (kg/m2 ) 30.1 (5.8) −6.2 (4.9) 28.6 (6.0) −5.9 (7.7) 0.5194

Waist circumference (cm) 96.4 (12.3) −3.8 (10.2) 92.0 (14.0) −4.2 (5.4) 0.3815

Body fat (%) 33.4 (11.3) −7.7 (11.9) 35.0 (9.7) −3.3 (9.3) 0.7026

Handgrip strength (kg) 68.7 (19.7) 0.4 (10.9) 62.1 (15.1) 5.3 (0.7) 0.3356

Sit-to-stand (reps) 13.9 (2.7) 16.8 (50.0) 13.9 (2.6) 32.4 (30.0) 0.9920

Data are presented as means and standard deviations. Independent samples T-test on absolute data was performed to determine group differences in the cardiometabolic and body

composition characteristics by meat intake group.

TABLE 4 | Cardiometabolic biomarker changes in obese older adults consuming the DASH diet for 12-weeks.

Weeks of intervention

Variables 0 3 6 9 12 p-value

Total cholesterol (mg/dL) 180.9 (38.1) 163.5 (30.7) 164.4 (30.9) 164.2 (34.3) 171.4 (36.3)* <0.001

LDL-C (mg/dL) 104.5 (28.9) 95.7 (25.6) 95.6 (25.6) 96.3 (27.7)* 100.0 (29.8) 0.004

HDL-C (mg/dL) 54.2 (16.9) 50.1 (13.8) 49.8 (14.0) 48.0 (13.6) 49.6 (13.6)* <0.001

Insulin (µIU/mL) 14.1 (8.2) 12.4 (8.3) 12.2 (7.7) 10.6 (6.5) 11.3 (6.5)* 0.014

Glucose (mg/dL) 108.5 (23.4) 102.4 (14.9) 100.9 (18.6) 98.1 (17.8) 101.3 (20.8)* 0.008

HOMA-IR 4.0 (3.3) 3.3 (2.3) 3.3 (2.7) 2.7 (2.2) 3.0 (2.5)* <0.05

IGF-1 (ng/mL) 94.8 (20.4) 103.6 (22.9) 104.7 (21.9) 106.6 (22.1) 102.1 (19.3)* <0.001

IL8 (pg/mL) 6.3 (2.8) 6.7 (4.3) 5.9 (3.2) 9.8 (5.5)* 8.1 (4.9) 0.005

IL12 (pg/mL) 0.79 (0.6) 0.65 (0.5)* 0.70 (0.5) 0.56 (0.4)* 0.69 (0.5) <0.001

CRP (mg/L) 2.8 (2.2) 1.9 (1.8)* 2.3 (2.0) 2.5 (2.5) 2.3 (2.1)* 0.006

Body composition changes in response to the study diet was previously reported (15). Data are presented as means and standard deviations, Linear mixed models with a random

intercept for each participant and Time (weeks 0, 3, 6, 9, and 12) as the fixed effect was used to determine changes in the primary outcome variables across the intervention. *p < 0.05

vs. baseline.

As previously reported, total body weight decreased by 6.3%
in all participants by week 12 in response to the intervention
diet (15). When adjusting for changes in total body weight, the
significant decreases in total cholesterol (adjusted p < 0.001),
LDL-C (adjusted p = 0.002), glucose (adjusted p = 0.049) and
HOMA-IR (adjusted p = 0.045) remained. Changes in body
composition measures in response to the intervention diet has
been previously reported (15).

By week 12, in all participants, total cholesterol decreased
by 4.9% (p < 0.001); HDL-C decreased by 8.5% (p < 0.001);

insulin decreased by 13.1% (p = 0.014); glucose decreased by
8.4% (p= 0.008); HOMA-IR decreased by 25% (p < 0.05); IGF-1
increased 10% (p < 0.001); IL-8 increased by 39% (p = 0.005);
and CRP decreased by 18% (p = 0.006). By week 9, in all
participants, LDL-C decreased by 4% (p = 0.004) and IL-12
decreased by 12.7% (p < 0.001).

At baseline, 46% (8 females; 5 males) of the participants
entered the study with features of metabolic abnormalities
identified by large waist circumference (males: >40 inches;
females >35 inches), low HDL-C (males: <40 mg/dL; females
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<50 mg/dL), high blood pressure (>130/85 mmHg), and high
fasting glucose (>100 mg/dL). As a result of the intervention,
by week 12, 17.8% of the participants displayed the above
characteristics, representing a significant reduction (p= 0.008 for
McNemar Chi-square test).

All participants that self-reported medication use at baseline
remained on their medications throughout the intervention
period except for onemale participant whose physician had taken
him off of his statin medication.

Correlations Between Cardiometabolic
Biomarkers and Body Composition
Measures
Correlations between insulin sensitivity markers and waist
circumference are presented in Figure 1. As previously reported,
waist circumference decreased by 3.7% in response to the study
diet (15). This change in waist circumference was associated
with decreases in insulin (R2 = 0.22; p = 0.012; Figure 1A)
and HOMA-IR (R2 = 0.22; p = 0.01; Figure 1B). Additionally,
there was an inverse relationship between waist circumference
and grip strength, such that the decrease in waist circumference
was associated with the increase in grip strength (R2 = 0.28;
p= 0.004; Figure 1C). Age, and the percent change from baseline
in insulin, HOMA, total cholesterol, HDL-cholesterol, LDL-
cholesterol, glucose, body weight, percent body fat, BMI, IGF-
1, IL-8, IL-12, CRP, grip strength, and 30-s sit-to-stand were
included in the multiple regression model to predict the change
in waist circumference. The prediction model was statistically
significant (F = 13.441; p < 0.001) and accounted for 50% of
the variance of the decrease in waist circumference (Adjusted
R2 = 0.499). Percent reduction in body weight (β = 0.481;
p= 0.004) and the percent increase in grip strength (β =−0.405;
p = 0.014) were the only independent predictors of the decrease
in waist circumference. All other variables were excluded.

Associations between IGF-1 and body composition measures
are shown in Figure 2. An inverse relationship between IGF-1
and waist circumference was observed, such that the increase in
IGF-1 was associated with the decrease in waist circumference
(R2 = 0.21; p = 0.014; Figure 2A). The increase in IGF-1 was
associated with the increase in the sit-to-stand test (R2 = 0.21;
p= 0.016; Figure 2B). Age, and the percent change from baseline
in insulin, HOMA, total cholesterol, HDL-cholesterol, LDL-
cholesterol, glucose, body weight, percent body fat, BMI, IL-8,
IL-12, CRP, grip strength, and 30-s sit-to-stand were included
in the multiple regression model to predict the change in IGF-
1. The prediction model was statistically significant (F = 6.331;
p = 0.019) and accounted for 18% of the variance of the increase
in IGF-1 (Adjusted R2 = 0.176). Percent increase in the 30-s sit-
to-stand test (β = 0.385; p = 0.019) independently predicted the
increase in IGF-1. All other variables were excluded.

Relationships between IL-8 and cardiometabolic biomarkers
are presented in Figure 3. The increase in IL-8 was associated
with decreases in total cholesterol (R2 = 0.24; p = 0.008;
Figure 3A); LDL-C (R2 = 0.17; p = 0.031; Figure 3B); and
glucose (R2 = 0.44; p= 0.0001; Figure 3C). Age, and the percent

FIGURE 1 | Bivariate correlations between the percent change from baseline

in waist circumference and the percent change from baseline in insulin levels

(A), HOMA-IR (B) and grip strength (C).
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FIGURE 2 | Bivariate correlations between the percent change from baseline

in IGF-1 levels and the percent change from baseline in waist circumference

(A) and the 30-s sit-to-stand test (B).

change from baseline in insulin, HOMA, total cholesterol, HDL-
cholesterol, LDL-cholesterol, glucose, body weight, percent body
fat, BMI, IGF-1, IL-12, CRP, grip strength, and 30-s sit-to-stand
were included in the multiple regression model to predict the
change in IL-8. The prediction model was statistically significant
(F = 14.421; p < 0.001) and accounted for 52% of the variance of
the increase in IL-8 (Adjusted R2 = 0.518). Percent reduction in
glucose levels (β = −0.763; p < 0.001) and the percent decrease
in IL-12 concentrations (β = 0.327; p = 0.033) independently
predicted the increase in IL-8. All other variables were excluded.

DISCUSSION

This highly controlled feeding study sought to evaluate the
impact of the DASH diet on changes in biomarkers of

FIGURE 3 | Bivariate correlations between the percent change from baseline

in IL-8 levels and the percent change from baseline in plasma total cholesterol

(A), LDL-C (B) and glucose (C).
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cardiometabolic health in a cohort of sedentary obese older
adults. Although the results of the present study did not differ
between the meat intake groups, there were cardiometabolic
changes in response to the 12-week diet intervention onmeasures
of cholesterol, insulin sensitivity, and inflammation when the
meat intake groups were combined. Additionally, associations
were observed between changes in cardiometabolic biomarkers
and changes in body composition measures.

In Response to the DASH Diet, Total
Cholesterol, LDL-C, and HDL-C Decreased
in Obese Older Adults
In the present study under controlled-feeding intakes, total
cholesterol was significantly reduced in all participants by
4.9% (p < 0.001) and LDL cholesterol was reduced by 4%
(p = 0.004). There were no differences in cholesterol outcomes
when separated by meat intake groups. The study diet provided
on average an estimated 195.5mg of dietary cholesterol per
day that was consistently consumed throughout the 12-week
intervention period. A review by Grundy, showed that several
metabolic studies have reported a linear relationship between
dietary cholesterol intake and serum cholesterol levels (18). In
fact, Keys et al. (19) showed that a dietary cholesterol intake
of about 200mg per day should result in a decrease in blood
cholesterol levels by 5%, an observation shown by the present
study in a cohort of obese older adults. The DASH dietary pattern
does not include recommendations for dietary cholesterol intake
and the 2015–2020 Dietary Guidelines for Americans no longer
recommends limiting dietary cholesterol intake to 300mg per
day. Dietary cholesterol, however, is not the only factor that
influences serum cholesterol concentrations. Saturated fat, when
consumed above current recommendations, also affects blood
cholesterol and saturated fat has a greater negative impact on
the development of cardiovascular disease (20). As previously
reported 8% of the total calories from the study diet was saturated
fat (15), which is within the 2015–2020 Dietary Guidelines for
Americans to limit saturated fat intake to <10%, but above
the American Heart Association recommendations of <7%.
Cholesterol and saturated fat, however, are only two components
of a whole-diet and other factors, such as total calories and
dietary fiber need to be considered with changes in cholesterol
levels. The diet for the present study provided on average
1,800 calories per day as recommended by the USDA for
sedentary older adults (15, 17). At 1,800 calories, the DASH
diet recommends substantial amounts of whole-grains, fruits and
vegetables, all of which the study diet provided (15, 16). Adhering
to these recommendations, the study diet provided 29.9 g of
total dietary fiber, which is a major dietary factor that aids
in further lowering cholesterol levels. The cholesterol lowering
benefits of the DASH diet have been previously reported (21) and
findings from the present show similar results. Due to the well-
established cardiovascular benefits of the DASH dietary pattern
and cardiovascular disease remaining as the number one cause
of death in the United States, more aggressive implementation
strategies may need to be established to begin a population-wide
adherence to the DASH diet.

Previous reports have documented that the DASH diet lowers
HDL cholesterol (HDL-C) (21–24). In the present study, HDL-
C decreased by 8.5% (p < 0.001) from baseline to study-end in
all participants; no differences in HDL-C levels were observed
based upon meat intake groups. In a cohort of middle-aged
overweight adults, Chiu et al. compared the DASH diet (27%
total calories from fat) to a high-fat DASH diet (HF-DASH;
40% total calories from fat) in which HDL-C decreased with
consumption of the DASH diet (24). This outcome was not
observed with consumption of the HF-DASH diet. Similarly,
the diet for the present study provided 21% total calories
from fat (15) and the outcomes were similar in this cohort of
obese older adults. Although it has been previously reported
that HDL-C concentrations drop with consumption of a low-
fat diet (25), it is unknown of the impact of the DASH diet
on functional changes to HDL. There are several functions
of HDL-C that are vital for cardioprotection such as reverse
cholesterol transport, anti-inflammatory action, modulation of
glucose metabolism, and endothelial protection (26). Although
HDL-C concentrations decreased in the present study, it is
unknown whether this decease impacted HDL-C functionality
that in turn may have negatively impacted cardiovascular health.
To gain a better understanding of this relationship, future DASH
diet intervention studies should include measures of HDL-C
functionality and ascertain the impact on cardiovascular health.

Markers of Insulin Sensitivity Improved and
Were Associated With Reductions in
Abdominal Adiposity in Older Adults With
an Obese Phenotype Consuming the DASH
Diet
Outcomes of the present study show that consumption of the
study diet for 12-weeks, under controlled feeding conditions,
among a cohort of obese older adults resulted in reductions in
insulin, glucose and HOMA-IR. Insulin was significantly reduced
in all participants by 13.4% (p = 0.014) and glucose was reduced
by 8.4% (p = 0.008). Furthermore, HOMA-IR decreased by 25%
(p < 0.05) by study end. Although recent systematic reviews
have reported that the DASH diet has no beneficial effect on
fasting blood glucose and HOMA-IR (27, 28), similar findings
of the present study have been reported among type 2 diabetics
and women with gestational diabetes (29–31). Shirini et al.
concluded that the DASH diet may improve insulin sensitivity
independent of weight loss (27). We previously reported that
the participants in the present study reduced total body weight
by 6.3% (15). After adjusting for changes in total body weight,
the significant decreases in glucose (adjusted p = 0.049) and
HOMA-IR (adjusted p= 0.045) remained.

One modifiable risk factor associated with cardiometabolic
disease is abdominal adiposity (2). Abdominal adiposity is
the hallmark of the obese phenotype in older adults and is
the primary contributing factor to chronic disease risk. Waist
circumference serves as a measure of abdominal adiposity and
a surrogate indicator of cardiometabolic disease risk (32, 33).
We previously reported a 3.7% reduction in waist circumference
in this cohort of older adults and that this reduction may in
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part be due to the decrease in body fat as a result of the
intervention (15). In the present study we report that the decrease
in waist circumference is correlated with the decrease in insulin
(R2 = 0.22; p = 0.012; Figure 1A) and HOMA-IR (R2 = 0.22;
p = 0.01; Figure 1B). The association between abdominal
adiposity and insulin resistance is well-established, specifically
in populations with obesity and type 2 diabetes (34–36) as
well as healthy populations (e.g., women and adolescents) (37,
38). Interestingly, Díez-Fernández et al. recently reported that
in young adults, waist circumference mediates the relationship
between muscular strength and cardiometabolic risk (39). What
is important to appreciate is that increased abdominal adiposity
results in a redistribution of ectopic adipose tissue within skeletal
muscle. Ectopic fat deposited in skeletal muscle contributes to
poor skeletal muscle function characterized by reduced muscle
mass and strength, and impaired glucose tolerance. This is
crucial given that skeletal muscle is the largest consumer of
glucose and plays a central role with insulin sensitivity. Indeed,
the outcomes of the present study show that the decrease in
waist circumference was inversely related to muscle strength
(R2 = 0.28; p = 0.004; Figure 1C) suggesting a favorable
change in skeletal muscle function may be the result of reduced
abdominal obesity. Although previous reports as well as the
outcomes from the present study show that an interrelationship
between insulin sensitivity, abdominal adiposity, and muscle
health exists, more studies are needed in various populations to
better understand the role that diet, dietary patterns or dietary
components play within this interrelationship.

Insulin like growth factor-1 (IGF-1), a growth hormone
produced by the liver, exerts its effects on glucose regulation and
is positively correlated with insulin sensitivity and muscle health
(40, 41). For example, IGF-1 has several anabolic properties
(i.e., cell growth and differentiation, mitochondrial biogenesis,
reduced inflammation, neuromuscular junction stability) on
skeletal muscle that counteract the development of sarcopenia
by activating AMPK and PGC1α. Low IGF-1 concentrations are
associated with several cardiometabolic risk factors including
obesity, insulin resistance, diabetes and inflammation (40–45).
Low circulating IGF-1 levels may also predict for increased risk
of heart disease and myocardial infarction (46–48). Conversely,
increased IGF-1 levels are paralleled with improvements in
insulin sensitivity in premenopausal obese women with insulin
resistance consuming a calorie-restricted diet (49). In the present
study, IGF-1 concentrations increased by 10% (p < 0.001) in
all participants as a result of the intervention. Moreover, this
increase was negatively associated with waist circumference
(R2 = 0.21; p = 0.014; Figure 2A), a similar finding reported by
Succurro et al. in a cohort of non-diabetetic adults (50). Although
several clinical studies report associations between IGF-1 and
muscle strength in various human populations (e.g., healthy
adults, older women and sarcopenic obese elderly) (51–53), they
primarily focused on aging and/or exercise. In the present study,
in which the focus was diet, we observed a positive relationship
between IGF-1 and muscle strength (R2 = 0.21; p = 0.016;
Figure 2B). While these findings collectively are suggestive of
a relationship between diet, IGF-1, abdominal adiposity and
muscle, this area remains highly unexplored and more studies

are required to elucidate these relationships and impact on
cardiometabolic outcomes.

Inflammatory Biomarkers Were Influenced
by Consumption of the DASH Diet in Older
Adults With an Obese Phenotype
Interleukin 8 (IL-8) is a chemokine involved in ischemic tissue
repair and thought to exert beneficial effects on cardioprotection
(54). Circulating IL-8 concentrations, however, are elevated in
obese individuals and are considered to be a factor relating
obesity to increased cardiovascular risk (55). Results of the
present study, in a cohort of obese older adults showed that
by week 9 of the intervention, IL-8 levels increased by 38.8%
(p = 0.005) as a result of the study diet. Most notably,
this increase was associated with decreases in total cholesterol
(R2 = 0.24; p= 0.008; Figure 3A), LDL-C (R2 = 0.17; p= 0.031;
Figure 3B), and glucose (R2 = 0.44; p = 0.0001; Figure 3C),
pointing toward a more cardioprotective role for IL-8. Reports
of circulating concentrations of IL-8 on heart function have
resulted in conflicting outcomes. A case study investigating
serum levels of IL-8 on myocardial infarction (MI) showed
that concentrations were associated with increased MI risk in
men, but reduced occurrence of MI in women (56). In rodents
treated with IGF-1, increased IL-8 displayed a proangiogenic
effect with protection against ischemic myocardium (57). Indeed,
the concentrations of IGF-1 in the present study increased
by 10% (p < 0.001). Although previous reports showed an
association of IL-8 with BMI, fat mass, and waist-to-hip ratio
in obese individuals (55), the results of the present study
did not observe such associations. With conflicting outcomes
from previous reports, including the present study, many more
studies are required to fully uncover the role of IL-8 in heart
health, specifically with regard to cardioprotection and risk of
cardiovascular disease. Future studies are needed to determine
specific populations that benefit from increased IL-8 and which
populations are negatively affected.

Interleukin 12 (IL-12) is a proinflammatory cytokine involved
in the pathogenesis of numerous inflammatory disorders such
as psoriasis, crohn’s disease, ulcerative colitis, multiple sclerosis,
and rheumatoid arthritis (58). IL-12 production is a contributing
factor in obesity-related inflammation and insulin resistance
(59). In rodent studies involving older mice, treatment with
an anti-IL-12 monoclonal antibody alleviated the inflammatory
bowel disease, colitis (60). Additionally, mice consuming
a low-carbohydrate, soy, fish oil diet showed reduced IL-
12 concentrations in bronchial tissue, leading to decreased
inflammation and DNA damage in the lungs (61). Indeed, results
of the present study showed that in response to the study diet
circulating IL-12 levels decreased by 12.7% (p < 0.001) by
week 9. Although these findings are suggestive of an improved
inflammatory state or reduced risk for the onset of IL-12 induced
disorders, more human studies are required to determine
whether diet-induced reductions in IL-12 prevent or alleviate
inflammatory disorders in which IL-12 has a role.

In the present study C-reactive protein (CRP) decreased by
11.3% (p = 0.006) in all participants over the course of the

Frontiers in Nutrition | www.frontiersin.org 9 March 2021 | Volume 8 | Article 647847

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Perry et al. Cardiometabolic Changes With a DASH Calorie-Restricted Diet

intervention. CRP is a widely used biomarker of inflammation
and is elevated in individuals with an obese phenotype (62).
When elevated, it serves as a marker for insulin resistance (63)
and is associated with coronary artery disease and total mortality
(64, 65). CRPmay also serve as a possible biomarker for infection
and pneumonia in geriatric patients (66). Furthermore, CRP
has been associated with HOMA-IR and inversely related with
grip strength (63, 67). Indeed, HOMA-IR decreased (p < 0.05)
in the present study and strength-to-weight ratio increased as
previously reported (15). A recentmeta-analysis reported that the
DASH diet had no effect on CRP concentrations (28). However,
consumption of the DASH diet among type-2 diabetics reduced
CRP levels by 26.9% (68) and the DASH diet was associated with
a reduction in CRP in women (69). It is possible that the DASH
diet may not be effective in reducing CRP levels in healthy adults,
but rather in individuals with obesity and/or diabetes.

LIMITATIONS

Limitations of this study include the following: (i) a non-
intervention control group was not included in this study; (ii)
cohort of participants in the present study were all white which
is representative of the dominant racial background in the state
of South Dakota; (iii) all participants were upwardly mobile
and lived in their own homes; (iv) no participants required
support for daily living activities; no one resided in assisted
living facilities; (v) overall, regardless of removing the three
participants with a normal weight BMI significant differences in
the cardiometabolic responses remained. Due to these limitations
great caution should be taken when generalizing the outcomes
of the present study to various populations of older adults with
diverse ethnic/racial and demographic backgrounds as well as
different living conditions.

CONCLUSIONS

Results from the present study confirm that the DASH diet with
restricted calories beased upon the U.S. Dietary Guidelines for
Americans is an effective approach to improve blood biomarkers
of cardiovascular, metabolic, and inflammatory health in obese
older adults. The outcomes of the present study also show
positive cardiometabolic improvements with daily lean beef
consumption. Because older adults are especially vulnerable to
cardiometabolic disease and unhealthy diet is a leading risk factor
for the development of cardiometabolic disease strategies for

dietary behavioral change may be need implemented to increase
the adoption of the DASH diet.
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