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Prognosis Relevance of Serum Cytokines in Pancreatic Cancer
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The overall survival of patients with pancreatic ductal adenocarcinoma is extremely low. Although gemcitabine is the standard
used chemotherapy for this disease, clinical outcomes do not reflect significant improvements, not even when combined with
adjuvant treatments. There is an urgent need for prognosis markers to be found. The aim of this study was to analyze the
potential value of serum cytokines to find a profile that can predict the clinical outcome in patients with pancreatic cancer and
to establish a practical prognosis index that significantly predicts patients’ outcomes. We have conducted an extensive analysis of
serum prognosis biomarkers using an antibody array comprising 507 human cytokines. Overall survival was estimated using the
Kaplan-Meier method. Univariate and multivariate Cox’s proportional hazard models were used to analyze prognosis factors. To
determine the extent that survival could be predicted based on this index, we used the leave-one-out cross-validation model. The
multivariate model showed a better performance and it could represent a novel panel of serum cytokines that correlates to poor
prognosis in pancreatic cancer. B7-1/CD80, EG-VEGF/PK1, IL-29, NRG1-beta1/HRG1-beta1, and PD-ECGF expressions portend a
poor prognosis for patients with pancreatic cancer and these cytokines could represent novel therapeutic targets for this disease.

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) accounts for only
2.68% of all cancers, but it represents the fourth leading
cancer-related death worldwide just remaining after lung and
bronchus, prostate, and colorectum cancers in men and after
lung and bronchus, breast, and colorectum cancers in women
[1]. The dreadful prognosis of patients with this disease, less
than 5% reaching 5 years of survival after diagnosis, is due
to the little impact of the available chemotherapy on the
course of the disease and to tumormetastasis at presentation.
The development of the disease is a result of a complex
and does not yet fully understood process encompassing the
accumulation of mutations and the alteration of multiple
pathways.This could partly explain the clinical heterogeneity
of this disease and the great difference seen in the outcomes

between individual patients.Thereby, there is a trend towards
tailored therapies to specific genetic characteristics of indi-
vidual tumors, not only for PDAC but also for the majority
of the cancers [2, 3]. Throughout past years there has not
been remarkable survival improvement in PDAC patients;
consequently it is urgent that novel biomarkers are identified
for PDAC in order to reduce its mortality rate [4, 5].

As defined by the NIH Biomarker Working Group, a
biological marker (biomarker) is a characteristic that is
objectively measured and evaluated as an indicator of normal
biological processes, pathogenic processes, or pharmacologic
responses to a therapeutic intervention [6]. In PDAC, three
types of biomarkers are desirable: those that help in the
detection of the disease onset (diagnosis biomarkers); those
that predict responses to treatments (predictive biomarkers);
and those that forecast the likely course of the disease,
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including survival and recurrence pattern in the absence of
therapy (prognosis biomarkers). Finding a biomarker or a
panel of biomarkers that would be able to predict the clinical
impact of a chemotherapy regimen even before it is initiated
is highly warranted to (1) identify those patients more likely
to benefit fromaggressive therapies; (2) reduce risks of useless
side effects and help to set expectations for doctors and
patients; and (3) make attempt to apply new combination of
therapies or individualized treatment protocols according to
their expected responses. In addition, markers that display
prognosis significance also offer the potential to become
emergent therapeutic targets and novel strategies in the
management of PDAC [7, 8]. In the recent years, an extensive
research has been focused on the discovery of prognosis
biomarkers for PDACusing immunohistochemistry,Western
Blot, PCR, miRNA, proteomics, or DNA methylation based
methods amongst others [9–16].

Here we have focused on those inflammatory media-
tors that may constitute useful prognosis biomarkers for
PDAC detection. Altered levels of circulating inflammatory
cytokines have been found in cancer patients for nearly every
cancer examined, even at early stages of the development,
indicating that immune response has an important role dur-
ing carcinogenesis and that circulating inflammatorymarkers
may be useful cancer biomarkers [17, 18]. Cytokines are
signaling molecules that are key mediators of inflammation
or immune response. We presume that, due to the extremely
important role of microenvironment and desmoplastic reac-
tion in PDAC [19, 20], cytokines expression patterns within
the tumor and the surrounding microenvironment could
represent potential prognosis biomarkers for PDAC.

The aim of this study was to investigate the prognosis
significance of serum cytokines as a reflection of the host
response to tumor in PDAC patients. A conditional stepwise
algorithm based on likelihood rate analysis according to the
Cox’s proportional hazardmodel was used to identify the best
combination of significant prognosis factors. An equation
was then derived for modeling the survival in our specific
cohort. A leave-one-out cross validation was developed to
assess the model.

2. Material and Methods

2.1. Patients and Sample Collection. All patients in the study
were diagnosed with PDAC at Hospital Virgen de las Nieves
(Granada, Spain) from 2008 to 2011 (𝑛 = 14). All infor-
mation from patients, including gender, age, disease grade,
and symptoms was recorded. The mean age of the patients
was 66 years (range, 41–79 years) with a male to female
ratio of 50 : 50. Clinical staging for patients with pancreatic
adenocarcinoma was as follows: stage III (28%) and stage
IV (72%) (Table 1). PDAC patients had an overall survival
time of 12.6 months, all being treated under Gemcitabine +
Erlotinib combined therapy following the pattern previously
defined by Moore et al. [21]. There was not any history of
pancreatitis but 36% had type II diabetes mellitus and 36%
were smokers. Blood samples were collected after obtaining
the approval of relevant ethics committees and informed
consents of donors. Serum samples were collected from 2008

Table 1: Clinicopathologic characteristics of the study population
(𝑛 = 14).

Age at diagnosis, years (mean ± StD) 66 ± 10.5

Gender Male: 50%
Female: 50%

Disease stage III (28%)
IV (72%)

Type of chemotherapy Gemcitabine + Erlotinib

Clinical response
PR (14.29%)
SD (21.43%)
PD (64.28%

Survival time, months (mean ± StD) 12.6 ± 12.6
Outcome:
Follow-up months (mean ± StD) 12.6 ± 12.6
Death from pancreatic cancer 100%
Alive 0%
Lost to follow-up (censored cases) 0%

CEA level [𝜇g/L] (mean ± StD) 2219 ± 5017
Healthy: 0–37

CA 19-9 level [U/L] (mean ± StD) 899 ± 3185
Healthy: 0–5

PR: partial response; SD: stable disease; PD: progressive disease; StD:
standard deviation.

to 2011 using standard procedures at the Oncology Service of
Virgen de las Nieves Hospital. Blood samples were obtained
from patients diagnosed with PDAC at baseline and at two
weeks after initiation of therapy (Gemcitabine + Erlotinib)
and also from healthy individuals (14 samples). However, for
this study only pretreatment serum samples from patients
were considered to propose the prognosis cytokine panel.
Serum was obtained after blood centrifugation at 1500 rpm
for 10min at 4∘C. Samples were aliquoted and stored at
−80∘C.

2.2. Cytokine Antibody Assay. Soluble proteins in the sera
of PDAC patients were measured using a biotin label-based
human antibody array (Human Antibody L-series 507 Array
(RayBiotech, Norcross, GA, USA)), according to the rec-
ommended protocols. Briefly, all samples were biotinylated.
Antibodies were immobilized in specific spot locations on
glass slides. Incubation of array membranes with biological
samples resulted in the binding of cytokines to correspond-
ing antibodies. Signals were visualized using streptavidin-
HRP conjugates and colorimetric. Final spot intensities were
measured as the original intensities subtracting the back-
ground. Data were normalized to the positive controls in
the individual slide. The antibody array data is provided in
Supplementary Table 3 (see SupplementaryMaterial available
online at http://dx.doi.org/10.1155/2015/518284).

2.3. Statistical Analysis. All statistics and data analysis were
performed using the IBM SPSS statistic 20 software or the
statistical language R. Quality analysis was performed using
the “ArrayQualityMetrics” package in R to eliminate any
feasible outlier [22]. Average survival after administration of
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Gemcitabine andErlotinibwas calculated from the beginning
of the treatment to death, in months. For overall survival
(OS) analyses, the Kaplan-Meier curve was used as a method
that estimates the probability of survival to a given time
using proportion of patients who have survived to that time
[23]. The OS method has been widely applied in several
relevant studies to analyze how well a treatment works
[24–26]. The log-rank test was used to determine survival
differences between groups. Kaplan-Meier survival curves for
individual markers were obtained after dichotomization.The
cut-off values for eachmarker were those which displayed the
most significant discrimination between short (<6 months)
and long (>6 months) survival. In order to determine the
most significant variables contributing to the OS, univariate
and multivariate analyses were performed with the Cox’s
proportional hazard regression model [27] to determine
associations between serum cytokines and cancer-related
mortality. First, we analyzed associations between death and
levels of cytokines in patients before treatment, considering
one factor at a time. Second, amultivariate Cox’s proportional
hazard model was applied. The wrapper analysis was used
as the feature selection method, using conditional forward
stepwise algorithm based on likelihood rate, as applied in
other works [16, 28]. Wrapper methods attempt to jointly
select sets of variables with good predictive power for a
predictor [29]. Forward selection starts with an empty set
and selects the variable that gives the best classification result.
Given this first variable, another variable is added that realizes
the largest improvement of performance. Variables are added
until the performance does not improve [30].

The overall model fit was considered significant based on
chi-squared statistic test (𝑃 < 0.05). Besides, Wald index
was shown to determine the weight of each variable in the
global model, both uni- and multivariate. The cytokine levels
were introduced in the models as continuous parameters and
results were expressed as the hazard ratio (HR) or relative
risk ratio for one unit change. By analysis of these variables, a
prognosis index (PI) that considers the regression coefficients
derived by Cox’s model of all significant factors was obtained.
This model and the PI calculation were carried out according
to the equations provided by Cox [27]. Differences were
considered significant when 𝑃 < 0.05.

Leave-one-out cross validation (LOOCV) was applied to
assess the performance of the prognosismodel as the simplest
and most widely used method for estimating prediction
accuracy [31]. For this validation, one patient was removed
from the initial set, leaving a temporary training set and one
left-out sample (test sample). The training set was used to
obtain the Cox regression model. Subsequently, the PI of
the test sample was obtained from the previously performed
model. This PI was also applied to classify this patient
according to the OS as poor (<6 months) and fair (>6
months) prognosis.

3. Results

3.1. Survival Analysis of Patients with PDAC. Clinical char-
acteristics of the PDAC patients are summarized in Table 1.
For the whole study population, the OS rates were 46.15%

at 6 months, 23.08% at 12 months, and 7.69% at 24 months.
Mean duration of the follow-up for the entire study group
was 12 months (range: 1–40 months) and during that time
the 100% of the PDAC patients died due to the disease.
Survival probabilities were calculated using theKaplan-Meier
method. The survival curve for the whole cohort of patients
is shown in Figure 1(a).

3.2. Univariate Analysis between Serum Cytokines and Sur-
vival. First, a univariate approach was used in this study
to identify relevant and independent measurable factors
at prognosis that could be associated to a higher risk of
PDAC death. Serum levels of cytokines before treatment and
clinicopathologic parameters such as age, gender, stage, and
clinical response were analyzed. Amongst the clinicopatho-
logic parameters, age and the clinical response (progressive
or nonprogressive disease, according to the RECIST criteria
[32]) were associated with poor prognosis on univariate ana-
lysis (𝑃 = 0.030 and 𝑃 = 0.013, resp.). Concerning cytokines,
at univariate analysis after feature selection, expression levels
of BDNF (𝑃 = 0.034, HR 1.005, 95% CI (1.000–1.009));
HVEM/TNFRSF14 (𝑃 = 0.039, HR 0.924, 95% (CI 0.858–
0.996)); IL-24 (𝑃 = 0.023, HR 1.041, 95% CI (1.006–1.078));
IL-29 (𝑃 = 0.021, HR 1.012, 95% CI (1.002–1.023)); leptin R
(𝑃 = 0.018, HR 1.008, 95% CI (1.001–1.015)); LRP-6 (𝑃 =
0.022 HR 1.027, 95% CI (1.004–1.051)), and ROBO4 (𝑃 =
0.045 HR 1.002, 95% CI (1.000–1.004)) showed a significant
influence on prognosis. Results of the univariate analysis
of each cytokine as independent prognosis factors and its
beta-coefficients (𝛽), hazard ratios (representing the factor by
which the hazard changes for each one-unit increase of the
cytokine expression), 95% CI (upper and lower limits of the
confidence interval with a significance level of 0.05), and 𝑃
values are shown in Table 2. In order to determine survival
differences of these individual markers in PDAC patients,
Kaplan-Meier survival curves were generated using the cut-
off points providing the most significant discrimination in
terms of survival between groups (short and long survival).
Figures 1(b)–1(j) depict Kaplan-Meier survival plots of indi-
vidualmarkers showing significant prognosis differences. For
each curve, the log-rank 𝑃 value was provided to show that
the differences between the two groups were significant.

3.3. Multivariate Analysis between Serum Cytokines and
Survival. Despite the fact that often only those statistically
significant variables in univariate analysis are included in
multivariate analysis, some variables not being significant
in univariate analysis may appear jointly significant in a
multivariate analysis. Thus, in addition to the statistically
significant variables related to poor prognosis on the uni-
variate analysis, those also selected by the features selection
procedure were also included in the multivariate model. In
proteomics studies, the number of samples is usually low
compared to the number of variables, due to the limited
availability or the cost of measurements. Taking this into
account and in order not to introduce bias due to the small
sample problem, a wrapper was used as a feature selection
method using conditional forward stepwise algorithm based
on likelihood rate to reduce the dimensionality of the data
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Figure 1: Continued.
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Figure 1: (a) shows Kaplan-Meier disease-specific survival curve for the whole population in the study. The Kaplan-Meier survival curve
is defined as the probability of surviving in a given period of time. Each period of time is the interval between two nonsimultaneous
terminal events.There were no survival data censored as no information about the survival time of any individual was lost. (b–h) Plots depict
Kaplan-Meier survival curves of individual biomarkers tagged as significant prognosis markers: (b) clinical response; (c) age; (d) BDNF; (e)
HVEM/TNFRSF14; (f) IL-24; (g) IL-29; (h) leptin-R; (i) LRP-6; and (j) ROBO4.The cut-off values were determined considering those points
which maximized the dichotomization between poor and fair prognosis. The 𝑃 values for the log-rank tests are shown for every variable.

[30]. To assess the performance of the multivariate survival
model, a leave-one-out cross-validation (LOOCV) analysis
was performed. All estimated models using the different
training sets in the LOOCV displayed an average goodness of
fit (R-squared measurement) of 0.914.These results represent
that a 91.4% of the variability in the survival time is accounted
for by the statistical model. In the test set, this validation
showed an accuracy of 92.3%, sensitivity of 85.57% (true-poor
prognosis rate) and specificity of 100% (true-fair prognosis
rate) for all the left out samples (test samples). All estimated
models are depicted in SupplementaryMaterial (Supplemen-
tary Figure 1).

The best combination of cytokines selected by the multi-
variateCox’s proportional hazard analysis is shown inTable 3.
None of the clinicopathologic parameters demonstrated a sig-
nificant trend towards shortened overall survival (𝑃 > 0.05)
and were not considered in the global model. Concerning
cytokines at multivariate analysis, expression levels of B7-
1/CD80 (𝑃 = 0.043, HR 77.574, 95% CI (1.138–5289.4)); EG-
VEGF/PK1 (𝑃 = 0.049, HR 1.003, 95% CI (1.000–1.005))
and IL-29 (𝑃 = 0.026, HR 1.084, 95% CI (1.010–1.164))
showed a significant influence on prognosis. The significant
influence on survival observed in univariate analyses for IL-
29 was confirmed in multivariate analyses. Beta-coefficients
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Table 2: Prognosis factors in univariate analysis.

Variable Overall survival
𝛽 HR 95% CI 𝑃 value

BDNF 0.005 1.005 1.000 1.009 0.034
HVEM/TNFRSF14 −0.079 0.924 0.858 0.996 0.038
IL-24 0.040 1.041 1.006 1.078 0.023
IL-29 0.012 1.012 1.002 1.023 0.021
Leptin R 0.008 1.008 1.001 1.015 0.018
LRP-6 0.027 1.027 1.004 1.051 0.022
ROBO4 0.002 1.002 1.000 1.004 0.045
Age 0.086 1.089 1.008 1.177 0.030
Clinical response 2.064 8.706 1.057 71.692 0.013

Cytokines Overall model fit (𝑃 = 0.0023)
𝛽 HR 95% CI 𝑃 value

IL-24 (1) 0.042 1.042 1.003 1.023 0.026
IL-29 (2) 0.014 1.014 1.005 1.081 0.017
𝛽: coefficient provided by the Cox’s regression model for a particular patient and cytokine; HR: hazard ratio (represents the factor by which the hazard changes
for each one-unit increase of the cytokine expression); 95% CI: upper and lower limits of the confidence interval with a significance level of 0.05.

Table 3: Prognosis factors in multivariate analysis.

Cytokines Overall survival Overall model fit
𝛽 HR 95% CI 𝑃 value 𝑃 value

IL-29 0.081 1.084 1.010 1.164 0.026 0.004212
B7-1/CD80 4.351 77.574 1.138 5289.45 0.043 0.002494
PD-ECGF 0.264 1.302 0.944 1.797 0.108 0.001350
EG-VEGF/PK1 0.003 1.003 1.000 1.005 0.049 0.000134
NRG1-beta1/HRG1-beta1 0.020 1.020 0.994 1.047 0.129 0.000286

Cytokines Overall survival in the univariate analysis
𝛽 HR 95% CI 𝑃 value

IL-29 0.012 1.012 1.002 1.023 0.021
B7-1/CD80 0.373 1.452 0.876 2.407 0.148
PD-ECGF 0.044 1.045 0.997 1.096 0.068
EG-VEGF/PK1 −0.0001 1.000 0.999 1.000 0.640
NRG1-beta1/HRG1-beta1 −0.004 0.996 0.979 1.014 0.673
𝛽: coefficient provided by the Cox’s regression model for a particular patient and cytokine; HR: hazard ratio (represents the factor by which the hazard changes
for each one-unit increase of the cytokine expression); 95% CI: upper and lower limits of the confidence interval with a significance level of 0.05.

(𝛽), hazard ratio (HR), 95% CI, and 𝑃 values for the selected
cytokines are shown inTable 3. AlthoughNRG1-beta1/HRG1-
beta1 ((𝑃 = 0.129), HR 1.020, 95% CI (0.994–1.047)) and PD-
ECGF ((𝑃 = 0.108) HR 1.302, 95% CI (0.944–1.797)) failed
to significantly influence the prognosis as independent factor,
the Cox’s proportional hazard analyses using conditional
forward stepwise algorithm based on likelihood rate did
select them as significant variables that influence the overall
survival model (see below).

3.4. Prognosis Indexes of Serum Cytokines in PDAC Patients.
As combinations of biomarkers are likely to provide more
accurate prognosis information, the most accurate subset of
variables was sought using the conditional forward stepwise
regression approach based on likelihood rate. To illustrate the
interrelated effect on OS of the seven markers highlighted by

the univariate analysis, theCox’s proportional hazard analysis
was employed to select those variables jointly correlated with
the survival. As a result of this analysis, a model containing
only IL-24 (𝑃 = 0.026, HR 1.042, 95% CI (1.003–1.023))
and IL-29 (P = 0.0.017, HR 1.014, 95% CI (1.005–1.081)) was
returned. The overall model fit was shown to be significant
by the chi-squared statistic test (𝑃 = 0.0023). So as to
establish a prognosis index to determine PDAC patients
overall survival, these cytokines 𝛽-coefficients were entered
in the Cox’s model [27] and the following PI model was
generated:

PIunivariate = 0.042 × IL-24 + 0.014 × IL-29. (1)

Note that PIunivariate represents the multivariate model
derived from the combination of the underlined markers in
the univariate analysis.
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Figure 2: The Cox’s regression model. Observed (denoted by square, diamonds and triangles points) and predicted (denoted by solid line)
prognosis curves for the PDAC patients according to (a) univariate o and (b) multivariate Cox’s proportional hazard model analysis. As
explained in the text, the stepwise procedure based on the likelihood ratio was used to select a model containing a statistically significant
subset of prognosis factors. The three predicted prognosis curves in (b) are derived from step 3 (where three cytokines are included), step
4 (four cytokines included), and step 5 (five cytokines included) of this stepwise procedure. The predicted survival curves are adjusted to a
logarithmic distribution function, as expected. The coefficient of determination R2 is illustrative of the model goodness of fit. As coefficient
attested, these models would yield useful predictions, being the five cytokines multivariate model the most accurate, reaching a 92.6%. This
means that our PI properly models approximately 93% of the survival variation.

Regarding filtered cytokines obtained by multivariate
analysis, a second statistically significant (𝑃 = 0.0003)
survival model was built and the following PI model was
generated:

PImultivariate = 4.351 ×
B7-1
CD80
+ 0.003 ×

EG-VEGF
PK1
+ 0.081

× IL-29 + 0.020 × NGR1-beta1
HRG1-beta1

+ 0.264 × PD-ECGF.
(2)

Note that PImultivariate represents the multivariate model
derived from the best of all possible combinations using the
cytokines in themultivariate analysis having being previously
selected by the wrapper feature selection method.

Whether these PI can contribute to accurately model
survival for this patient cohort was assessed by regression
analyses. R-squared measurement was given as a proof of
goodness of fit. Applying the equations for both PIs, scores
of the proposed PIunivariate and PImultivariate were calculated,
ranked, and correlated to OS. As expected, both survival
models showed a logarithmic tendency when plotted against
time. Figure 2 depicts observed PI scores and predicted log-
arithmic adjustments for these models. For the multivariate
model, although the overall model with five cytokines was
probed to be statistically significant, regression analyses for
models containing 3 and 4 cytokines were also evaluated.
R-squared values obtained were 0.664, 0.727, 0.906, and
0.926 for PIunivariate and 3, 4, and 5 cytokines PImultivariate,
respectively. These results can be translated into that 66.4%,
72.7%, 90.6%, and 92.6%, respectively, of the variability

in the survival time are accounted for by the statistical
model. All models yield satisfactory results but multivariate
model embracing B7-1/CD80, EG-VEGF/PK1, IL-29, NRG1-
beta1/HRG1-beta1, and PD-ECGF stood out from the rest.

Prognosis index for multivariate model with these five
cytokines ranged from 0 to 40 in our cohort. Patients were
categorized into two groups according to their prognosis
index: poor prognosis (PI > 17) and fair prognosis (PI <
17). Survival curves were then compared among these two
prognosis groups (Figure 3(b)).The proposed groups are able
to properly differentiate between low (<6 months) and high
(>6 months) overall survival time. Overall survival in these
groups was highly statistically significant (𝑃 < 0.00056).
Indeed, as shown in Supplementary Table 2, the 100% of the
PDACpatients were correctly classified as long/short survival
according to the previously proposed cut-off in the prognosis
index (PI = 17). Prognosis index for univariate model was
also depicted and it ranged from 0 to 5. According to this
PI, patients were again categorized into two groups: poor (PI
> 1.5) and fair prognosis (PI < 1.5). Furthermore, survival
curves were compared among these two prognosis groups
(Figure 3(a)) and a significant correlation with the overall
survival was also obtained as low (<6 months) and high
(>6 months) survival. Overall survival in these groups was
less but still significant (𝑃 < 0.004) compared with the PI
multivariate.

4. Discussion

In this work, we have conducted an extensive analysis of
serum prognosis biomarkers using an antibody array com-
prising 507 humanproteins including cytokines, chemokines,
adipokines, growth factors, angiogenic factors, proteases,
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Figure 3: Kaplan-Meier PI survival curves. (a) shows survival plot for PI derived from univariate model, embracing 2 cytokines. A cut-off of
1.5 was chosen to divide cohort of patients in short (<6 months) and long (>6 months) survival times. (b) shows survival plot for PI derived
from multivariate model, embracing 5 cytokines. A cut-off of 17 was chosen to divide cohort of patients in short (<6 months) and long (>6
months) survival times. Both PI cut-off values were established considering the best discrimination between poor and fair prognosis. The 𝑃
values for the log-rank tests are shown for both comparisons.

soluble receptors, soluble adhesion molecules, and other
proteins.Themain objective of this analysis was to determine
if a specific cytokine panel in patient before Gemcitabine
and Erlotinib treatment could influence the survival time
after this treatment. This is a powerful tool with great poten-
tial in applications for biomarker discovery [33]. To assess
the impact of altered cytokine profiles on overall survival
(OS), Cox’s proportional hazard modeling and Kaplan-Meier
curves were developed. The effect of serum cytokines levels
on OS was dually explored. Initially, a univariate analysis
of the cytokines along with some clinicopathologic features
was carried out to determine possible significant explanatory
variables to model a prognosis index (PI). Whilst univariate
analysis returned those highly significant markers to be used
as independent prognosis factors, it must not be implied
that the combination of these markers would represent the
best performance for the multivariate model. Furthermore,
univariate selection methods have certain restrictions and
may lead to less accurate classifiers. Hence, themost adequate
approach to define the multivariate model would be inde-
pendent from the former, so disregarded variables could also
be considered to complete the multivariate model. Then, as
some variables may not be significant in univariate analysis
but become significant inmultivariate analysis, a multivariate
approachwas used in this study to identify jointlymeasurable
factors that could be used to model risk of PDAC mortality.
To overcome the noise and overfitting problem derived from
the fact that there weremore candidate features than samples,
a robust feature selection model was carried out [34]. As
long as feature selection is performed reasonably, accurate
prediction is achieved evenwith the simplest of the predictive
models [35].

In the course of our evaluation, we first identified 2
cytokines that correlated with patients’ prognosis in uni-
variate analysis. Following, a panel of 5 cytokines clearly
demonstrated a remarkably better overall performance for
modeling OS.Therefore, themultivariate model consisting of
B7-1/CD80, EG-VEGF/PK1, IL-29, NRG1-beta1/HRG1-beta1,
and PD-ECGF was shown to be more accurate than the
univariate model considering the most significant markers.
The effectiveness of our model is clearly demonstrated with
the evaluation performed by the LOOCV.

Notwithstanding proposed roles for B7-1/CD80, EG-
VEGF/PK1, and NRG1-beta1/HRG1-beta1 in PDAC, to the
best of our knowledge this is the first time that this combi-
nation of serum cytokines has been collectively described as
prognosis factors for PDAC.An overview of these biomarkers
is subsequently given.

B7-1/CD80. The B7 system is one of the most important
secondary signaling mechanisms and is essential in main-
taining the delicate balance between immune potency and
suppression of autoimmunity. B7-1 (CD80) and B7-2 (CD86)
are ligands expressed on antigen-presenting cells and they
are responsible of the costimulatory signaling whereby T cell
priming, growth, maturation, and tolerance are regulated.
Upon binding to their receptors, T cell activation and survival
are promoted. On the other hand, they can also deliver coin-
hibitory signaling binding to their inhibitory receptors and
blocking T cell response [36]. An inadequate costimulation
has been suggested to contribute to the progressive growth of
tumours [37]. The combination of B7-1 and B7-H1 has been
proposed as prognosis factor for PDAC [38, 39]. Although
the role of B7-1 seems to be antitumoral, overall emerging
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picture is that the aberrant or unbalanced expression of B7
family members can contribute to the escape of the immune
surveillance.

EG-VEGF/PK1.This molecule was first described as an exam-
ple of a class of highly specific mitogen that acts to regulate
proliferation and differentiation of the vascular endothelium
in a tissue-specific manner. Although this protein does not
show any structural homology to the VEGF family, they do
share multiple regulatory functions related to proliferation
and migration [40]. EG-VEGF/PK1 has been described to
be related to multiple cancer types including ovarian [41],
colorectal [42], prostate [43], hepatic [44], pancreatic [45]
and neuroblastoma [46]. It has also been described as a factor
for placenta angiogenesis [47].

IL-29. Also referred as IFN-𝜆1, it belongs to the type III INF
family and it has been described to induce similar biological
activities to type I INF family (INT-𝛼 and 𝛽). Although
both are able to induce antiproliferative responses in many
cell types, IFN-𝜆1 appears to be more limited. Signalling
via the IFN-𝜆1 results in activation of STATs, MAPKs and
PI3K pathways [48–50]. However, the ability of IFN-𝜆1 to
trigger these alternative pathways could be cell-type specific
or altered in cancer cells. Contrasting conclusion has been
derived from other study that suggests growth induction in
human multiple myeloma cells through MAPK activation
[51]. The precise role of IL-29 in the host responses and
immune surveillance has yet to be defined in the context of
cancer in general and in PDAC in particular.

NRG1-beta1/HRG1-beta1. Neuregulin-1 or heregulin-1 is an
extracellular protein ligand meant to bind to the ErbB recep-
tors family members, ErbB3 and ErbB4. Upon interaction
with their receptor, a wide range of biological events includ-
ing the induction and progression of several epithelial cancers
are prompted. The NRG1/HRG1 proteins play essential roles
in the nervous system, heart, and breast and are involved in
the development of human diseases, including schizophrenia
and breast cancer [52, 53]. An upregulation of the angiogenic
factor VEGF by NRG1/HRG1 has also been described [54].
Their proliferative effects are likely to be achieved through
the combined action of multiple pathways, including PI3K,
MAPK, and p38MAPK pathways [55] which has been specif-
ically described in PDAC cells. A worse survival rate was
related to those PDAC patients with higher expression of
HRG-𝛽 mRNA [56]. ErbB3 has a pivotal role in pancreatic
tumorigenesis promoting in vitro and in vivo cancer cell
proliferation [57]. It has been recently described that cancer-
associated fibroblasts release NRG1/HRG1 ligand, activating
PDAC cells by ErbB3/AKT-mediated signalling and enhanc-
ing tumorigenesis. This could be related to the insufficient
effect of Erlotinib (EGFR inhibitor) when combined with
Gemcitabina in PDAC patient treatment [58].

PD-ECGF. It is also known as thymidine phosphorylase;
its activity and expression in carcinomas of the esophagus,

stomach, colorectum, pancreas, and lung are significantly
higher than in the adjacent nonneoplastic tissue and may
have an important role in the proliferation of these solid
tumours. PD-ECGF is expressed not only in the tumor
cells but also in the tumor associated stromal cells [59, 60].
Regression analyses in bladder, colorectal, gastric, renal and
pancreatic carcinoma have marked PD-ECGF as a prognosis
factor for poor outcome [61].

It may not be possible for one single biomarker to provide
the necessary prognosis information about the patient to base
treatment options on. For this reason, panels of biomarkers
are advisable to accurately predict the stage of the disease
and how it will progress. Previous studies have indicated that
tumor prognosis is closely associated with immune escape
by tumor cells. A dynamic relationship between the host
immune system and cancer is emerging [62]. Present prog-
nosis scoring system, based on serum cytokines, has been
developed to identify patients at the highest risk of cancer
progression and death. Due to the emerging role of tumour
microenvironment on cancer progression and aggressive-
ness, cytokines could represent successfully predictors of
cancer outcomes as they can be considered as a reflection of
the complex tumour immunosuppressive network underly-
ing PDAC. The worsened prognosis associated with tumors
harboring this cytokine panel could be associated to a deregu-
lation of growth factor-mediated paracrine loops, particularly
in relation to proliferation and angiogenesis. Given the
interplay between B7-1/CD80, EG-VEGF/PK1, IL-29, NRG1-
beta1/HRG1-beta1, and PD-ECGF and poor prognosis, these
cytokines could be considered as novel molecular targets that
may lead tomore successful therapeuticmodalities for PDAC
patients.

We are aware of the limitation imposed by population
size in this study. However, we have tried to apply a
robust statistical analysis and validation. Although PDAC
is amongst the less prevalent cancer and studies with large
sample size are difficult to be carried out, its aggressive-
ness and the poor outcome urge to search novel prognosis
biomarkers as the basis for rational treatment decisions,
analysis of novel therapeutic interventions, and tailored
treatment approaches [63]. For this model to be applied in
clinical decisions making, further validations are impera-
tive in order to assure that this combination of cytokines
would successfully model the outcome in other patients
populations.

In summary, we have identified for the first time a
panel of five serum cytokines comprising B7-1/CD80, EG-
VEGF/PK1, IL-29, NRG1-beta1/HRG1-beta1, and PD-ECGF
with prognosis significance in PDAC.These molecules might
not only allow a more accurate prediction of prognosis of
patients with PDAC but also represent novel targets for ther-
apeutic agents. Studies in prognosis biomarkers achieving
true clinical impact and improving patient management and
outcome are a matter of the utmost importance in PDAC.
Besides, being able to foresee the prognosis of a PDAC
patient may help to avoid futile therapy approaches and to
improve quality of life of those whose long-term survival is
unpromising.
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