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1  |   INTRODUCTION

Indoor air pollution triggers symptoms of irritation, such as 
dryness in the skin and eyes, and pain in the nose and throat. 
It also causes psychoneurotic symptoms, such as dizziness, 
nausea, and headache. These symptoms, which are common 

among occupants of nonindustrial buildings such as offices 
and schools, have been defined as sick building syndrome 
(SBS). This syndrome is caused by chemical factors such 
as formaldehyde and other volatile organic compounds 
(VOCs),1,2 biological factors such as mold and tick,3,4 or 
physical factors such as temperature and humidity.5,6 In 
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Abstract
Objectives: 2‐Ethyl‐1‐hexanol (2EH), a fragrance ingredient and a raw material for 
the production of plasticizer di(2‐ethylhexyl) phthalate, is responsible for sick build-
ing syndrome (SBS). This review aims to clarify the 2EH characteristics as an indoor 
air pollutant such as indoor air concentration, emission mechanism, toxicity, and 
clinical effects.
Methods: Scientific publications in English that has been made available on PubMed 
as of June 2018 and ad hoc publications in regional languages were reviewed.
Results: Inhalation exposure to 2EH caused mucous membrane irritation in the eyes, 
nose, and throat in experimental animals. Studies in human volunteers revealed an 
increase in olfactory irritation and eye discomfort. There has been increasing evi-
dence of 2EH being present in indoor air in buildings. The primary sources of 2EH 
emissions are not building materials themselves, but instead the hydrolysis of plasti-
cizers and flooring adhesives. In particular, compounds like di(2‐ethylhexyl) phtha-
late present in polyvinyl chloride flooring materials are hydrolyzed upon contact 
with alkaline moisture‐containing concrete floors. That being said, it may be ob-
served that indoor concentrations of 2EH increased every year during summer.
Conclusions: Unlike other volatile organic compounds that cause SBS, 2EH can be 
retained in indoor air for long durations, increasing the likelihood of causing undesir-
able health effects in building occupants exposed to it. As a precautionary measure, 
it is important to use flooring materials that do not emit 2EH by hydrolysis, or to dry 
concrete before covering with flooring materials.
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recent years, the VOC 2‐ethyl‐1‐hexanol (2EH) (CAS No. 
104‐76‐7) has drawn attention as one of the prominent 
causes of SBS.7

2‐Ethyl‐1‐hexanol is used mainly as a raw material for 
the production of di(2‐ethylhexyl) phthalate (DEHP), a 
plasticizer for polyvinyl chloride (PVC), and as a fragrance 
component in cosmetics,8 but is hardly detected in outdoor 
environments. 2EH is a known metabolite of the plasticizer 
DEHP, a hepatic carcinogen in rodents.9 Based on a long‐
term study in rats in which the no‐observed‐effect level 
(NOEL) of 2EH was found to be 50 mg/kg/bw/day with a 
safety factor of 100, the acceptable daily intake (ADI) of 2EH 
in humans was established as 0‐0.5 mg/kg body weight by 
the Joint Food and Agriculture Organization‐World Health 
Organization Expert Committee on Food Additives.10

It was reported that 2EH is detected at high concen-
trations in buildings where occupants complained of SBS 
symptoms.7 Mucosal irritation in the eyes and nose were re-
ported as the primary endpoints in studies examining the ef-
fects of 2EH exposure in humans and animals.11,12 However, 
this compound may also affect human health at low concen-
trations. The recommended 8‐hour time‐weighted average 
occupational exposure limit of 2EH is 5.3 mg/m3 (1 ppm) 
in Europe13 and Japan.14 On the other hand, the preliminary 
reference concentration of 2EH concentration in general in-
door environments is 0.1 mg/m3, same as the Guide Value I 
(precautionary value) in Germany.15 The reference concen-
tration for general environment is also being considered in 
Japan.16

An important characteristic of 2EH as an indoor air 
pollutant is the seasonal fluctuation of its indoor air con-
centration; it is detected at higher concentrations in high‐
temperature and humid seasons and at markedly lower 
concentrations during winter.17,18 Therefore, unless appro-
priate countermeasures are taken to reduce 2EH emissions, 
its indoor air concentration will periodically be high, which 
could cause long‐term exposure to 2EH in people exposed 
to high indoor concentrations of 2EH.19

Risk assessment studies have reported several effects 
of oral20-22 and inhalation exposure23,24 to 2EH in animals. 
However, these effects, along with other characteristics of 
2EH as an indoor air pollutant, have not been summarized 
in any comprehensive review. Therefore, this review aims to 
summarize current findings of relevant publications on the 
indoor air concentration, emission mechanism, toxicity, and 
clinical effects of 2EH.

We reviewed literature in English that has been made 
available on PubMed and Google Scholar as of June 2018 
and ad hoc publications in regional languages. We searched 
papers with the term “2‐ethyl‐1‐hexanol” and chose the liter-
ature were related to indoor air pollutant and toxicity.

2  |   PHYSICAL PROPERTIES AND 
USE OF 2EH

The physical and chemical properties of 2EH are sum-
marized inTable 1. There are many household products 

Property Value Reference

Molecular formula C8H18O ‐

Structure formula
OH

‐

CAS No. 104‐76‐7 ‐

Molecular weight 130.23 g/mol ‐

Physical form Colorless, oily liquid with mild, sweat, 
and slightly floral‐rosy odor

8

Melting point -75°C 26

Boiling point 188.52°C 8

Density at 20°C 0.834 g/cm3 8

Vapor density 4.49 g/cm3 26

Vapor pressure 0.06 mmHg at 20°C, 0.185 mmHg at 25°C 8

Solubility Soluble in organic solvents 27

Solubility in water 880 mg/L at 25°C, 1000 mg/L at 20°C 27

Odor threshold 0.075 ppm (perception), 0.138 ppm (100% 
recognition)

27

Conversion factors for vapor 
(25°C 1013 hPa)

1 ppm = 5.32 mg/m3 25

T A B L E  1   The physical and chemical 
properties of 2EH
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manufactured using 2EH. The plasticizers DEHP and di(2‐
ethylhexyl) adipate (DEHA), used in the processing of plas-
tic and rubber, are produced with 2EH as a raw material. 
2EH is also used as a raw material for the production of 
2‐ethylhexyl acrylate, an adhesive component, and as a fra-
grance ingredient in decorative cosmetics, fine fragrances, 
toiletries (such as shampoos and soaps), and non‐cosmetic 
products, such as household cleaners and detergents.8 In the 
environment, 2EH is volatilized from soil or water surfaces 
into the atmosphere.25

3  |   TOXICOKINETICS OF 2EH

2‐Ethyl‐1‐hexanol is absorbed by the gastrointestinal 
tract and skin. Alcohol dehydrogenase (ADH) rapidly 
oxidizes the hydroxyl group in 2EH, forming 2‐ethyl‐1‐
hexanal. It is further oxidized by aldehyde dehydroge-
nase (ALDH), forming 2‐ethyl‐1‐hexanoic acid (2EHA), 
which is excreted mainly as a glucuronate conjugate in 
urine. ADH activity for 2EH was reported to be 8.6 nmol/
mg/min and 4.2 nmol/mg/min in humans and mice, re-
spectively. Furthermore, ALDH activity for 2EH was 
3.6 nmol/mg/min and 5.6 nmol/mg/min in humans and 
mice, respectively.28

Within 24 hours of orally administrating 2EH at 8.3 mmol/
kg, 86.9% of the compound was excreted in urine as the glu-
curonide conjugate metabolite.29,30

Following oral administration at doses of up to 300 mg/
kg, 2EH was efficiently absorbed in male CD rats. Within 
28 hours, 2EH metabolite was excreted in exhaled breath 
(as CO2; 6%‐7%), feces (8%‐9%), and urine (80%‐82%). The 
major urinary metabolite of 2EH was 2EHA, generated by 
decarboxylation of partially β‐oxidized 2EH. The other iden-
tified metabolites were 2‐ethyl‐5‐hydroxyhexanoic acid, 2‐
ethyl‐5‐ketohexanoic acid, and 2‐ethyl‐1,6‐hexanedioic acid. 
Almost all (96.1%) of the administered 2EH was excreted 
as a metabolite and only approximately 3% was excreted 
unchanged.31

In another study, dermal administration of 2EH at 1 g/kg  
resulted in only 5% of the compound being absorbed at a 
rate of 0.57 mg/cm2/h.32 In a comparative study, the percu-
taneous absorption rates of 2EH in male rats and humans 
were 0.22 mg/cm2/h and 0.038 mg/cm2/h, respectively, 
with a (rat/human) ratio of 5.78.33 2EH was detected in 
the exhaled breath at 4 μg/m3 (0.0008 ppm).34 2EH was 
also detected on the skin surface.35 The concentration of 
2EH gas released from the hand skin was 39.9‐136.2 μg/
m3 (7.7‐25.6 ppb).36 Moreover, 2EH was considerably 
more abundant in the stool of neonates than adults, sug-
gesting that neonates may be more susceptible to risks 
from exposure than adults to plastic materials containing 
plasticizers.37

4  |   EXPOSURE SCENARIO

4.1  |  Sources of 2EH Emissions
The general population may be exposed to 2EH from inha-
lation of ambient air, ingestion of food and drinking water, 
or dermal absorption of this compound or other products 
containing 2EH.25 Studies have reported 2EH emission from 
various sources, such as carpets,38,39 furnitures,40 comput-
ers,41 books,42,43 and food wrappings.44 Building materials, 
such as insulation and gypsum board,45 wallpaper,46 paint,47 
PVC flooring,48 and adhesives,49 are also sources of 2EH 
emissions.

Several reports point out that flooring is a prominent source 
of 2EH air pollution in buildings. The region of the highest 2EH 
concentrations in apartment houses was concrete slabs surface, 
which was directly in contact with a vinyl carpet.50 In a school 
conference room with a 2EH air concentration of 1902 µg/m3, 
the rates of 2EH emission from the carpet tile and concrete sur-
face beneath the carpet were 2492 μg/h/m2 and 12,697 μg/h/
m2, respectively, measured using the double‐cylinder chamber 
method.51 It was also reported that 2EH concentrations in the air 
increased with the amount of 2EH emitted from the floor.52 In a 
study investigating VOC emission using a field and laboratory 
emission cell (FLEC) method, 2EH was found to be 47%‐76% 
of the total VOCs emitted from the floor coverings.53 2EH was 
emitted from the surface of a concrete floor after its PVC floor 
covering was removed.54 One study revealed that 2EH emission 
by a PVC flooring material decreased over time during the 60‐
day experiment,55 which contradicted findings from a different 
study which found that 2EH indoor concentration fluctuated 
over a long period of time—increasing in summer when the 
temperature rose and decreasing in winter when the temperature 
fell.17,18 Therefore, in addition to primary 2EH emission by the 
2EH‐containing products, other emission mechanisms should 
also be considered. Some of these mechanisms have been iden-
tified and are described in the next section.

4.2  |  Emission of 2EH from hydrolysis  
reaction
A study showed that 2EH is generated from hydrolysis of 
DEHP in an environment simulating a concrete slab with a 
relative humidity (RH) between 70% and 100% and pH be-
tween 11 and 13. In the study, DEHP hydrolysis and 2EH 
emission increased with an increase in pH.56 Since DEHP 
has a half‐life of 100 years at pH 8 and 30°C,57 it is hardly 
degraded under normal indoor environment. Additionally, 
DEHP on the surface of cement with higher moisture con-
tent emits higher amount of 2EH.58 Thus, there is very little 
doubt that the amount of 2EH emission by DEHP is related 
to the moisture content of the cement with which it has di-
rect contact.51 Therefore, dampness seems to play a major 
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role in determining the amount of 2EH emitted. A study 
examined the relationship between RH and 2EH indoor air 
concentration, and showed that in buildings with RH values 
of 58%‐75% and 21%‐22%, the 2EH indoor air concentra-
tions are 9 μg/m3 and 3 μg/m3, respectively.59 Additionally, 
in a room with high amount of 2EH emission, the moisture 
content of its concrete floor was as high as 8.2%.51 Using 
the FLEC method, 2EH was detected after PVC flooring was 
directly attached to a concrete floor60 or after PVC flooring 
material was tightly attached to a self‐leveling (SL) mate-
rial.51 The amount of 2EH emission increases as the mois-
ture content of an SL material increases.61 Taken together, 
long‐term emission of 2EH can be attributed to the hydrolysis 
of DEHP contained in the flooring material,49 supported by 
the fact that 2EH concentration in the air decreases signifi-
cantly after plastic coverings, adhesives, and leveling layers 
are removed from the floor, all while the rooms were warmed 
to 55°C and simultaneously ventilated by additional exhaust 
fans for a week.53

Several published studies have reported on various ma-
terials that emit 2EH.18,62,63 We postulated, based on the 
amount of 2EH emission from flooring that compounds con-
taining a 2‐ethyl‐1‐hexyl moiety, such as DEHP contained in 
PVC, and 2‐ethylhexyl acrylate contained in adhesives, are 
hydrolyzed to emit 2EH when the backing of carpeting mate-
rial was in contact with concrete floors.18,51 At pH values 11 
and 13, flooring materials composed of DEHP‐containing 
PVC and 2‐ethylhexyl acrylate‐containing adhesives emitted 
a large amount of 2EH. Additionally, adhesives that did not 
contain 2‐ethylhexyl acrylate also emitted 2EH when com-
bined with PVC flooring, but did not when combined with 
linoleum flooring.64 These results confirmed our postulate 
that a contact between a compound having a 2‐ethylhexyl 

group and a concrete floor causes secondary emission of 
2EH from a hydrolysis reaction (Figure 1), which seems to 
be dependent on the pH and moisture content of the con-
crete surface. A similar emission of n‐butanol and 2‐butanol 
from hydrolysis reaction can be observed.65,66 It is theorized 
that moisture in concrete is retained when the concrete is 
covering with a flooring material. Consequently, the amount 
of 2EH emitted increases in summer when the temperature 
rises and decreases in winter when the temperature drops. 
As this cycle repeats itself over a long period of time, 2EH 
will continue to be emitted, making it theoretically impossi-
ble to altogether prevent gradual and prolonged 2EH emis-
sion by ventilation and bakeout. In order to fundamentally 
eliminate the problem associated with 2EH emission, it is 
necessary to thoroughly dry concrete before covering it with 
a flooring material.

4.3  |  Emission of 2EH by microbiological  
reaction
It has been reported that some microorganisms in gypsum board 
or walls of a flood‐damaged house emit 2EH.67,68 Aspergillus 
versicolor, which can grow on rich malt extract medium and 
several synthetic media, also emits 2EH.69 When cultivated in 
indoor dust for 7 days at an RH of 84%‐86%, and 2 days at an RH 
of 96%‐98%, A. versicolor generated several microbial VOCs, 
including 2EH, by metabolizing various hydrocarbons and fatty 
acids contained in the dust.70 Furthermore, Rhodococcus rho-
dochrous was reported to decompose the plasticizers DEHA71 
and DEHP,72 thereby generating 2EH. Mycobacterium sp. 
also decomposes DEHP to produce 2EH.73 A pathway of 2EH 
production through the biological degradation of DEHP and 
DEHA has been proposed.74 Taken together, microorganisms 

F I G U R E  1   The emission mechanism 
of 2‐Ethyl‐1‐hexanol (2EH) by a hydrolysis 
reaction. Compounds having 2‐ethylhexyl 
group contained in floor materials and 
adhesives are hydrolyzed by the alkaline 
moisture content in concrete. For example, 
DEHP contained in PVC flooring is 
hydrolyzed, emitting 2EH into the room18
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have also been related to 2EH emission. In fact, several studies 
claim that 2EH in indoor air is a product of the decomposition 
of plasticizers by microorganisms.75 That said, all evidence in 
those studies were limited to in vitro findings. Therefore, the 
contribution of microbiological decomposition of plasticizers 
to 2EH indoor air concentration is still unverified. Detailed in-
vestigations are required.

5  |   INDOOR CONCENTRATIONS 
OF 2EH

2‐Ethyl‐1‐hexanol has been reported in the indoor air of 
buildings, mainly in Japan, Northern Europe, and North 
America (Table 2). High level of 2EH concentration has 
become a particular problem in a newly constructed uni-
versity building in Japan, where 2EH concentrations 
were 1086 μg/m3 and 1183 μg/m3.7,18 A study in Sweden 
reported that concentrations of 2EH up to 1000 μg/m3 
were detected in offices.76 Two reports that measured the 

concentration of 2EH in North America showed 0.3‐48 μg/m3  
and <7.95 μg/m3.77,78

2‐Ethyl‐1‐hexanol was detected in 92 out of 99 rooms in 
the 42 buildings studied, with an average indoor concentra-
tion of 16.5 μg/m3 compared to an outdoor 2EH concentra-
tion of 1.9 μg/m3.19 In a survey of 175 rooms such as offices, 
sales floor, and classrooms in 57 buildings that were no older 
than 1 year, 2EH was detected in 99% of the rooms, with an 
average indoor concentration of 13.5 μg/m3.79

2‐Ethyl‐1‐hexanol has also been detected in other univer-
sity building, school, shopping centers, and museums.80-83 
Furthermore, 2EH was detected in the living rooms at a max-
imum indoor concentration of 5.1 μg/m3.84 In another study, 
the 2EH indoor concentrations in 150 rooms of an apartment 
building were 1‐86 μg/m3.50 In Germany, the average 2EH 
concentration in 230 houses was 2 µg/m3 (<0.1‐10 µg/m3).25

The geometric mean of 2EH concentration was signifi-
cantly higher in samples collected in summer (55.4 μg/m3)  
than in those collected during winter (13.7 μg/m3) 
(P < 0.01).56 Several similar trends have been reported.85,86 

T A B L E  2   Summary of indoor air concentration of 2‐Ethyl‐1‐hexanol

Country Location Study period Concentration (μg/m3) Reference

Japan University March 2001 164‐1086 7

Japan University Summer 2002 25‐1183 18

Sweden Office building Not reported 1000 (max) 74

Japan Nondomestic buildings June 2002‐October 2004 16.5 (geometric mean) 19

USA Office building Summer 1995 0.3‐48 77

Winter 1997‐1998

USA Houses 1997‐1998 <7.95 78

Japan Large‐scale buildings 2003‐2007 13.5 (geometric mean) 79

Japan University August‐September 2003 132 (max) 80

Japan School August 2007 12‐302 81

Japan Shopping center June 2006 69.2 (max), 6.2 (geometric mean) 82

Japan Museums September and October 2005 1.30 (max) 83

Japan Dwellings October 2013 and January 2014 5.1 (max) 84

Sweden Residential buildings Not reported 1‐86 50

West Germany Dwellings Not reported 2 (average) 25

Japan Large‐scale buildings July 2004‐September 2007 Summer 55.4, winter 13.7 (geomet-
ric mean)

17

Switzerland University January and June 2000 4‐17 85

Europe Buildings Summer 2012‐winter 2013 Summer 4.7, winter 3.9 (average) 86

Finland Office building December 2000‐March 2001 ca. 100 53

Sweden Buildings Not reported 17 (max), 9.8 (average) 87

Sweden Rehabilitation center Not reported 0.3‐0.6 88

Japan Temporally houses June 2011 69 ± 12.8 89

Sweden Hospitals November 1996‐January 1997 4.8‐19.8 90

Sweden Hospitals January‐February 1997 5‐20 91

Sweden Hospitals January‐February 1997 2‐32 92
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With regard to building conditions that could facilitate 
2EH emission, a damp office building had a higher 2EH 
concentration than a dry office building.53,87 A rehabilita-
tion center with wet linoleum flooring materials had 2EH 
concentrations of 0.3‐0.6 μg/m3.88 A survey conducted in 
five temporary houses that used PVC flooring materials 
showed a 2EH indoor concentration of 69 ± 12.8 μg/m3.89 
Furthermore, three surveys were conducted in the same four 
geriatric hospital buildings, which were of various ages. 
2EH was detected in two buildings aged 3 and 11 years with 
PVC floorings and dampness.90-92 On the other hand, the 
two other buildings, aged 1 and 71 years, showed no sign of 
dampness and had 2EH concentrations below the detection 
limit (<1 μg/m3).

Thus, it was concluded from these studies that 2EH 
concentration is not related to the age of buildings. Rather, 
the use of PVC, the dampness and higher temperature are 
known to contribute to 2EH emission. The reason it was 
detected frequently and at such high concentrations in 
Japan has not been clarified.

6  |   EFFECTS ON HUMAN HEALTH

6.1  |  Environmental exposure
A summary of 2EH effects on human health is presented inTa-
ble 3. Increased occurrence of ocular and nasal symptoms 
was observed in subjects working in buildings where 2EH 
was detected at levels between 5 and 20 μg/m3.91 Asthma 
symptoms may occur due to the humidity in concrete floor 
constructions that affect 2EH emission.92 In a humid building 
where people developed nasal mucosal inflammation, it was 
observed that fungi and bacteria were also abundant, wherein 
average 2EH concentration was 9.8 μg/m3.87

At a university in Japan, where 2EH concentration was 
1086 μg/m3 in maximum, a case of a female professor who 
complained of coughing, throat irritation, and sore eyes was re-
ported. 2EH was detected at a prominently high concentration 
of 408‐1866 μg/m3. Other staff members also complained of 
area‐associated SBS symptoms in rooms where 2EH concen-
trations were higher than 160 μg/m3.7 In comparison with the 
SBS symptom prevalence, there was no significant difference 
between classrooms where 2EH concentration reached 65.5 μg/
m3 and 4.8 μg/m3. However, symptoms of the nose, throat, and 
lower respiratory tract were observed only in rooms with high 
2EH concentrations.18 Faculty members who used a conference 
room with 2EH concentration of over 336 μg/m3 showed a high 
prevalence of such complaints.7 Therefore, it was estimated 
that the threshold at which symptoms appeared excessively in a 
population should be in the range of 65.5‐336 μg/m3.18

In Finland, several respiratory and dermal symptoms and 
irritation in the eyes were reported in environments with 2EH 
concentration of 1‐4 μg/m3.53,54

In a rehabilitation center in Sweden, where airborne con-
centrations of 2EH were very low (0.3‐0.6 μg/m3), the staff 
who had been previously exposed to VOCs as well as 2EH 
developed SBS symptoms after 2 days of re‐exposure regard-
less of a 4‐month period without VOC exposure.88

In a newly built university building in Japan, as the indoor con-
centration of 2EH decreased by ventilation, the number of occupants 
who complained about headache and eye irritations decreased.93

At a technical university in Switzerland, employees and 
students had complained about deteriorated indoor air qual-
ity after the building was renovated. Some employees even 
suffered from sickness and headache. Indoor concentration 
of 2EH was 4‐17 µg/m3.85

As described above, there are reports which claim that 
2EH is present indoors, even in a general living environment, 

T A B L E  3   Summary of effects on human health

Country Location Symptoms Concentration (μg/m3) Reference

Sweden Hospital Nasal and ocular symptoms 5‐20 91

Sweden Hospital Asthma symptoms 2‐32 92

Sweden Building Nasal mucosal inflammation 9.8 (average), 17 (max) 87

Japan University Coughing, throat irritation, and sore eyes 164‐1086 7

Japan University Problems with the nasal passages, throat, 
and lower airways

25‐1183 62

Finland Office building Respiratory, conjunctival, and dermal 
symptoms; adult‐onset asthma was 
approximately nine times higher

Mean 2 (range 1‐3) 53

Finland School Irritation symptoms in the respiratory 
tract and eyes

1‐4 54

Sweden Rehabilitation center Ocular, nasal, and respiratory symptoms 0.3‐0.6 88

Japan University Ocular pain and headache 37.1‐62.1 93

Switzerland University Sickness and headache 4‐17 85
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possibly causing irritation and inflammation in the mucous 
membranes of the respiratory tract and nasal cavity. However, 
the dose‐response relationship and the discrepancy in the 
lowest‐observed‐adverse‐effect‐level (LOAEL) among the 
countries remain to be further clarified.

6.2  |  Experimental inhalation or topical 
exposure settings
To assess the acute effects of 2EH, volunteers were ex-
posed to 2EH vapor (1 mg/m3) for 2 hours. During exposure, 
the volunteers reported a significant increase in nasal and 
eye discomfort. No differences in response were observed 
between the sexes, or between the atopic and nonatopic 
treatments.94

Twenty‐four young men were assessed before, during, and 
after the 4‐hour exposure. As 2EH concentration increased in 
three levels, 8.14, 56.6, and 116 mg/m3, nasal flow reduction 
and substance P concentration were increased.95

To evaluate the effect of 2EH on sensory irritation, 
2EH at mean concentrations of 1.5, 10, and 20 ppm (7.98, 
53.2, and 106 mg/m3, respectively) were used for either 
constant or variable for the 4‐hour exposure. The study 
revealed a strong dose‐response relationship between the 
concentration of the airborne solvent and blinking rate. 
The study suggested a critical dose for 1‐hour constant 
exposure lied between 10 and 20 ppm, and the LOAEL for 
eye irritation due to 4‐hour exposure was 10 ppm under 
variable concentration conditions at a peak concentration 
of 20 ppm.12

T A B L E  4   Summary of inhalation and oral exposure

Concentration/dose Period Exposure Species Effects Reference

227 ppm 6 h Inhalation Mouse, rat, and 
guinea pig

Mucous irritation in the eyes, nose, 
throat, and respiratory passages

11

0, 15, 40, 120 ppm 90 d 6 h/d Inhalation Rat NOAEL of 120 ppm 23

0, 20, 60, 150 ppm 3 mo 8 h/d Inhalation Mouse Inflammation and degeneration of the 
olfactory epithelium at ≥20 ppm

24

100 mg/kg Single Intragastric administration Rat No direct effect on protein kinase C 
activity

107

3.8 mmol/kg/d 3 d Gastric intubation Rat Increased cytochrome P450 4A1 levels 108

2% (20 mg/kg/d) 3 wk In food Rat Significant decreases in triglyceride and 
cholesterol serum levels

109

88 g/d/hen Single In food Hen Lowered plasma level of free cholester-
ols, reduced liver fats

110

833 mg/kg/d 3 wk Gastric intubation Rat Increased liver weight 111

4 mmol/kg/d 
(520.8 mg/kg/d)

7 d Gavage Rat Increases in both wet liver weight and 
antipyrine clearance

112

1000 mg/kg/d 3 wk Gavage Rat Thirty percent increase in liver‐to‐body 
weight ratio; increase in peroxisome cell 
fraction and in peroxisome density

22

130 mg/kg/d 14 d Gavage Rat Not induce hepatomegaly, peroxisome 
proliferation, and hyperlipidemia

113

0‐1.75 g/kg/d 14 d Gavage Mouse, rat Increases in relative liver weights and 
peroxisomal β‐oxidation

114

0, 25, 125, 250, 
500 mg/kg/d (5 
consecutive days/
wk)

13 wk Gavage Mouse, rat Reduced body weight gain and increased 
relative liver, kidney, stomach, and 
testes weights at 500 mg/kg/d

20

NOEL of 125 mg/kg/d

0, 50, 200, 750 mg/
kg/d (5 consecutive 
days/wk)

18 mo Gavage Mouse, rat Reduced body weight gain and increased 
relative liver and stomach weights at 
500 mg/kg/d

21

0, 50, 150, 500 mg/
kg/d (5 consecutive 
days/wk)

24 mo Gavage Rat Decrease in body weight gain and 
dose‐dependent increases in relative 
liver, stomach, brain, kidney, and testis 
weights at 150 mg/kg/d and 500 mg/
kg/d

21
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Experiments with human volunteers at three time‐
weighted average 2EH concentrations (1.5, 10, and 20 ppm) 
were performed for 4 hours under conditions of either con-
stant or variable concentrations. At 10 ppm, nasal irritation 
increased with time, and 20 ppm resulted in remarkable ir-
ritation. Additionally, attention reduction was considered to 
occur around 20 ppm. Therefore, the LOAEL for irritability 
and nasal irritation was 10 ppm. Olfactory‐ and trigeminal‐
mediated symptoms and intensities of odor, eye, and nasal ir-
ritations showed a dose‐dependent response. Over the course 
of the 4‐hour exposure, only olfactory symptoms decreased, 
while nasal irritations remained nearly unchanged and eye 
irritations slightly increased.96,97

With regard to skin sensitization to 2EH, a maximization 
test was carried out on 29 volunteers. Tested at 4% in pet-
rolatum, 2EH produced no irritation or sensitization after 
48 hours in a closed‐patch test on human subjects.98

7  |   IN VIVO EFFECTS ON 
ANIMALS

7.1  |  Inhalation exposure
The effects of 2EH inhalation on animals are summarized in 
Table 4. Inhalable 2EH at 1210 mg/m3 (227 ppm) was ad-
ministered by a single 6‐hour inhalation exposure to groups 
of Swiss mice, Wistar rats, and English Short Hair guinea 
pigs. 2EH‐induced local irritation was occurred in the mu-
cous membranes of the eyes, nose, throat, and respiratory 
tract. However, these responses were temporary, and all 
animals had recovered within an hour of terminating expo-
sure.11 In another study, mice exposed to 2EH at 234 mg/
m3 (44 ppm) by inhalation exhibited a decrease in respiratory 
rate (RD50) by 50%.99

A 90‐day subchronic inhalation toxicity study of 2EH was 
performed in Wistar rats. In total, 10 males and 10 females 
per group were exposed to 2EH vapors at concentrations of 
15, 40, and 120 ppm for 6 hours/day over a 90‐day period. 
No 2EH‐related adverse effects were observed. The highest 
concentration tested under these conditions (120 ppm) was 
described as the no‐observed‐adverse‐effect‐level (NOAEL) 
of 2EH in both male and female rats.23

Male ICR mice were exposed to 0, 20, 60, or 150 ppm 
2EH for 8 hours/day each week, 5 days every week over 3‐
month period. After a week of exposure to 2EH, the mice 
showed inflammation and degeneration in the olfactory ep-
ithelium, and mice exposed to 2EH at ≥20 ppm showed a 
significant concentration‐dependent reduction in the number 
of olfactory receptor neurons and globose basal cells. The 
olfactory bulb showed a reduction in the diameter of glomer-
uli and in the number of olfactory nerves at 3 months. These 
histopathology data suggested that 2EH has persistent effects 
on the olfactory system.24

7.2  |  Oral exposure
The effects of 2EH oral exposure on animals are summarized 
in Table 4. The acute oral lethal dose 50% (LD50) of 2EH in 
rats were reported to be 3.3 g/kg,100 2.05 (range 1.52‐2.77) g/
kg,101 2.46 g/kg,102 7.1 (range 5.5‐9.1) g/kg,103 3.2 g/kg,104 
3.29 (range 2.87‐3.79) g/kg,105 and 3.73 g/kg,11 whereas in 
mice it was reported to be 2.500 g/kg.106

A tumorigenic effect of 2EH was examined by determin-
ing its effect on protein kinase C activity. It was revealed that 
2EH exerted no direct effect on protein kinase C activity in 
vivo.107

In another study, Wistar rats were treated with 
2EH at 494 mg/kg by gastric intubation once a day for 
3 days. At 24 hours after the last dose, the level of cyto-
chrome P450 4A1, activity of lauric acid ω‐hydroxylase 
and palmitoyl‐CoA oxidase in the rats were increased. 
However, 2EH did not alter the activity of lauric acid 
(ω‐1)‐hydroxylase.108

Male Fischer 344 rats were fed diets containing 2EH at 
20 mg/kg/day for 3 weeks, and significant decreases in the 
levels of serum triglyceride and cholesterol were observed.109

In laying hens, the diet which contained 2% (88 g/day/
hen) 2EH lowered the plasma level of free cholesterols, liver 
fats but not significantly alter liver weight.110

Other studies using rats revealed that 2EH increase liver 
weight,111 antipyrine clearance,112 and peroxisome cell 
fraction.22

Male rats were administered with 2EH (1 mmol/kg/day) 
for 14 days. This treatment did not induce hepatomegaly, per-
oxisome proliferation, and hyperlipidemia in the rats.113

Male and female rats (Wistar‐ and Fischer 344‐derived) 
were orally administered with 2EH for 14 consecutive days. 
At doses above 1.05 g/kg/day, 2EH was toxic, and resulted 
in their death. Relative liver weights (liver‐to‐body weight 
ratios) administered at above 0.70 g/kg/day were increased in 
a dose‐dependent manner.114

2‐Ethyl‐1‐hexanol was administered by oral gavage 
to male and female Fischer 344 rats and B6C3F1 mice (0, 
25, 125, 250, and 500 mg/kg/day) for 13 weeks. In the rats, 
500 mg/kg/day reduced body weight gain, increased rela-
tive liver, kidney, stomach, and testes weights, and moderate 
changes at gross and microscopic levels in the liver and fores-
tomach were observed. In the mice, 2EH at 500 mg/kg/day 
increased relative stomach weights in males and produced 
few gross and microscopic changes in the forestomach and 
liver (female). A NOEL of 125 mg/kg/day was established 
for 2EH in rats and mice.20

2‐Ethyl‐1‐hexanol at 0, 50, 200, and 750 mg/kg were 
administered to mice five times a week for 18 months. At 
750 mg/kg, a slight increase in non‐neoplastic focal hyper-
plasia in the forestomach vs vehicle controls was shown. 
Besides, relative liver and stomach weights and incidence 
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of hepatocellular carcinomas were increased. No metastases 
were observed.21

The authors also reported the chronic effects in rats treated 
with 0, 50, 150, and 500 mg/kg 2EH by gavage five times a 
week for 24 months. Reduced body weight gain with 2EH at 
above 150 mg/kg and an increased incidence of lethargy and 
unkemptness were observed at 50 mg/kg. There were dose‐
related increases in relative liver, stomach, brain, kidney, and 
testis weights. Apart from marked aspiration‐induced bron-
chopneumonia in rats at 500 mg/kg, the hematologic, gross, 
and microscopic changes indicative of tumors were compara-
ble among all rat groups.21

7.3  |  Topical exposure
The acute dermal LD50 value was 2.38 (1.51‐2.76) g/kg102 in 
rats, over 2.6 g/kg11 in rabbits. Signs of percutaneous toxic-
ity were not observed, and skin irritation was moderate when 
2EH (at 0.10, 0.316, 1.00, and 3.16 ml/kg) was dermally ad-
ministered to the closely clipped, intact abdominal skin of 
albino rabbits.11 Additionally, 2EH was administered to rab-
bit eyes and the subsequent corneal injury was graded as 5 
on a scale of 10,102,115 indicating severe acute eye irritation.11

2‐Ethyl‐1‐hexanol diluted by polyethylene glycol (1%, 
3%, 10%, 30%, and 100%) was administered to rabbit eyes. 
The potent ocular irritant 2EH produced moderate eye irri-
tation from concentrations between 3% and 30%, and severe 
eye irritation at 100%.116

7.4  |  Intraperitoneal exposure
Intraperitoneal treatment of rats with 0.32 g/kg 2EH de-
creased plasma ketone bodies (from 0.8 to 1.6 mmol/L), 
increased hepatic triglycerides, and increased lipids predomi-
nantly in periportal regions of the liver lobule.117

After intraperitoneal injection, 2EH did not induce a sig-
nificant production of hydrogen peroxide generated by per-
oxisome proliferators in the rat hepatocytes.118

8  |   EFFECTS ON REPRODUCTION 
AND TESTIS

Since there is no report in humans regarding reproductive tox-
icity effects, Japan Society for Occupational Health classified 
2EH as group 3: Substances suspected to cause reproductive 
toxicity, based on the animal experimental data showing the 
effects on fetal growth and skeleton formation.14

Sprague‐Dawley rats were exposed to 2EH vapor for 
7 hours/day on gestational days (GD) 1‐19 at 850 mg/m3 
(160 ppm). 2EH reduced maternal food intake, but there were 
no significant decreases in weight gain, water intake, number 
of fetuses, and fetal weight.119

Teratological studies were conducted using Wistar rats 
orally treated with 2EH at up to 1660 mg/kg on GD 12. 
Teratogenic fetal malformation was increased,120 but there 
was no clear description in the article whether an appropriate 
comparison with the control group was made or not.

Developmental effects of 2EH in Wistar rats at 0, 130, 
650 and 1300 mg/kg (10 animals per group) by gavage, 
from GD 6 to 15, were investigated. 2EH showed signifi-
cant maternal toxicity with autopsy effects at 1300 mg/kg 
and six animals were found dead on GD 9, 10 and 13. In this 
group, there was also an increased number of early resorp-
tions and high post‐implantation loss. The mean fetal body 
weight markedly decreased and an increased frequency of 
fetuses with malformations was observed. Furthermore, the 
number of fetuses bearing skeletal variations, retardations 
and dilated renal pelvis increased. A 650 mg/kg dose of 
2EH showed slight clinical signs/symptoms in the mother 
without maternal body weight changes. Fetal body weights 
were slightly reduced, and the number of fetuses with skele-
tal variations and retardations increased. Six fetuses among 
the three litters in this group showed asymmetric dumbbell‐
shaped thoracic vertebrae. The NOAEL for the maternal 
and fetuses was 130 mg/kg.121

2‐Ethyl‐1‐hexanol was orally administered to female mice 
at 1525 mg/kg/day from GD 6 to 15. Of 49 maternal mice, 
17 died, and maternal body weight decreased. In addition, 
the number of births, the survival rate, and the weight of the 
infant significantly decreased.122

2‐Ethyl‐1‐hexanol was administered via occluded dermal 
application for 6 hours/day on GD 6 through 15 to pregnant 
Fischer 344 rats at 0‐2520 mg/kg/day. The NOAEL for the 
maternal toxicity of 2EH was 252 mg/kg/day based on skin 
irritation, and 840 mg/kg/day based on systemic toxicity. The 
NOAEL for developmental toxicity was at least 2520 mg/kg/
day, with no teratogenicity.123

The rate of Sertoli cell proliferation was assessed in male 
CD Sprague‐Dawley pups. At 24 hours after treatment with 
2EH at 166.4 mg/kg, the number of Sertoli cells in the tes-
ticular sections was not diminished. 2EH does not alter the 
morphology of Sertoli cells and gonocytes.124

It was investigated whether 2EH is responsible for testicu-
lar damage. No testicular damage was observed in young rats 
orally administered with 2EH at 351 mg/kg/day for 5 days.125 
Additionally, administration of 2EH at 130 mg/kg/day for 
14 days resulted in no testicular atrophy.113

In another study, 2EH were orally administered at 0, 
50, 200, and 750 mg/kg to B6C3F1 mice 5 times a week 
for 18 months. The relative testicular weight was slightly 
increased in the groups treated with over 50 mg/kg/day 
2EH. Similarly, 2EH was orally administered at 0, 50, 
150, and 500 mg/kg five times a week to Fisher 344 rats 
for 24 months. 2EH induces a dose‐dependent increase in 
testis weight.21
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Mixed cultures of Sertoli and germ cells were prepared 
from the testes of 27‐ to 30‐day‐old Sprague‐Dawley rats and 
the testicular toxicity was examined. The addition of 2EH at 
2 × 10−4 M to the culture medium did not cause an increase 
in the rate of germ‐cell detachment, compared with non‐
treated condition.126

Sertoli cells, which produce lactate and pyruvate are 
thought to be the initial target of testicular atrophy.127 
The effect of 2EH on lactate and pyruvate production was 
studied, but their production was unaffected by 2EH at 
200 μmol/L.128

The antiandrogenic potential of 2EH in vitro with a 
mouse Leydig tumor cell line, MA‐10 cells, was evaluated. 
2EH did not have significant effects on cell viability and 
steroidogenesis.129

9  |   MUTAGENICITY, 
CARCINOGENICITY, AND 
GENOTOXICITY

Doses of 16.7, 58.3, and 175 mg/kg/day to male Fischer 344 
rats were administered by gavage for 5 consecutive days. 

2EH did not induce detectable chromosomal aberrations.130 
Oral gavage doses of 2EH were administered 5 times a week 
to B6C3F1 mice at up to 750 mg/kg for 18 months and 
Fischer 344 rats at up to 500 mg/kg for 24 months. 2EH was 
not oncogenic in rats, but there were weak trends of adverse 
hepatocellular carcinoma incidence in mice at higher doses.21

There are several in vitro bacterial studies. Some group 
reported that 2EH was found to be mutagenic131 and cause 
DNA damage.132 However, other groups reported that 2EH 
was found to be non‐mutagenic in the Ames test and Rec 
assay.133-138

Using a modified Ames Salmonella/microsome assay 
to determine mutagenicity, urine was pooled from male 
Sprague‐Dawley rats dosed daily for 15 days with 1000 mg/
kg of 2EH. No mutagenic substances were excreted in the 
urine.139 2EH also exhibited no chromosome damage140 or 
mutagenic activity.136

In a carcinogenesis bioassay of DEHP and related com-
pounds, it was reported that 2EH was not bound to hepatic 
DNA of Fischer 344 rats 24 hours following oral gavage 
administration.141 In vitro promoting activity of DEHP and 
its hydrolysis product, 2EH, were studied using promotable 

T A B L E  5   Summary of the in vitro studies

Experimental conditions Effects Reference

The mitochondrial fraction of rat liver was treated with 1% 2EH Low inhibitory effect on the state 3 respiration 143

Adult rat hepatocytes were cultured for 48 h in the presence of 0.2 
and 1 mmol/L 2EH

Increased numbers of peroxisomes 144, 145

Increased activities of carnitine acetyltransferase and 
7‐ethoxycoumarin O‐deethylase (at 1 mmol/L)

Primary rat hepatocytes were cultured with 0‐0.5 mmol/L 2EH for 
72 h

No effect on CN‐‐insensitive palmitoyl‐CoA oxidation 146

Cells of mice, rats, guinea pigs, and marmosets were cultured with 
0.5 mmol/L 2EH for 72 h

Increased cyanide‐insensitive fatty acyl CoA oxidase 
activity in mice and rats

147

Rat Kupffer cells were cultured with 1.25‐3 mmol/L 2EH for 3 d Increased intracellular calcium level at 3 mmol/L 148

Rat Kupffer cells were treated with 0.9 mmol/L 2EH No effect on superoxide production 149

The cytosol of mouse and rat liver was treated with 15 mmol/L 
2EH

Cytosolic GST was three times more potent in the mice 
than in the rats

150

Mouse liver was incubated with 0.25‐1.00 mmol/L 2EH Significant inhibition of ADH activity but no appreciable 
effect on ALDH activity

151

Rat liver was incubated with 2.5‐15.0 mmol/L 2EH Significant inhibition of the activities of aminopyrine 
N‐demethylase and aniline hydroxylase

152

Mice spleen cells were incubated with 10−8‐10−3 mol/L 2EH for 
24 h

IL‐2 was induced in CD4 cells, but not in CD8 cells 153

Mice trigeminal ganglia neurons cells were incubated with 
1‐10 mmol/L 2EH

Activation expressed TRPA1 in a concentration‐depend-
ent manner

154,155

Perfused rat liver was incubated with 0.1‐3 mmol/L 2EH Extensive cell damage due to lactose dehydrogenase 
leakage

156

Perfused rat liver was incubated with 200 µmol/L 2EH The rate of ketone body production was decreased to 
about 60%

117

Mitochondria isolated from perfused rat livers were treated with 
70 µmol/L and 3 mmol/L 2EH

Inhibition of the oxygen uptake in the periportal regions, 
but not in the centrilobular regions

157, 158, 
159
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mouse epidermis‐derived JB6 cells, which revealed that 2EH 
did not promote the anchorage of JB6 cells.142

10  |   STUDY ON MODE OF ACTION 
OF 2EH

The in vitro effects of 2EH are summarized in Table 5. The 
administration of 2EH at a concentration of 1% to mitochon-
drial fractions from the liver of male Wistar rats exhibited 
insignificant inhibitory effect on State 3 respiration.143

Adult rat hepatocytes cultured for 48 hours in the 
presence of 0.2 mmol/L 2EH contained more number of 
peroxisomes than controls. The activity of carnitine acet-
yltransferase (a mixed peroxisomal/mitochondrial marker) 
and 7‐ethoxycoumarin O‐deethylase (microsomal marker) 
increased ninefold and twofold, respectively, by the pres-
ence of 1 mmol/L 2EH.144,145

The effect on peroxisomal enzyme activity in primary 
rat hepatocyte was determined after incubation with 2EH at 
0‐0.50 mmol/L for 72 hours. 2EH at these concentrations had 
no effect on the oxidation of the peroxisomal marker, cya-
nide‐insensitive palmitoyl‐CoA. Therefore, it was inferred 
that 2EH had no effect on peroxisomal β‐oxidation.146

One study examined the possibility of species differences 
in response to 2EH. Hepatocytes were isolated from male 
mice, rats, guinea pigs, and marmosets, and incubated with 
2EH. Although 2EH increased the activity of cyanide‐insen-
sitive fatty acyl CoA oxidase in mice and rats, did not in-
crease in guinea pig and marmoset.147

Kupffer cells were isolated and incubated with 2EH, but 
no effect of 2EH on intracellular calcium and superoxide 
production.148,149

The inhibitory effect of 2EH on mouse and rat liver cy-
tosolic GST activities was monitored in vitro. The study re-
vealed that inhibition of GST by 2EH in mice was three times 
more potent than in rats.150

The activities of ADH and ALDH in mouse liver after 
0.25, 0.50, and 1.00 mmol/L 2EH treatments were examined. 
The in vitro study revealed a significant inhibition of ADH 
activity by 2EH at concentrations of 0.50 and 1.00 mmol/L, 
but no appreciable effect on the activity of ALDH.151

2‐Ethyl‐1‐hexanol at concentrations between 2.5 and 
15.0 mmol/L significantly inhibited the activity of aminopy-
rine N‐demethylase and aniline hydroxylase of rat liver.152

To investigate the effects of 2EH on immune responses, 
spleen cells from female BALB/c mice were incubated with 
2EH. The activities of interleukin (IL)‐6 and immunoglob-
ulin were not induced by 2EH. IL‐2 was induced by 2EH in 
CD4 cells, but not in CD8 cells. 2EH induced activation of 
CD4 cells, which was accompanied by the activation of tran-
scription factors, suggesting that 2EH functions as a modula-
tor of immune response.153

The effects of 2EH on heterologously expressed transient 
receptor potential (TRP) ion channels that cause sensory ir-
ritations in primary cell cultures of mice trigeminal ganglia 
neurons were investigated. 2EH activates heterologously 
expressed TRPA1 in a concentration‐dependent manner 
(1‐10 mmol/L). In Ca2+ imaging, 2EH acted as an agonist of 
multiple channels (TRPA1, TRPV1, GPCRs) which activate 
the trigeminal neurons.154,155

Although 2EH causes toxicity exclusively to peripor-
tal regions of the perfused liver, the toxicity is dependent 
on oxygen tension in isolated sublobular regions of the 
liver lobule. It is therefore unlikely for the selective injury 
to periportal regions in studies with perfused liver to be 
caused by drug delivery.156 It was reported that 2EH in-
hibits β‐oxidation of fatty acids in mitochondria, but not in 
peroxisomes.117

A second group also assessed 2EH toxicity in the liver. 
Livers from starved female Sprague‐Dawley rats were 
perfused with 2EH (at 3 mmol/L) dissolved in Krebs‐
Henseleit buffer (pH 7.4, 37°C) saturated with 95% O2, 
5% CO2. Following infusion of 2EH, O2 uptake and ke-
tone body formation were diminished by 50% and 80%, 
respectively. Furthermore, cell damage, as assessed by the 
appearance of LDH in the effluent perfusate, was appar-
ent. Only O2‐rich upstream regions of the liver lobule were 
damaged. This toxicity is dependent on oxygen tension in 
isolated sublobular regions of the liver lobule. Peroxisome 
proliferators accumulate in the liver due to their lipophilic-
ity. They inhibit actively respiratory mitochondria in the 
periportal region of the hepatic lobule and cause partially 
toxicity.157-159

11  |   CONCLUDING REMARKS

In this review, we focused on the toxicity of 2EH from the 
viewpoint of an indoor air pollutant.

2EH is metabolized to 2‐ethyl‐1‐hexanal, and then to 
2EHA, after which it is rapidly excreted from the body. 
However, drug‐metabolizing enzyme activity reportedly var-
ies greatly among individuals.28 Thus, long‐term exposure to 
2EH, especially in populations with low metabolic activities, 
may cause health effects even below the minimum concentra-
tion that causes toxic effects.

In both Japan and Northern Europe, 2EH was detected 
in buildings where patients complained of SBS symp-
toms.7,54 2EH has been reported to induce mucosal irri-
tation and effects on the central nervous system. Thus, 
2EH is considered among the causative agents of SBS 
symptoms.

Reports on the effects in animals of inhalation exposure 
to 2EH are limited. In particular, there is no report on the 
liver effects of its inhalation exposure. Orally ingested 2EH 
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increases the number of peroxisomes. Peroxisome prolifer-
ators activate peroxisome proliferator‐activated receptor α 
(PPARα) and affect lipid metabolism, inflammation, glucose 
homeostasis, cell proliferation, and apoptosis.160 Because 
2EHA, a metabolite of 2EH, acts as a PPARα agonist,161 it 
may be responsible for the effects observed upon 2EH oral 
administration on the liver.

In most buildings where the 2EH indoor air concentra-
tions are high, plasticizer‐containing flooring materials 
have a direct contact with concrete. There are multiple 
sources of 2EH in rooms, that is, primary emission from 
PVC products and/or building materials, and secondary 
emission resulting from chemically induced hydrolysis 
and/or microbial decomposition of plasticizers and/or 
adhesives.

It was reported that 2‐butanol is generated through the hy-
drolysis of several acrylic adhesives.65 n‐Butanol is emitted 
from the floor,66 produced from di‐n‐butyl phthalate,162 and 
2‐butanol from isobutyl phthalate.162 As a measure against 
VOCs emissions like that of 2EH, it is very important to 
use a flooring or other building material that does not emit 
VOCs even from the hydrolysis reaction, or to confirm that 
the moisture content in the concrete is sufficiently lowered 
before flooring the room.
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