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Abstract

Background: Ovarian cancer is an extremely deadly gynecologi-
cal malignancy, with a 5-year survival rate below 30%. Among the 
different histological subtypes, serous ovarian cancer (SOC) is the 
most common. Anoikis significantly contributes to the progression 
of ovarian cancer. Therefore, identifying an anoikis-related signature 
that can serve as potential prognostic predictors for SOC is of great 
significance.

Methods: We intersected 308 anoikis-related genes (ARGs) and 
identified those significantly associated with SOC prognosis using 
univariate Cox regression. A LASSO Cox regression model was con-
structed and evaluated using Kaplan-Meier and receiver operating 
characteristic (ROC) analyses in TCGA (The Cancer Genome Atlas) 
and GSE26193 cohorts. We conducted quantitative real-time poly-
merase chain reaction (qPCR) to assess mRNA levels and applied 
bioinformatics to investigate the correlation between risk groups and 
gene expression, mutations, pathways, tumor immune microenviron-
ment (TIME), and drug sensitivity in SOC.

Results: Among 308 ARGs, 28 were significantly associated with 
SOC prognosis. A 13-gene prognostic model was established through 
LASSO Cox regression in TCGA cohort. High-risk group had poorer 
prognosis than low-risk group (median overall survival (mOS): 34.2 
vs. 57.1 months, hazard ratio (HR): 2.590, 95% confidence interval 
(CI): 0.159 - 6.00, P < 0.001). The area under the curve (AUC) values 

of 0.63, 0.65, and 0.74 reflected the predictive performance for 3-, 
5-, and 8-year overall survival (OS) in GSE26193 validation cohort. 
Functional enrichment, pathway analysis, and TIME analysis iden-
tified distinct characteristics between risk groups. Drug sensitivity 
analysis revealed potential drug advantages for each group. Further-
more, qPCR validation once again confirmed the effectiveness of the 
risk model in SOC patients.

Conclusions: We developed and validated a robust ARG model, 
which could be used to predict OS in SOC patients. By systemati-
cally analyzing the correlation between the risk score of the ARGs 
signature model and various patterns, including the TIME and drug 
sensitivity, our findings suggest that this prognostic model contributes 
to the advancement of personalized and precise therapeutic strategies. 
Nevertheless, further validation studies and investigations into the un-
derlying mechanisms are warranted.
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Prognosis

Introduction

Ovarian cancer, which is commonly referred to as “the silent 
killer”, remains a significant contributor to cancer-related mor-
tality in women [1]. The most common histological subtype of 
ovarian cancer is serous ovarian cancer (SOC). Despite some 
achievements in surgery, chemotherapy, targeted therapy, and 
immunotherapy, there are currently no reliable biomarkers 
available to predict overall survival (OS) at an early stage [2]. 
This highlights the urgent need to identify novel molecular 
biomarkers that can improve the prognosis and therapeutic ef-
fect of SOC patients.

The poor prognosis in SOC patients is often attributed to 
the occurrence of metastasis. Anoikis, which is a unique type 
of programmed cell death, plays an essential role in upholding 
tissue homeostasis [3]. However, anoikis resistance in tumor 
cells promotes their expansion and invasion into neighboring 
tissues [4, 5]. Recent studies have established prognostic mod-
els utilizing anoikis-related genes (ARGs) in glioblastoma, 
hepatocellular carcinoma, lung adenocarcinoma and blad-
der urothelial carcinoma, which have demonstrated excellent 
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predictive ability [6-9]. However, the application of ARGs in 
predicting the prognosis of SOC and its correlation with tumor 
immune microenvironment (TIME) and drug sensitivity are 
still limited. Thus, the development of a prognostic model in-
corporating ARGs may have attractive clinical values for SOC.

In our study, which exclusively utilized data from the sub-
type of SOC, gene expression data were retrieved from the 
TCGA (The Cancer Genome Atlas)-OV and GSE26193 co-
horts via the cBioPortal and GEO (Gene Expression Omnibus) 
databases, respectively. We systematically established and 
validated a prognostic model based on a 13-ARG signature in 
patients with SOC. We also assessed the correlation between 
risk groups and gene expression, mutations, gene ontology 
(GO), signaling pathways, TIME, and drug sensitivity. More-
over, we also performed a quantitative real-time polymerase 
chain reaction (qPCR) experiment on 12 SOC patients. The 
qPCR data were utilized to calculate risk scores, which were 
then employed to evaluate the survival differences among the 
patients. The findings reinforce the reliability of the ARGs risk 
model in effectively stratifying patients with SOC. Notably, 
within the 13-ARG risk model, the mRNA expression levels 
of LARP1, LRP1, ABHD4, IGF1, and RB1 were significantly 
downregulated in SOC patients. These results might provide 
valuable insights into the potential prognostic indicators for 
SOC patients.

Materials and Methods

Data acquisition and ARGs set curation

The mRNA expression data, along with mutation data and 
relevant clinical information of patients with SOC, were ex-
tracted from cBioPortal website. This study included patients 
with an OS of more than 30 days, resulting in a total of 291 
participants randomly assigned to a training cohort (n = 219) 
and a testing cohort (n = 72). External validation data were 
obtained from the GSE26193 dataset, which consisted of 107 
patients with gene expression and clinical information. To pre-
process the gene expression data and remove batch effects, we 
applied a combination of normalization and ComBat [10]. We 
retrieved 338 ARGs from the GeneCards website (Supplemen-
tary Material 1, www.wjon.org). The overlap of 308 ARGs be-
tween the TCGA and GSE26193 datasets was visualized utiliz-
ing the R package “VennDiagram”.

Construction of prognostic model and performance assess-
ment

Univariate and multivariate Cox regression analyses were con-
ducted, aiming to identify prognostically significant ARGs [11]. 
A 13-gene prognostic model was developed using LASSO Cox 
regression with the R package “glmnet” in the training cohort. 
The risk score was calculated as the sum of coefficients and the 
corresponding gene expression levels. The optimal cut-off value 
for the risk score, determined by the surv_cutpoint function in 
R, was 0.858 [12]. The distribution of risk groups was explored 

using principal component analysis (PCA). The area under the 
curve (AUC) estimators were calculated in both the TCGA test-
ing cohort and the GSE26193 validation cohort, utilizing identi-
cally and independently distributed representations.

Mutation profile and differential expression analysis of the 
prognostic risk model

In the TCGA cohort, the profile of all mutation genes was 
displayed by “ComplexHeatmap” R package based on the 
risk groups. The log-transformed mRNA expression z-scores 
profile was converted to log2(expression). To perform spe-
cific pathway analysis of mutations, a list of genes involved in 
various signaling pathways was obtained here (Supplementary 
Material 2, www.wjon.org).

Functional enrichment and immune cell analysis

For pathway and GO functional enrichment analyses, the 
“clusterProfiler” R package was used. Gene set enrichment 
analysis was performed using gene set enrichment analysis 
(GSEA) software. CIBERSORT was employed to estimate 
the relative abundance of 22 immune cells in the expression 
profiles of the TCGA cohort. Single-sample GSEA was also 
performed using the GSVA package to evaluate the TIME in 
high- and low-risk patients [13].

Chemotherapeutic response prediction

The prediction of chemotherapeutic response was carried out 
using the “pRRophetic” R package, which utilizes data from 
the Genomics of Drug Sensitivity in Cancer (GDSC) database 
[14]. Subsequently, a comparison was made between high-risk 
and low-risk patients regarding drug sensitivity. Furthermore, 
the correlation between ARGs and drug sensitivity was deter-
mined using the Pearson correlation test with the CellMiner 
database.

Human tissue specimens

Ethical approval was obtained from the Institutional Review 
Board of Hunan Cancer Hospital for this study involving hu-
man subjects. This study was conducted in accordance with the 
responsible institution’s ethical standards for human subjects 
and in accordance with the Declaration of Helsinki. Written 
consent was obtained from each participant prior to their inclu-
sion. We collected 12 fresh-frozen SOC tissue samples from 
patients who had not received chemotherapy or radiotherapy 
prior to standardized surgery, and three fresh-frozen normal 
ovarian tissues from patients undergoing hysterectomy or bi-
lateral salpingo-oophorectomy for other medical conditions. 
Tissue samples were acquired between September 2019 and 
July 2020, with diagnoses confirmed by expert pathologists at 
Hunan Cancer Hospital.
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qPCR

Total RNA was extracted from the samples using the TRIzol 
reagent (Accurate Biotechnology, Hunan, China) following 
the provided instructions. The RNA was reverse transcribed to 
cDNA using the Evo M-MLV RT Premix (Accurate Biotech-
nology, Hunan, China). Quantitative PCR was then conducted 
on the Bio-Rad CFX96 Touch Sequence Detection System 
using the SYBR® Green Premix Pro Taq HS qPCR kit (Ac-
curate Biotechnology, Hunan, China), with primer sequences 
listed here (Supplementary Material 3, www.wjon.org). Rela-
tive gene expression was quantified using the 2-ΔΔCT method, 
normalized to glyceraldehyde 3-phosphate dehydrogenase 
(GAPDH), and performed in triplicate.

Statistical analysis

All statistical analyses were conducted using R (version 3.5.1). 
The Kruskal-Wallis test was used to compare more than two 
groups, while the Wilcoxon test was utilized to compare two 
groups. The Kaplan-Meier (K-M) survival curves were gener-
ated using the R package “survminer” and the log-rank test 
was applied to compare the survival curves in different groups. 
Various endpoints of OS at 3, 5 and 8 years were investigated. 

To evaluate the model’s performance, the R package “tim-
eROC” was employed. Boxplots were created using the “gg-
plot2” package in R. Statistical significance was defined as P < 
0.05. P < 0.05 is marked as *, P < 0.01 is marked as **, and P 
< 0.001 is marked as ***.

Results

Construction of the anoikis-related risk signature model 
on the training cohort of SOC patients

The study’s workflow is depicted in Figure 1. A total of 308 in-
tersecting ARGs were identified among TCGA-OV, GSE26193 
and GeneCards datasets (Fig. 2a). In the TCGA training cohort, 
we performed univariate Cox regression analysis to determine 
prognostic ARGs in patients with SOC [15]. As a result, 28 
ARGs were found to be significantly associated with OS (P < 
0.05) (Supplementary Material 4, www.wjon.org). LASSO Cox 
regression and multivariate Cox regression were subsequently 
performed to identify a novel ARGs signature. Thirteen ARGs 
(NTRK2, FN1, MTOR, IGF1, ABHD4, HMCN1, CDKN1B, 
KRAS, MAVS, RB1, CRYAB, LRP1, LPAR1) were retained for 
model construction when achieving the optimal lambda value 
(Supplementary Material 6A, B, www.wjon.org). We then de-

Figure 1. A flow chart of identification and validation of a novel anoikis-related signature for SOC prognosis.
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rived the risk score formula for each patient as follows: risk 
score = (0.2639) × NTRK2 + (0.1024) × FN1 + (0.0304) × 
MTOR + (0.1430) × IGF1+ (0.1068) × ABHD4+ (-0.0027) × 
HMCN1+ (0.2063) × CDKN1B+ (0.1624) × KRAS+ (0.1638) 
× MAVS+ (0.1000) × RB1+ (0.2237) × CRYAB+ (-0.0183) 
× LRP1+ (0.0750) × LPAR1. To investigate whether these 
13 ARGs could be used as independent factors for evaluating 
ovarian cancer prognosis, univariate and multivariate analyses 
were carried out. The results indicated that NTRK2, CDKN1B, 
KRAS, and CRYAB exhibit potential as independent prognostic 

indicators in patients with SOC (Fig. 2b, c).
Additionally, patients were classified into high- or low-

risk groups using the optimal cut-off value (0.858) of the risk 
score. Particularly, the high-risk group exhibited a significantly 
worse prognosis compared to the low-risk group, as revealed 
by Kaplan-Meier survival analysis (median overall survival 
(mOS): 34.2 vs. 57.1 months, hazard ratio (HR): 2.590, 95% 
confidence interval (CI): 0.159 - 6.00, P < 0.001) (Fig. 2f). The 
AUCs for predicting OS at 3, 5, and 8 years were 0.75, 0.7, and 
0.74, respectively. (Fig. 2g).

Figure 2. Development and assessment of a prognostic signature comprising ARGs in the TCGA cohort for SOC patients. (a) 
Venn plot of ARGs among TCGA, GEO and GeneCards databases. (b) Univariate Cox proportional hazard regression analysis 
for ARGs. (c) Multivariate Cox proportional hazard regression analysis for ARGs. Hazard ratio (HR) greater than 1 is marked 
red, HR less than 1 is marked green. (d) The distribution of gene expression in high- and low-risk groups in TCGA testing cohort. 
(e) Evaluation of the performance of ARGs signature model in TCGA testing cohort. (f) Kaplan-Meier curves of the prognostic 
predictors for high-risk and low-risk with SOC patients. Purple represents the high-risk group, blue represents the low-risk group, 
and the black dashed line represents the median survival time. (g). Time-dependent ROC curves for predicting the 3-, 5-, 8-year 
survival in TCGA cohort. SOC: serous ovarian cancer; ARGs: anoikis-related genes; TIME: tumor immune microenvironment; 
GEO: Gene Expression Omnibus; TCGA: The Cancer Genome Atlas; ROC: receiver operating characteristic.
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Taken together, the 13 ARGs risk prediction model could 
effectively stratify SOC patients.

Validation of the SOC prognostic model in TCGA and 
GEO datasets

In order to evaluate the prognostic performance of the anoikis-

related risk signature model constructed in the training cohort, 
additional internal and external validation datasets were used. 
The same cut-off value (0.858) was applied to classify patients 
in both the TCGA testing cohort and the GSE26193 validation 
cohort. Firstly, PCA results demonstrated a clear distinction 
between high- and low-risk groups in both the TCGA testing 
cohort and GSE26193 (Fig. 2d, 3a).

Secondly, model evaluation was performed in 72 samples 

Figure 3. Kaplan-Meier and AUC curves for the prognostic risk signature in validation cohort. (a) PCA showed the characteristic 
distribution of high- and low-risk groups. Purple represents the high-risk group and blue represents the low-risk group. (b) Evalu-
ation of the performance of ARGs signature model. The AUC ranges from 0 to 1, and the larger the AUC value, the better the 
model. (c) Kaplan-Meier curves of the prognostic predictors for high-risk and low-risk with SOC patients in GSE26193. (d) Multi-
variate Cox regression analysis evaluated the prognostic value of the ARGs signature and other clinical factors in the GSE26193 
dataset. (e) Calculate and plot decision curve for SOC prognosis. PCA: principal component analysis; AUC: area under the curve; 
SOC: serous ovarian cancer; ARGs: anoikis-related genes.
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of the TCGA testing cohort, yielding an AUC of 0.62 (Fig. 2e). 
Similarly, in the GSE26193 dataset with 107 samples, patients 
were divided into high- (n = 78) and low-risk (n = 29) groups. 
The AUC was 0.67, indicating good predictive performance 
(Fig. 3b). Based on GSE26193 data, survival analysis dem-
onstrated that the high-risk group had a worse prognosis com-
pared to the low-risk group (mOS: 32.5 vs. 111.5 months, HR: 
2.504, 95% CI: 0.301 - 3.047, P = 0.002) (Fig. 3c), which was 
consistent with afore-mentioned findings.

Finally, the performance of the risk signature model 
was assessed through receiver operating characteristic curve 
(ROC) curve analysis. In the GSE26193 dataset, the AUCs 
for predicting OS at 3-, 5-, and 8-year were 0.63, 0.65, and 
0.74, respectively (Supplementary Material 7, www.wjon.
org). Moreover, independent contribution of the risk score to 
OS was supported by both multivariate Cox regression analy-
sis and decision curve analysis (Fig. 3d, e), indicating that the 
prediction model exhibited favorable performance.

Genomic feature analysis

To investigate potential genomic variations, we collected muta-
tion data from whole-exome sequencing. We displayed the wa-
terfall plot of mutated genes (Supplementary Material 8A, www.
wjon.org) and identified significantly different mutated genes 
in risk groups (Supplementary Material 5, www.wjon.org). 
The frequencies of TP53 and TTN mutations in the high- and 
low-risk groups were 96% vs. 91%, 43% vs. 34%, respectively. 
We also analyzed the signaling pathways of mutated genes and 
found no significant differences between the high- and low-risk 
groups (Supplementary Material 8B, www.wjon.org).

In addition, Kaplan-Meier survival analysis revealed the 
predictive value of CSMD3 and SYNE2 mutations in SOC 
patients, with statistically significant results (Supplementary 
Material 8C, D, www.wjon.org). Interestingly, the mutation 
frequency of SYNE2 was not significantly different between 
risk groups (10% vs. 5%, P = 0.296), while the mutation fre-
quency of CSMD3 was significantly different (19% vs. 6%, P 
= 0.011). This may indicate that mutations in the CSMD3 gene 
in high-risk populations are associated with poorer survival.

Comprehensive analysis of differential gene expression 
and biological pathways in different risk groups

To examine the association of 13 ARGs expression, we con-
ducted a correlation test in R and visualized the results in Figure 
4a, focusing on correlations with an absolute value of correla-
tion coefficient exceeding 0.15. We observed a positive cor-
relation among NTRK2, FN1, MTOR, IGF1, HMCN1, KRAS, 
MAVS, RB1, LRP1, and LPAR1. The Wilcoxon test, a statistical 
method, was utilized to identify differentially expressed genes 
(DEGs) between different risk groups. P value < 0.05 and |log2 
fold change (logFC)| > 1.5 were regarded as the cut-off criterion 
based on the TCGA cohort. Totally, 750 DEGs were identified, 
including 310 downregulated genes 440 upregulated genes. 
These results were visualized by a volcano plot (Fig. 4b).

Functional enrichments of DEGs revealed their involve-
ment in various biological process (BP), cellular component 
(CC), and molecular function (MF), such as non-coding RNA 
(ncRNA) metabolic process, mitochondrial inner membrane, 
neuron to neuron synapse, and asymmetric synapse (Fig. 4c). 
Furthermore, Kyoto Encyclopedia of Genes and Genomes 
(KEGG) enrichment analysis indicated these genes were main-
ly involved in calcium signaling pathway, spliceosome, and 
melanogenesis. These pathways play crucial roles in regulat-
ing cellular processes (Fig. 4d).

GSEA was performed to further explore biological expla-
nations for DEGs. The results demonstrated that genes in the 
low-risk group were closely associated with DNA replication, 
and spliceosome. Whereas, in the high-risk group, several tu-
mor progression pathways including MAPK signaling, Wnt 
signaling, as well as focal adhesion showed enrichment of 
genes (Fig. 4e, f).

Characteristics of the TIME in different risk groups

Understanding the role of the immune microenvironment in tu-
morigenesis and immunotherapy response is crucial. Hence, we 
conducted an in-depth analysis of the TIME landscape of SOC 
patients in high- and low-risk groups. The relative abundance 
of 22 types of infiltrating immune cells was shown in Figure 
5a. The abundances of T cells gamma delta, M0 macrophages, 
eosinophils and neutrophils quantified by using CIBERSORT 
in R platform were significantly different. A noteworthy con-
nection was observed between risk score and prevalence of 
immune cell infiltration among SOC patients. The high-risk 
group was more abundant, such as eosinophils (R = 0.25, P = 
0.038) and neutrophils (R = 0.32, P = 0.0058) (Fig. 5b, c). In 
our result, survival analysis unveiled SOC patients with high 
immune-infiltrating eosinophils or high immune-infiltrating 
neutrophils, grouped based on the median immune infiltration 
abundance as the cutoff, had a worse prognosis (Fig. 5d, e). 
This suggested that the functions of eosinophils and neutro-
phils in the tumor microenvironment were intricate. Elevated 
levels of these cells may also serve as indicators of the inflam-
matory status within the tumor microenvironment. The higher 
the level of inflammation, the more susceptible tumor cells 
were to evading immune surveillance and treatment, leading 
to a worse prognosis.

Additionally, the GSVA algorithm was used to evaluate 
the immune infiltration characteristics. As shown in Figure 
5f, notable variances were obtained in the abundance of three 
distinct immune-related cell types, including mast cells, neu-
trophils, and the type II interferon (IFN) response. It is worth 
mentioning that the activation of mast cells, neutrophils, and 
type II IFN responses were specifically identified within the 
high-risk group.

Correlation of ARGs signature risk score with drug sensi-
tivity

To predict drug sensitivity of ARGs signature, we acquired the 
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expression data and the corresponding drug sensitivity data 
from the GDSC and CellMiner databases. Based on the ex-
pression levels of the 13 genes-constructed ARGs risk mod-
el and the half maximal inhibitory concentration (IC50), the 
correlation coefficient was calculated. The IC50 is the most 
extensively utilized and informative indicator of a drug’s effi-
cacy [16]. |Pearson correlation coefficient| ≥ 0.4 and P < 0.001 

were included in this study. The higher the expression level of 
ARGs, the greater the IC50 value and the more significant the 
drug resistance (Supplementary Material 9A, www.wjon.org). 
When the correlation coefficient was less than -0.4, there was 
a decrease in the IC50 value with an increase in the expression 
of the specific gene, indicating that patients with high expres-
sion of these specific genes were more sensitive to the drug.

Figure 4. Differential expression of ARGs signature and enrichment of function and pathways in TCGA cohort. (a) The correlation 
mapping of 13 ARGs. Red represents positive correlation, and blue represents negative correlation. (b) In the volcano plot, red 
dots represent upregulated DEGs in different risk groups, green dots represent downregulated DEGs, and black dots represent 
these genes which are not differentially expressed. (c) The dot plot displays these significant terms of BP, CC, and MF based on 
significant upregulation and downregulation of genes. (d) The significant terms of KEGG pathways. (e, f) The top eight significant 
GSEA analysis results between the high- and low-risk groups. ARGs: anoikis-related genes; BP: biological process; CC: cellular 
component; MF: molecular function; KEGG: Kyoto Encyclopedia of Genes and Genomes; GSEA: gene set enrichment analysis; 
TCGA: The Cancer Genome Atlas; DEGs: differentially expressed genes.
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By using “pRRophetic” R package, we investigated the 
differences in sensitivity to clinical drugs and revealed the 
significant correlation between IC50 values of nine drugs and 
risk groups. These results might highlight the varying sensi-
tivities of different groups to specific drugs (Supplementary 
Material 9B, www.wjon.org). The IC50 value of metformin 
was observed to be higher in the high-risk group in contrast 

to the low-risk group, indicating that the low-risk group ben-
efited more from metformin (Supplementary Material 9C, 
www.wjon.org). Ponatinib (AP.24534) is a potent inhibitor of 
various tyrosine kinases and is currently authorized by the US 
Food and Drug Administration for managing chronic myeloid 
leukemia [17]. Our findings focus on the negative correlation 
between risk score and IC50, perhaps implying that patients in 

Figure 5. The correlation between the ARGs signature and TIME in TCGA cohort. (a) Boxplots depicting the CIBERSORT scores of 
22 immune cells of the high-risk patients compared to low-risk patients. (Wilcoxon test, *P < 0.05, **P < 0.01, ***P < 0.001). (b, c) The 
correlation plots showing the relationship between the eosinophils/neutrophils cells ratio and ARGs signature in TCGA cohort. (d, e) 
Kaplan-Meier survival curves of eosinophils/neutrophils cells groups. (f) Comparison of the immune infiltration signature between 
the different risk groups. ARGs: anoikis-related genes; TIME: tumor immune microenvironment; TCGA: The Cancer Genome Atlas.
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the high-risk group were more sensitive to ponatinib (Supple-
mentary Material 9D, www.wjon.org).

Expression of ARGs and qPCR validation

To determine whether the ARGs model is universally applica-
ble and robust, we conducted external experimental validation 

on 12 SOC patients. The expression levels of 13 ARGs were 
assessed using qPCR experiments, and patients were stratified 
into high-risk (n = 7) and low-risk (n = 5) groups using the 
same formula and cut-off values. Consistent with the findings 
from the TCGA training dataset, the high-risk group demon-
strated a worse OS than the low-risk group (Fig. 6a).

Furthermore, we investigated the mRNA expression level 
of 13 genes in 12 ovarian cancer patients and three gynecologi-

Figure 6. The mRNA expression of ARGs and qPCR validation. (a) Kaplan-Meier curves to compare OS of high-risk and low-risk 
groups based on the qPCR results in SOC patients. (b-f) The significantly differential mRNA expression of ARGs were presented. 
GAPDH was used as the internal reference. The error line represents the mean ± standard deviation (SD). SOC: serous ovarian 
cancer; ARGs: anoikis-related genes; OS: overall survival; qPCR: quantitative real-time polymerase chain reaction; GAPDH: 
glyceraldehyde 3-phosphate dehydrogenase.
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cal benign patients by qPCR assay. Compared to the normal 
tissue samples, LARP1, LRP1, ABHD4, IGF1 and RB1 were 
significantly downregulated (Fig. 6b-f), while mRNA levels of 
other ARGs had no significant difference (Supplementary Ma-
terial 10, www.wjon.org). These results suggest that LARP1, 
LRP1, ABHD4, IGF1, and RB1 may have more significant 
clinical implications in patients with SOC.

Discussion

Ovarian cancer is a devastating gynecological cancer that has 
a low 5-year survival rate of less than 30% [18, 19]. The most 
prevalent histological subtype of ovarian cancer is SOC. Since 
classic prognostic indicators, including pathological features 
(such as cancer antigen 125 (CA125)), serum markers, as well 
as traditional imaging indicators, have limitations when meet-
ing the challenges in precision medical care [20]. Anoikis is 
recognized as a hallmark of cancer [21]. It has been the subject 
of recent studies in various malignant tumors. Recent research 
found the regulation of mitochondrial activity can lead to ovar-
ian cancer spheroids becoming resistant to anoikis. This find-
ing suggests that targeting anoikis resistance may be a promis-
ing approach for treating peritoneal metastasis in SOC [22]. 
However, there is a lack of research examining the potential 
predictive significance of anoikis in SOC patients by using 
bioinformatics techniques.

In the present study, we developed and validated an anoikis-
related risk model for prognostic prediction in SOC patients, 
relying on a 13-gene signature (NTRK2, FN1, MTOR, IGF1, 
ABHD4, HMCN1, CDKN1B, KRAS, MAVS, RB1, CRYAB, 
LRP1, LPAR1). Although we executed an independent external 
validation on the GSE26193, we also performed a qPCR assay 
to detect the expression of those 13 genes from ARGs risk pre-
diction model. Based on qPCR results, patients were stratified 
with the same criteria, and the high-risk group had a worse OS 
compared to the low-risk group. These findings agreed with 
the bioinformatics analysis described previously. Furthermore, 
we detected that LARP1, LRP1, ABHD4, IGF1 and RB1 were 
significantly downregulated in SOC compared with normal 
ovary. Indicating that those ARGs could be used as independ-
ent factors for evaluating SOC prognosis, especially LARP1, 
LRP1, ABHD4, IGF1, and RB1. A previous study showed that 
LARP1 modulates BCL2 and BIK to resist apoptosis, promot-
ing ovarian cancer progression and chemotherapy resistance 
[23]. Pallero et al [24] discovered an alternative function for 
TSP1 signaling, which is facilitated by the calreticulin/LRP1 
co-complex. This finding has implications for the regulation 
of tissue remodeling and fibrotic reactions, as it contributes to 
the enhancement of resilience against anoikis [24]. ABHD4, 
a lipase, regulates tumor cell anoikis resistance. Suppres-
sion of ABHD4 in RWPE-1 cells, NP69 nasopharyngeal and 
OVCAR3 cells were susceptible to anoikis, while upregula-
tion of the gene enhanced sensitivity [25]. Extensive research 
has shown that IGF1 plays a crucial role in the emergence of 
resistance against anoikis-induced apoptosis in breast cancer 
cells responsive to estrogen. It was achieved by activating the 
PI3-kinase/Akt pathway [26]. Nanao-Hamai et al [27] discov-

ered that Rb1 effectively suppressed apoptosis, a regulatory 
mechanism involved in the calcification of vascular smooth 
muscle cells. Additionally, they observed that Rb1 activated 
Gas6 via the androgen receptor, exhibiting antagonistic effects 
in prostate cancer [27]. However, research on these genes in 
SOC is relatively limited, and the underlying mechanism also 
needs further study to be elucidated.

For further insight into the underlying characteristics of 
the ARGs risk model, we explored the correlation between 
high- and low-risk groups from multiple dimensions such as 
expression profile, mutation landscape, GO, signaling path-
ways, TIME and drug sensitivity. First of all, we analyzed the 
mutated landscape and identified significant mutated genes 
with differential frequencies. Remarkably, the high-risk 
group exhibited a considerably higher frequency of CSMD3 
mutations than the low-risk group. Moreover, our study, 
along with the findings of Lu et al, demonstrated CSMD3 
mutation was significantly correlated with a poor prognosis 
[28]. Therefore, it is possible to suggest that CSMD3 is a bio-
marker for SOC prognosis. Furthermore, in the expression 
profiling analysis, we found alterations in gene functions and 
the enrichment of signaling pathways among the DEGs. The 
high-risk group exhibited enrichment in multiple pathways 
implicated in tumor progression, such as MAPK, Wnt, and 
focal adhesion signaling pathways. Prior investigations have 
evidenced the role of MAPK signaling in governing the in-
vasion and migratory potential of SOC cells, whereas Wnt 
signaling impacts the maintenance of cancer stem cells, me-
tastasis, and immune modulation [29, 30]. These findings 
may provide insights into the potential reasons for the poorer 
prognosis observed in high-risk group. Further study of the 
abnormal regulatory mechanism of these signaling pathways 
will help to deeply understand the pathogenesis of SOC and 
provide a theoretical basis for the development of new thera-
peutic strategies.

In addition, anoikis is closely related to the TIME. Li et 
al [31] observed a positive correlation between anoikis scores 
and macrophage levels, as well as para-inflammation, in pan-
creatic cancer. Conversely, they found a negative correlation 
between anoikis scores and tumor-infiltrating lymphocytes 
(TIL) and Th1 levels [31]. According to the report by Xiao 
et al [32], in cases of colorectal cancer, there was a positive 
relationship observed between the risk score and regulatory 
T cells. On the other hand, a negative correlation was found 
between the risk score and activated dendritic cells, resting 
memory CD4 T cells, as well as eosinophils [32]. In our re-
search, we observed that risk scores were positively correlated 
with T cells gamma delta, eosinophils, neutrophils cells, and 
negatively correlated with M0 macrophages. Besides, we also 
found that the high-risk group had a higher abundance of eo-
sinophils and neutrophils compared to the low-risk group, 
which was significantly associated with a poorer prognosis in 
SOC patients. Overall, these findings suggested that the high 
levels of eosinophils and neutrophils may predict a poorer tu-
mor prognosis, as they can promote tumor migration and me-
tastasis formation by releasing cytokines. Finally, recent stud-
ies have reported that the correlation between anoikis score 
and sensitivity to chemotherapy drugs in several cancers [33, 
34]. Liu et al revealed that a synergistic lethal effect upon co-
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administration of AZD5153 and palbociclib, resulting in cell 
cycle arrest and heightened apoptosis, even in cell lines with 
impaired RB functionality in patients with ovarian cancer [35]. 
Furthermore, our analysis identified a significant correlation 
between RB1 expression and palbociclib sensitivity within the 
context of our 13-gene ARG risk prediction model in SOC. 
Our data demonstrated contrasting IC50 values for metformin 
and ponatinib between the high- and low-risk groups. Specifi-
cally, the high-risk group exhibited a higher IC50 value for 
metformin and a lower IC50 value for ponatinib, perhaps indi-
cating that patients in the risk groups have differential efficacy 
of chemotherapy drugs.

Although the model’s performance was evaluated through 
testing and independent validation cohorts, as well as in vitro 
wet experiments, demonstrating its favorable predictive ca-
pability, it is important to acknowledge the limitations of our 
study. First, the wet experiment conducted had a small sample 
size, resulting in non-statistically significant results, although 
consistent with previous findings. Therefore, it is essential to 
expand the sample size and incorporate additional data sources 
to strengthen reliability. Secondly, this study still lacks clinical 
information, including patient stage, treatment strategy, effi-
cacy, and other relevant information. In addition, our research 
needs to further explore the molecular mechanism and biologi-
cal characteristics to better understand the pathogenesis and 
prognosis of SOC. In conclusion, our study provides a nov-
el effective prediction model for the prognosis prediction of 
ovarian cancer, which has important clinical application value. 
We suggest that with the continuous advancement of technol-
ogy and the expand accumulation of data, the predictive ability 
of the risk model will be further improved.

Conclusions

In conclusion, our study developed and validated a robust13-
gene signature related with anoikis, which could predict OS 
in SOC patients. Additionally, we systematically generated 
and assessed the relationship between the risk score of ARGs’ 
model and various patterns, including the TIME and drug sen-
sitivity. We suggest that this prognostic model has the potential 
to benefit SOC patients and contribute to the development of 
more personalized and precise therapeutic strategies.
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