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Abstract: Maritime journeys significantly depend on weather conditions, and so meteorology has
always had a key role in maritime businesses. Nowadays, the new era of innovative machine learning
approaches along with the availability of a wide range of sensors and microcontrollers creates
increasing perspectives for providing on-board reliable short-range forecasting of main meteorological
variables. The main goal of this study is to propose a lightweight on-board solution for real-time
weather prediction. The system is composed of a commercial weather station integrated with an
industrial IOT-edge data processing module that computes the wind direction and speed forecasts
without the need of an Internet connection. A regression machine learning algorithm was chosen so as
to require the smallest amount of resources (memory, CPU) and be able to run in a microcontroller.
The algorithm has been designed and coded following specific conditions and specifications. The
system has been tested on real weather data gathered from static weather stations and onboard during
a test trip. The efficiency of the system has been proven through various error metrics.

Keywords: weather forecasting; microcontroller; IoT; maritime traffic

1. Introduction

Meteorology is the study of weather events, having a significant focus on the forecasting of
principal weather variables. Prediction on weather conditions is performed by using historical data
or mathematical models [1] or a combination of both. There is great importance in quantifying
meteorological variables such as temperature, humidity, air pressure, and wind flow; their variations
and interactions and how they change over time. For this reason, various spatial scales have been
proposed in order to describe and predict weather conditions on local, regional, or global levels [2,3].

Weather conditions have had a significant effect on sea-transportation and all the maritime affairs
over time [4]. Maritime activities are related to maritime commerce and maritime leisure, but they also
affect the environment and consequently atmosphere and so weather conditions. All are related and
interconnected and seem to belong to a vicious circle that impact the quality of the environment and
the maritime meteorological conditions [5,6]. The safety of maritime transportation is strictly related
to weather information. International Maritime Organization (IMO) [7] and the World Meteorological
Organization (WMO) [8] have proposed and defined regulation strategies on how to provide marine
weather predictions to minimize accidents and economic losses.

For these reasons, as also reported in [4], there is an essential need for maritime weather prediction
systems, which is connected to the sustainable development of sea commerce. The development of
advanced, real-time and onboard forecast systems is becoming of significant importance in order to
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achieve high weather forecast quality (especially with regard to storms, heavy precipitation, wind,
waves, and extreme temperatures).

In the era of Machine Learning (ML), there are available several methods that could be investigated,
adapted, expanded and tested in order to be used for weather prediction. The main approaches for
weather prediction could be classified in the following four categories [9]:

• nowcast: which predicts the current wind speed;
• short-term: where the weather parameters are predicted for the next 72 h [10];
• medium-range: where the time scale increases to a period of 3–7 days and finally;
• long-term: where the weather conditions are predicted for a period from one week to months or

even years [11].

When it comes to forecasting meteorological parameters like wind speed and wind direction,
special care must be taken in order to tackle the problem of the local environment and the complexity of
these parameters [12,13] which can seriously affect the performance of the forecasting methods [14,15].
Hence, it is a common approach to test several machine learning techniques to solve the weather
forecasting problem [16,17]. However, all these algorithms can be classified into two main categories:
online and trained. Trained models are ML algorithms that require a data-heavy learning phase before
being able to produce predictions. These models are typically well-performing, but their forecasts are
strongly linked to the training-set, thus making them not usable in moving scenarios like onboard
weather prediction. On the contrary, online learning models are algorithms that continuously learn
and adapt their predictions capabilities to the flow of data. These algorithms are the best candidates
for the development of an onboard weather prediction system for maritime applications because the
vessel position change does not influence them.

Nowadays, the Internet of Things (IoT) initiative has allowed communication and interoperability
between machines [18–20] and so, in the specific application area, meteorological data collection has
become more accessible and performant [21–23]. The IoT is, in fact, one of the disruptive and essential
technologies for fields such as meteorology, since it allows data from different machines to converge
on servers through the use of various technologies such as wireless sensor networks (WSN) and Low
Power Wide Area Network (LPWAN) [24]. Moreover, the increase in the computational capabilities of
IoT devices enabled the local processing of data pushing the IoT toward the “edge” paradigm [25,26].
In the edge paradigm, sensors are also endowed with local processing capabilities, thus making them
able to provide real-time analysis. In these scenarios, the connection with remote servers is used only
for data storage and synchronization, making network stability and availability not necessary for the
functioning of the system.

In the meteorological field, it is possible through the IoT-edge paradigm to develop low-cost
solutions [27] both for the collection and display of data and for the forecasting based on machine
learning algorithms executed directly on the IoT nodes. The junction of IoT and Artificial Intelligence
has been named AIoT and is considered one of the most promising technologies for the development
of innovative systems and services of the Industry 4.0 era [28].

The goal of this work is to present a complete system named PortWeather, which forecasts the
wind speed and direction at different horizons 30 min, 60 min, 90 min and two hours. The system
consists of a commercial weather station which sends the current weather parameters to a local IOT
unit based on a 32-bit micro-controller where the heart of the weather prediction algorithm runs
without the need for a connection with a remote server.

The PortWeather system uses an online-learning ML weather forecast algorithm that does not
require pre-train and the vessel position changes do not influence it. The system uses only local data to
continuously train the weather predictor that produces the 30, 60, 90, and 120 min forecasts. Among
various online learning algorithms developed for the weather forecast, a linear regression ML model
has been chosen because it allows a lightweight implementation executable on a tiny microcontroller
while still guaranteeing results comparable with more complex ML models.
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Such integrated A-IoT edge solution has been designed for use on small professional and
private boats that do not have the apparatus required for continuous connection to weather forecast
remote services.

The PortWeather system has been tested on different datasets, including static data collected by
ground weather stations and on a real sea trip where the system was installed on a test boat.

The PortWeather system can be easily installed on any typology of boats without requiring any
training or ML/AI configuration. This feature makes the system easy to install, scalable, and also
usable in long trips where the weather condition and micro-climate can change widely.

The manuscript is structured as follows: After the Introduction, Section 2 presents the state of the
art in weather forecast systems and in ML algorithms currently used for weather prediction. Section 3
describes the PortWeather system, while Section 4 describes the preparation of the testing dataset and
the results achieved by the forecast algorithm. Finally, Section 5 concludes the paper with some final
remarks, recommendations, and suggestions for future work.

2. Related Works

2.1. Embedded Weather Forecasting Systems

Various weather station with forecasting capabilities are nowadays available on the market or
have been developed as research activities. In [29], an Arduino based weather station is presented.
The system collects data from various weather sensors processing them using a neural network.
The network produces a “dressing index” that suggests to the users what would be the outdoor
perceived temperature.

In [30,31], the creation of an embedded system for short-term weather forecast is presented.
Like in the case of PortWeather, this system uses a tiny (PIC16F877) microcontroller as a computational
unit. In this case, the forecast of meteorological variables (wind speed and direction, temperature,
and relative humidity) is based on the juxtaposition of the data using five methods: Persistence Method,
Trends Method, Climatology Method, Analog Method, and Numerical Weather Prediction Method.
In this work, no machine learning method has been used, and no comparison to real data has been
shown, making the system difficult to be compared with PortWeather or any other similar solution.

In [32], a low-power distributed IoT system has been developed for the prediction fo crop frost.
The system is based on a network of weather parameters sensors connected through a Low Power Wide
Area Network (LPWAN). In this work, all the sensors stream data to a central server that integrates
them with data provided by public weather forecast services providing farmers and index of frost risk.
Also in this case, the nodes use a microcontroller board, but no computation and processing of data are
performed on-edge.

In [33], an interesting approach aimed at integrating Deep Learning (DL) weather forecast
algorithms with IoT is presented. The system is composed of a series of data gathering node connected
to a central server where the DL algorithm runs.

Most of the IOT and A-IOT (AI + IOT) systems for weather forecast have been designed as
networks of sensors connected to a central server where all the AI/ML algorithms are executed. Moreover,
most of these systems are based on ML algorithms that require data-intensive and difficult training phase.

To our knowledge, a system able to provide real-time local weather forecast using training-less
ML algorithms executed on low-power, low-cost IOT units without the need of a continuous internet
connection is still missing.

2.2. Machine Learning for Weather Prediction

A number of Machine Learning models have been already employed for the forecasting of
different weather parameters. State-of-the-art techniques implemented successfully in this area include
Artificial Neural Networks [34], Deep Learning techniques [35], Recursive Neural Networks [36],
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and Support Vector Machines [37]. On the other hand, there is a growing trend of combining various
models or even ensemble methods [38].

All of these methods focus on batch learning where a ’batch’ of training data is provided, and the
goal is to train the model that yields minimum error on predicting values. A significant disadvantage
of these methods and their corresponding application is that they require big training dataset and
enough memory to host them.

In [39], a performance analysis of time series forecasting models for short term wind speed
prediction is presented. In this work, authors used a wind measurement station to collect: wind speed
and direction, temperatures, humidity, and barometric pressure sensors. Six forecast algorithms have
been tested: Random walk, Linear trend, Quadratic trend, Simple moving average, autoregressive
moving average (ARIMA), and Nonlinear Autoregressive with an External Input (NARX) neural
network model. The paper reports that the ARIMA and NARX models appear more successful than
others demonstrating that regressive methods can be used for short time wind speed prediction.

In [40], another comparison of various algorithms for short-term weather prediction is reported.
Authors highlight that online learning models such as Exponentially Weighted Moving Average
(EWMA) and Simple Prior Moving Average (SPMA) perform better than static pre-trained neural
networks while also allowing for avoiding the need of a training dataset for the priming of the model.

Indeed, there are specific types of machine learning processes where the model updates its
parameters in a sequence of consecutive rounds. In these methods, there is no separation between
the training phase and the testing phase, but the goal is to update the prediction model at the end
of each trial to minimize the total loss over a sequence of trials [41]. Such type of learning process
is called online learning [42] and arise in a variety of real-world applications, including prediction
problems (e.g., forecasting the weather the next day) and decision/allocation problems (e.g., investing
in different stocks or mutual funds) [43].

All these works highlight that online learning based prediction models are performing well in
weather time series analysis and forecasting. Considering that they do not require a training phase
and that are typically based on linear calculus, these models are good candidates for the development
of server-free weather forecast IOT solutions.

In particular, linear regression models can be considered as an evolution of the Moving Average
algorithm that allow a different weight for each parameter instead of the equal weight of each
parameter in the case of the MA method. Moreover, Linear Regression allows a simple and lightweight
implementation. For this reason, the PortWeather system prediction algorithm has been based on a
linear regression model

3. The PortWeather System

Considering the complexity of performing weather forecasting on a boat without requiring
an internet connection and algorithm pre-training, we decided to build a novel A-IOT system for
sensor-driven real-time onboard weather prediction. The system is composed of: the weather station,
which carries out continuous measurements of weather parameter and it is installed on the boat cabin
roof; the data acquisition and elaboration unit and the machine learning algorithm that runs on the
microcontroller of the data acquisition unit providing real-time weather predictions.

3.1. Hardware

The hardware involved in the construction of the system consists of two main parts: a weather
station and the data acquisition and elaboration unit (called “Marine Gateway”). An architectural
diagram of the PortWeather system is illustrated in Figure 1.
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Figure 1. PortWeather system hardware diagram.

3.1.1. Weather Station

We installed a weather station (Airmar 220WX, Airmar Technology) on a tugboat unit. The Airmar
station collects wind apparent speed and direction and, thanks to the availability of an integrated
GPS and compass system, also calculates the real speed and direction of wind compensating the boat
movement. Moreover, the data obtained from the GPS module are also used by the system for data
and events chrono-referencing.

The weather station sends the data to the Marine Gateway using the NMEA 2000 protocol [44].
NMEA2000 is a widely used software protocol for maritime electronics that uses the CAN (Controller
Area Network) as a transport protocol.

Table 1 reports technical details and features of the Airmar 220 weather station.

Table 1. Weather station basic characteristics.

Airmar 220WX

Operating voltage Waterproof.
range of 12–24 DC.

Meteorological Parameters: Three-axis solid-state
Air Temperature, True/Apparent Wind compass with dynamic
Speed, True/Apparent Wind Direction, stabilization (better than 1◦

Barometric Pressure. static compass accuracy).
Three-axis accelerometer Three-axis rate gyros provide

for pitch and roll. rate-of-turn data.
Internal GPS. Current Time.

The weather station allows us to acquire a considerable amount of meteorological information
in real time, through an all-in-one sensor system. Table 2 presents the data that the weather station
gathers and provides:
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Table 2. Description of the provided meteorological parameters.

Measurement Unit of Measure Typical Operation Range

True Wind Speed m/s [0, 60]
True Wind Direction ◦deg [0, 360]

Air Temperature ◦C [−30, +60]
Barometric Pressure mbar [540, 1100]
Relative humidity RH% [0, 100]

3.1.2. Marine Gateway

The Marine Gateway is the acquisition and elaboration unit of the PortWeather system. The unit
acquires data from the weather station via NMEA2000 and elaborates them using the integrated
regression algorithm. All the computation, analysis, and forecasting is performed locally on the Marine
Gateway using the integrated 32-bit microcontroller. If a GSM internet connection is available, data are
also sent to the cloud [45], allowing further data analysis and visualization.

In order to interface the Marine Gateway with the Airmar weather station, an Actisense
NMEA2000 to RS-232 protocol converter has been used.

The Marine Gateway core is an industrial-grade development board called 4ZeroBox. The 4ZeroBox
(displayed in the Figure 2) is a modular hardware electronic unit that simplifies the development of
Industrial IoT applications [19] allowing rapid and seamless interfacing with industrial sensors, actuators,
and Cloud services [46].

Figure 2. The 4ZeroBox device.

The 4ZeroBox computational unit is based on the powerful 32-bit ESP32 microcontroller made
by Espressif Systems (Shangai, China) (240 MHz, 4 Mb Flash, 512 KB SRAM). The 4zerobox is
programmable in Python (or hybrid C/Python) thanks to the Zerynth software (v. 2.5.2, Zerynth, Pisa,
Italy) [20,47].

The 4zerobox allows acquiring data from both digital and analog ports, thus making it possible
to interface with digital connection enabled machines and apparatus (like in the case of the Airmar
station) but also with auxiliary analog external sensors [24,48].

The 4ZeroBox supports Wi-fi, Bluetooth, Ethernet, LoRa (a modulation technique that guarantees
long-range communications), RS485, and RS232 connection while also integrating an SD Card for
local data storage. Moreover, the system also integrates two onboard MikroBUS sockets to extend the
4ZeroBox with hundreds of other sensors available as MikroElektronika click boards.

In the PortWeather configuration, the two MikroBus expansion sockets have been used for the
GSM 3G modem and an IMU (Inertial Measurement Unit) sensor.

When the GSM connection is available, data stored temporarily on the SD card are transferred to
the Zerynth Device [49] services using the MQTT (Message Queuing Telemetry Transport) protocol.

Table 3 presents the technical description of the 4ZeroBox.
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Table 3. 4ZeroBox specifications.

Power Supply

Voltage 8 to 36 Vdc
Power Consumption Typical: 1 W; Maximum: 5 W

Inputs/Outputs

4–20 mA Channels (×4) Min supported input current 4 mA
(according to switches position) Max supported input current 20 mA

0–10 V Channels (×4) Min supported input voltage 0 V
(according to switches position) Max supported input voltage 10 V

Resistive Channels (×4) Min supported Resistor value 0 Ω
Max supported Resistor value 70 KΩ

Current Channels (×3) Min supported input current −50 mA
Max supported input current 50 mA

Opto-Isolator Inputs Input Voltage 5 to 24 V
Relays 10 A–250 V AC (general use) at 40 ◦C

8 A–30 V DC (resistive load) at 40 ◦C
Sinks 60 A–30 V (general use) at 40 ◦C

Digital I/O Max supported voltage 3.3 V

Connections

Power Supply, Sensors, RS485, Pluggable Screw
RS232,CAN, Relays, Connectors 5.08 pitch
Opto-Isolators, Sinks

Ethernet RJ45 Connector
Programming Micro USB Connector
Li-Po Battery JST Connector

Micro SD Micro SD Slot
MikroBus Click Add-on MikroBus Slots

Technical specification of the ESP32 microcontroller at the core of the 4ZeroBox is reported in Table 4.

Table 4. Esp32 specifications.

Microcontroller Tensilica 32-Bit Single-/Dual-Core
CPU Xtensa LX6

Operating Voltage 3.3 V
Power Supply Voltage: 7–12 V
Digital I/O Pins (DIO) 28

Analog Input Pins (ADC) 8
UARTs 3

SPIs 2
I2Cs 3

Flash Memory 4 MB
SRAM 520 KB

Wi-Fi and Bluetooth IEEE 802.11 b/g/n/e/i

3.2. Software

In the designing and the development of the PortWeather system, the problems of high overhead,
low efficiency, and low speed were addressed. A small memory footprint Machine Learning algorithm
was selected, developed, and implemented using a regression method allowing the execution on a low
memory microcontroller.

3.2.1. Zerynth Platform

There are various hardware abstraction layer libraries, RTOSs, and interpreted language engines
for the programming of microcontroller available on the market. However, considering the need
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for developing a Machine Learning model for weather prediction, we preferred to focus toward
a complete and reliable developing framework able to support Python and, in particular, hybrid
C/Python coding. For this reason, Zerynth [47] has been selected as the developing framework for the
PortWeather project.

Zerynth [20] is a software suite composed of several tools that allow programming of 32-bit
microcontrollers in Python or hybrid C/Python by also allowing a seamless connection of the
implemented devices to various cloud platforms. Zerynth includes a compiler, debugger, and an
editor, alongside various tutorials and example projects for a smooth learning experience. Moreover,
Zerynth is natively supported by the 4ZeroBox, together with all various libraries necessary for the
management of integrated peripherals, protocols, and sensors.

3.2.2. Regression Methods

Regression is a type of problem that aims at predicting an output from a number of inputs using
a limited number of data. Here, we use the following notation, x ∈ Rm, which describes the input
features, and yi denotes the target/output value of a parameter like the wind speed (or the wind
direction) that we need to forecast. Thus, {xi, yi} in our case will be training data and the list of training
data is often called dataset. The dataset consists of a number n of training data {xi, yi|i = 1, ..., n}.
Rn·m denotes the input space, and Rn the output space of n values. Regression is our basic problem
since the target parameters yi (wind speed and direction) are continuous.

Thus, the whole problem is simply reduced to find a function like Xn·m → Yn·1, for which we
minimize the error between the real wind speed value and the predicted wind speed value. In this
study, the available features are Temperature, Humidity, Wind direction and speed, and Barometric
Pressure, while the value to predict are the wind speed direction. We also keep a record of the previous
four values of each parameter which are fed as input to the regression model. One of the simpler
algorithms that can be used for this purpose is Linear Regression (LR), which, in our case, seeks to
predict the wind speed and direction as a linear combination of the input features.

In order to approximate y (wind speed and direction) as a linear functions of xi:

hθ(x) = θ0 + θ1x1 + ... + θmxm =
m

∑
i=1

θixi (1)

where x0 = 1 and θ = {θi|i = 1, ..., m} are the parameters of the linear function mapping from Xn·m to Yn·1.
The common error function used to calculate the difference between the output hθ(x) and the

actual value yi is the least square error function defined in terms of:

J(θ) =
1
2

n

∑
i=1

(hθ(xi)− yi)
2 (2)

For the minimization of the error J(θ), a successful approach would be the Gradient Descent
method which changes the values of the parameters repeatedly until convergence to a minimum value.
The Gradient Descent method can be described as the following update on the parameters θ:

θnew
j = θold

j − a
∂J(θ)

∂θj
(3)

where a is the learning rate that is usually set to 10−3 ≤ a ≤ 10−2 and smaller values for the learning
rate leads to slower convergence.

However, in the case of microcontrollers, the Central Processing Unit (CPU) clock frequency is
very low, and the memory is minimal. Thus, the machine-learning algorithm must be designed in
order to tackle both of these problems. On the other hand, Stochastic Gradient Descent (SGD) [50] is
an iterative procedure which has successfully used to optimize a function. The main advance of this
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SGD learning algorithm is that the parameters of the model are updated as the new data arrive [51].
This kind of procedure is currently gaining interest in the Deep Learning community [52].

In the case of the SGD algorithm, the update on the parameters is performed for a pair (xi.yi)

from the training set as:

θnew
j = θold

j − a
∂J(θ; xi.yi)

∂θj
(4)

In SGD, the learning rate a is typically much smaller than any corresponding learning rate in
Batch Gradient Descent algorithm because there is much more variance in the update.

In this work, the SGD algorithm was implemented through the use of a Flash Matrix table in
which the acquired measurements are stored. The matrix is filled in a round-robin way so that those
older measurements are eliminated in favor of more recent measurements.

The system has no pre-trained model saved. When the system boots, the first data are used for
the learning of the algorithm; thus, the predictor does not produce any output. The method has only a
short-term training memory, so it continuously adapts to current inputs making the system usable in any
weather condition and geographical location. If the system is shut down for an extended period or if the
sensors are changed, the system is thus able to adapt to the new conditions without requiring re-training.

However, all these conditions are infrequent in the maritime context where boats are used in
limited geographical areas, and equipment change is due only to maintenance interventions.

Finally, the use of a low-power microcontroller-based data acquisition unit allows leaving the
system always on also when the boat is harboured. This allows the PortWeather system to learn
continuously being always ready for use.

4. PortWeather System Performance Tests

In order to test the prediction algorithm developed (both for the prediction of wind speed and
wind direction), two main types of tests were performed: a static test and a dynamic test. In both cases,
the results obtained for the predictions at 30, 60, 90, and 120 min were analyzed by calculating Median
Absolute Error (MAE) and the Root Mean Square Error (RMSE), which are common measures for time
series regression problems [53,54] and the mean absolute percentage error (MAPE) [55].

The measures are defined as:

MAE =
1
N

N

∑
i=1

∣∣ŷi − yi
∣∣ (5)

RMSE =

√√√√ 1
N

N

∑
i=1

(ŷi − yi)2 (6)

MAPE =
1
N

N

∑
i=1

∣∣∣∣∣ ŷi − yi
yi

∣∣∣∣∣ (7)

where N is the number of the testing samples, ŷi is the predicted value, and yi the true wind speed
(or direction) value. However, RMSE may not be a good indicator of the average performance of the
model [56]. Therefore, more importance will be given to the results obtained by the MAE.

We also calculated residual errors in the results of the predictions. The calculation of residual
errors is realized as the difference between the predicted value ŷi and the true wind speed (or direction)
value yi, and it is carried out in order to have further confirmation of the validity of the model.

4.1. Land Weather Station Test

The static test was carried out for the preliminary checks of the algorithm developed. In this case,
the data on which the algorithm was executed was acquired by static/land weather stations. The data
were collected from 6 November 2019 00:00:00 to 10 November 2019 13:45:00 from the weather stations
of Livorno and Pianosa, [57].
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Figure 3 displays the locations of the weather stations:

Figure 3. Lease of the Livorno and Pianosa weather stations.

Tables 5 and 6 provide a brief description of the data acquired from the land weather stations of
Livorno and Pianosa, respectively.

Table 5. Description of the Livorno station dataset.

Measurement Unit of Measure Range

True Wind Speed m/s [1, 19]
True Wind Direction deg [46, 257]

Air Temperature ◦C [+16, +21]
Barometric Pressure mbar [988, 1003]
Relative humidity % [72, 95]

Table 6. Description of the Pianosa station dataset.

Measurement Unit of Measure Range

True Wind Speed m/s [0, 18]
True Wind Direction deg [140, 346]

Air Temperature ◦C [+16, +20]
Barometric Pressure mbar [991, 1006]
Relative humidity % [80, 92]

Figures 4 and 5 present the comparisons between the real values and the respective forecasts for
the Livorno weather station dataset (both for wind speed and direction).
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Figure 4. Wind speed predictions for Livorno data.

Figure 5. Wind direction real and predicted value for the Livorno weather station dataset.

Table 7 presents the main results showing the wind speed error rates for the Livorno weather
station. In particular, in this case, it is noted that the prediction of the wind speed realized by the algorithm
differs by at most ±1.3 m/s, in the case of forecasts at two hours, with respect to the real speed.

Table 7. Comparing the wind speed prediction error for certain time scale for Livorno weather station.

Time Scale Prediction MAE RMSE MAPE (%)

30 min 0.970 1.244 19.34
60 min 1.040 1.378 21.03
90 min 1.225 1.546 24.70

120 min 1.342 1.694 26.77
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The calculated errors have been gathered, record by record, and Table 8 presents the distribution
of the residual values for the Livorno Weather station data set. It is concluded that the results obtained
are consistent with what is reported in the calculation of the MAE, in fact, in the worst case, which is
the 2-h prediction, most residual values belong to the range [−2, 2].

Table 8. Percentage of residual values for Wind Speed prediction for Livorno weather station.

Time Scale Prediction [−1, 1] [−2, 2] [−5, 5]

30 min 60% 91% 100%
60 min 59% 88% 99%
90 min 50% 81% 99%
120 min 47% 76% 100%

In the case of Livorno’s wind direction prediction, the algorithms differs by at most ±17.91◦,
in the case of forecasts at 2 h, as described in the following Table 9.

Table 9. Evaluations for wind direction prediction for Livorno weather station dataset.

Time Scale Prediction MAE RMSE MAPE (%)

30 min 10.69 15.00 5.84
60 min 14.08 18.68 7.62
90 min 16.36 21.57 8.77

120 min 17.91 23.89 9.61

Table 10 presents calculation of the errors for the wind direction for the Livorno station, with the
distribution of the residual values. It is inferred that the results obtained are consistent with what is
reported in the calculation of the MAE, in fact, in the worst case, the 2-h prediction, most residual
values belong to the range [−18; +18].

Table 10. Percentage of residual values for Wind Direction for the Livorno Weather Station.

Time Scale Prediction [−10, 10] [−15, 15] [−18, 18] [−25, 25]

30 min 61% 76% 81% 90%
60 min 41% 62% 73% 86%
90 min 38% 57% 68% 80%

120 min 35% 53% 65% 76%

Figures 6 and 7 present the comparisons between the real values and the respective forecasts for
the Pianosa weather station dataset (correspondingly for wind speed and direction).

Figure 6. Cont.
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Figure 6. Wind speed real value and predictions for the Pianosa weather station data set.

Figure 7. Wind direction real value and predictions for the the Pianosa weather station data set.

Table 11 presents the error rates for wind speed prediction for the Pianosa weather station. In this
case, the prediction of the wind speed realized by the algorithm differs by at most ±1.7 m/s, in the
case of forecasts at 2 h, with respect to the real wind speed.

Table 11. Comparing the wind speed prediction error for certain time scale for Pianosa weather station.

Time Scale Prediction MAE RMSE MAPE (%)

30 min 1.458 2.037 43.48
60 min 1.560 2.231 35.65
90 min 1.592 2.339 36.12

120 min 1.747 2.596 45.22

The calculated errors have been gathered recorded by record, and Table 12 presents the distribution
of the residual values for the Pianosa weather station. It is conducted that the results obtained are
consistent with what is reported in the calculation of the MAE, in fact, in the worst case, the 2-h
prediction, most residual values belong to the range [−2; +2]:
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Table 12. Percentage of residual values Wind Speed prediction for the Pianosa weather station.

Time Scale Prediction [−1, 1] [−2, 2] [−5, 5]

30 min 47% 74% 97%
60 min 48% 72% 95%
90 min 47% 71% 95%
120 min 43% 70% 94%

The worse prediction of the wind direction realized by the algorithm differs from the real direction
by at most ±22.75◦, in the case of forecasts at two hours for the Pianosa weather station as one can see
in Table 13.

Table 13. Evaluation for wind direction prediction for the Pianosa weather stations data set.

Prediction MAE RMSE MAPE (%)

30 min 16.42 22.25 7.18
60 min 17.64 25.75 7.46
90 min 20.48 29.16 8.66

120 min 22.75 32.50 9.58

Table 14 presents the error distribution for the wind direction parameter for the Pianosa weather
station. It can be observed that the results obtained are consistent with what is reported in the
calculation of the MAE, in fact, in the worst case, the 2-h prediction, most residual values belong to the
range [−25; +25].

Table 14. Percentage of residual values—Wind Direction.

Prediction [−10, 10] [−15, 15] [−18, 18] [−25, 25]

30 min 36% 54% 63% 80%
60 min 39% 53% 61% 79%
90 min 36% 49% 55% 69%

120 min 31% 45% 50% 66%

Both from the analysis of the errors and the study of the graphs, it is concluded that the
implemented algorithm reaches a high accuracy in predicting the wind speed and direction using
statically collected data.

4.2. Dynamic Test

After evaluating the accuracy of the prediction algorithm on statically collected data, we tested
the algorithm on dynamic data acquired using the PortWeather system installed on a tugboat. For the
test, the tugboat made a trip from Chios island (Greece) to Athens (Greece), and the data collection
lasted from 22 January 2018 11:24:00 to 9 February 2018 12:50:00. Figure 8 displays the planned trip of
the ship.

Table 15 provides a brief description of the data acquired from the on-board weather station.

Table 15. Description of the dataset from the on boat weather station (Airmar 220WX).

Measurement Unit of Measure Range

True Wind Speed m/s [0, 21]
True Wind Direction deg [0, 360]

Air Temperature ◦C [+4, +19]
Barometric Pressure mbar [996, 1030]
Relative humidity % [31, 75]
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Figure 8. The recorded trip of the tugboat from Chios Island, Greece to Athens, Greece.

Figures 9 and 10 present the comparisons between the real values and the respective forecasts
(correspondingly for the wind speed and direction) for the onboard data set.

Figure 9. Real Wind speed and predictions for the onboard dataset.
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Figure 10. Wind direction predictions for the onboard dataset.

Table 16 presents the results showing the error rates for the onboard weather station. It is noted
that the prediction of the wind speed realized by the algorithm differs by at most ±1.9 m/s, in the case
of forecasts for 2-h prediction, with respect to the real wind speed.

Table 16. Comparing the wind speed prediction error for certain time scale for on boat weather station.

Prediction MAE RMSE MAPE (%)

30 min 1.120 1.562 14.26
60 min 1.434 1.914 18.18
90 min 1.701 2.163 20.12

120 min 1.887 2.388 20.64

The calculated errors have been recorded record by record, and Table 17 describes the distribution
of the residual values. It is seen that the results obtained are consistent with what is reported in the
calculation of the MAE, in fact, in the worst case, which is the 2-h prediction, most residual values
belong to the range [−2; +2].

Table 17. Percentage of residual values for the Wind Speed for on boat weather station.

Time Scale Prediction [−1, 1] [−2, 2] [−5, 5]

30 min 59% 82% 98%
60 min 45% 75% 97%
90 min 36% 66% 97%
120 min 33% 60% 96%

The worse prediction of the wind direction realized by the algorithm differs by at most ±20.3◦, in
the case of forecasts at 2 h, with respect to the real Wind direction as it can be seen in Table 18.
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Table 18. Evaluations for wind direction prediction for on boat weather station data.

Time Scale Prediction MAE RMSE MAPE (%)

30 min 13.652 30.598 13.81
60 min 17.012 34.310 17.44
90 min 19.026 36.210 19.26
120 min 20.320 36.668 20.93

From the calculation of the errors, record by record, we have obtained Table 19 that describes the
distribution of the residual values. The results obtained are consistent with what is reported in the
calculation of the MAE, in fact, in the worst case, the 2-h prediction, most residual values belong to the
range [−21; +21]:

Table 19. Percentage of residual values for Wind Direction for the onboard weather station.

Time Scale Prediction [−10, 10] [−15, 15] [−21, 21] [−30, 30]

30 min 66% 78% 87% 92%
60 min 52% 68% 80% 89%
90 min 50% 63% 75% 84%

120 min 47% 60% 71% 83%

4.3. Overall Evaluation

Tables 20 and 21 present the MAE, MAPE, and RMSE error measures for the three different
weather stations (Livorno, Pianosa and onboard) for the wind speed and wind direction, respectively.
It can be inferred that, in terms of the MAE measure, the best accuracy of our method is performed
for the Livorno data set for the wind speed and wind direction parameter. An increase of all the error
measures is clearly reported with the increase of the prediction interval from 30 to 120 min.

Table 20. Benchmark results between the three different stations for the wind speed.

Livorno Pianosa On Boat Mean

Time MAE MAPE (%) RMSE MAE MAPE (%) RMSE MAE MAPE (%) RMSE MAE MAPE (%) RMSE

30 0.97 19.34 1.24 1.45 43.48 2.03 1.12 14.26 1.56 1.18 25.69 1.61
60 1.04 21.03 1.37 1.56 35.65 2.23 1.43 18.18 1.914 1.34 24.95 1.84
90 1.22 24.70 1.54 1.59 36.12 2.33 1.70 20.12 2.163 1.50 26.98 2.01

120 1.34 26.77 1.69 1.74 45.22 2.59 1.88 20.64 2.38 1.65 30.87 2.22

Mean 1.14 22.96 1.47 1.59 40.11 2.3 1.54 18.30 2.01 1.42 27.12 1.92

Table 21. Benchmark results between the three different stations for the wind direction.

Livorno Pianosa On Boat Mean

Time MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE

30 10.69 5.84 15 16.42 7.18 22.25 13.65 13.81 30.59 13.58 8.94 22.61
60 14.08 18.68 18.68 17.64 7.46 25.75 17.01 17.44 34.31 16.24 14.52 26.24
90 16.36 21.57 21.57 20.48 8.66 29.16 19.02 19.26 36.21 18.62 16.49 28.98

120 17.91 23.89 23.89 22.75 9.58 32.5 20.32 20.93 36.66 20.32 18.13 31.01

Mean 14.76 17.49 19.79 19.32 8.22 27.42 17.5 17.86 34.45 17.19 14.51 27.22

The comparison of real and predicted value shows a time lag effect on the predicted data.
As reported in [58], this effect is typical of simplified models where the prediction is highly correlated
with a linear combination of historical data. However, although this effect is present, its visual analysis
could lead to a misleading interpretation of the algorithm performances. Indeed, error measures analysis
shows that the PortWeather system has relative low MAE, MAPE, and RMSE suggesting that the
algorithm has an accuracy that is perfectly compatible with the kind of uses expected for the system.



Sensors 2020, 20, 3181 18 of 21

5. Conclusions

This study presents an onboard weather prediction IOT system that provides short-term forecasts
of wind speed and direction, without the need of an internet connection. The PortWeather system
is composed of a commercial weather station interfaced with an Industrial IOT acquisition unit.
The system is designed to be easy to install, reliable, and low-power, allowing the use on little and
medium-sized boats. A forecasting algorithm based on linear regression was designed and implemented
in order to work on a resource-constrained microcontroller for IOT applications. The implemented
algorithm uses an online learning strategy allowing the system to work without the need of a training
phase and Internet connection. This training-less approach allows the system to be resilient to boat
geographical location shift and to recover from prolonged shutdown or sensors replacement quickly.

The efficiency of the system has been proven by testing the system in real sea conditions where
weather parameters have been recorded on a tugboat operating in Greece. The algorithm performances
have also been evaluated using other datasets, acquired from land weather stations located in different
geographical and micro-climatic areas (Livorno and Pianosa, Italy).

As a general evaluation of the system, it is essential to highlight that linear regression algorithms
are straightforward methods for the forecast of a time series evolution. These model are very simple,
and sometimes it is possible to guess the output of these algorithms by looking at the time series plots.
However, this is true for scientists but not for fishers and sea operators.

Maritime traffic security for little and medium-sized boats is an open challenge that needs to be
addressed with accessible, scalable, and easy install and use solutions. Despite being based on an
algorithm whose performances could be overcome nowadays by more complicated and computational
massive neural-network-based algorithms, PortWeather can be considered as a reliable and innovative
IOT solution for the real-time weather forecast on little and medium-size boats.

Although the system performs relatively well, there is room for improvement. We plan to install
and test new microcontrollers that offer more CPU power as more memory. This will allow us to
implement more advanced machine learning algorithms that could help in mitigating the time-lag
effect introduced by the simplified regressive algorithm used in PortWeather. On the algorithm
performance evaluation, it would be of extreme interest to evaluate the system in heavy weather
conditions where the wind direction and speed parameter range are very high. Moreover, we plan to
work on the system cloud connection going beyond the pure remote data storage for further analysis.
On this side, it could be of extreme interest to allow the system to download historical weather data
from publicly available Application Programming Interfaces (APIs) like Weather Underground [59] so
that the system will be able to start instantly without the need for the initial training that is actually
required at the boot.
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