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Abstract Objective: Artificial neural networks (ANNs) are widely applied in medicine, since
they substantially increase the sensitivity and specificity of the diagnosis, classification, and
the prognosis of a medical condition. In this study, we constructed an ANN to evaluate several
parameters of extracorporeal shockwave lithotripsy (ESWL), such as the outcome and safety of
the procedure.
Methods: Patients with urinary lithiasis suitable for ESWL treatment were enrolled. An ANN
was designed using MATLAB. Medical data were collected from all patients and 12 nodes were
used as inputs. Conventional statistical analysis was also performed.
Results: Finally, 716 patients were included in our study. Univariate analysis revealed that dia-
betes and hydronephrosis were positively correlated with ESWL complications. Regarding effi-
cacy, univariate analysis revealed that stone location, stone size, the number and density of
shockwaves delivered, and the presence of a stent in the ureter were independent factors
of the ESWL outcome. This was further confirmed when adjusted for sex and age in a multivar-
iate analysis. The performance of the ANN at the end of the training state reached 98.72%. The
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four basic ratios (sensitivity, specificity, positive predictive value, and negative predictive
value) were calculated for both training and evaluation data sets. The performance of the
ANN at the end of the evaluation state was 81.43%.
Conclusion: Our ANN achieved high score in predicting the outcome and the side effects of the
ESWL treatment for urinary stones.
ª 2022 Editorial Office of Asian Journal of Urology. Production and hosting by Elsevier B.V. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
1. Introduction

Numerous multivariate computational programs have been
widely used over the past decades in medicine, mainly in
the oncology field. The aim is clear, to help diagnose and
stage cancers and other medical conditions in various ways,
as well as estimate the prognosis of critical diseases. These
clinical decision tools are utilised to categorise patients by
developing patterns and envisaging outcomes given a set of
“inputs”. These “inputs” may consist of specific patients’
or disease characteristics, making the generated outcome
thus more accurate than other analogous statistical pro-
cedures. These multivariate programs substantially in-
crease the sensitivity and specificity of the diagnosis,
classification, and the prognosis of a medical condition [1].

Artificial neural networks (ANNs) are simplified models
mimicking the central nervous system. They are networks
with highly interconnected neural computing and the capa-
bility to react to input signals, learning to adapt to the envi-
ronment. It is supported that these models offer the most
promising integrated approach to constructing truly intelli-
gent computer systems. It has been demonstrated that ANNs
can be effectively used as computational processors in a va-
riety of tasks such as speech and visual image recognition,
classification, data compression, forecasting, simulation
(modeling), and adaptive control. They demonstrated desir-
able characteristics absent in conventional computing sys-
tems, such as high performancewhen associatedwith noise or
incomplete input standards, high error tolerance, high par-
allel computing rates, generalization, and adaptive learning.
A typical network consists of one set of sensory units that form
the input layer, one ormore hidden layerswith computational
connections, and an output layer with calculation nodes [2].

Urinary lithiasis is a common problem worldwide with an
increasing trend due to climate change, lifestyle modifi-
cations, and diet [3]. Most patients with stone disease have
identifiable risk factors; it is noticeable though there is a
high stone recurrence rate, reaching approximately 50% at
10 years and 75% at 20 years [4]. Therapy may be quite
problematic sometimes, needing for repeating maneuvers,
either non-invasive or invasive, with increasing risk of
medical complications. Among the therapeutic alterna-
tives, extracorporeal shockwave lithotripsy (ESWL) is a non-
invasive method and represents the first choice for urinary
lithiasis under specific conditions. The outcome of the ESWL
depends on several parameters, such as stone location,
stone size, stone composition, and body mass index (BMI),
making this therapeutic option quite challenging [5].
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So far, different statistical models have been used to
evaluate ESWL as a therapy procedure with inconclusive
results. Since ESWL is a non-invasive technique, the prob-
ability of disintegrating a stone avoiding side effects is the
cornerstone of all mathematical or computational methods.
In this study, we constructed an ANN to evaluate several
parameters of ESWL, such as the outcome and safety.

2. Patients and methods

The database of the ESWL Department of the University
Hospital of Larissa, Greece, was used for constructing the
ANN. In total, 716 consecutive patients, 404 males and 312
females, with renal and ureteral stones that were treated
by ESWL entered our study. All patients met the lithotripsy
criteria, i.e., a single stone less than or equal to 1.5 cm in
the maximal diameter, no anatomical abnormalities (i.e.,
horseshoe kidneys, retrocaval ureter, ureteropelvic junc-
tion obstruction, congenital or acquired ureteral stenosis,
and congenital or acquired vesico-ureteral obstruction),
and no signs of urinary tract infection.

ESWL was performed using the electromagnetic Dornier
lithotripter SII (EMSE 220 F-XP, Dornier MedTech, Munich,
Germany) under fluoroscopic or ultrasonographic guidance,
as previously described [6]. All parameters of each session
were recorded for each case, following the standard lith-
otripsy protocol. Ultrasonography or computed tomography
urography prior to ESWL was used to exclude patients with
anatomical abnormalities. Analgesic was applied when
needed (fentanyl citrate, 0.05 mg, i.v.).

2.1. Statistical analysis

Tables 1 and 2 show patient characteristics and statistical
analysis. All variables were assumed to be discrete, and
categorical due to the group of data that was limited per
category (not infinite). The Chi-square test was used to
check categorical variables, with p<0.05 considered as
statistical significant (Statistical Package for Social Sciences
25.0, IBM Corp., Armonk, NY, USA).

2.2. ANN philosophy

A neural network is a sequence of “neurons” organized in
connecting layers [7]. The structure of neural networks was
formed by an “input” layer, one or more “hidden” layers,
and the “output” layer. The input signal is propagated
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Table 1 Characteristics of 716 patients treated with
ESWL.

Patient category Complication
after ESWL, n

No
complication
after ESWL, n

p-Value

Sex 0.470
Male 213 191
Female 156 156

Age, year 0.945
�30 18 29
31e45 76 69
46e60 136 117
�61 139 132

BMI, kg/m2 0.035
<18.50 0 3
18.50e24.99 104 92
25.00e29.99 167 166
�30.00 98 86

Stone location 0.311
Right kidney 131 113
Left kidney 116 121
Bladder 7 8
Left ureteral 49 58
Right ureteral 66 47

Stone size
(diameter),
mm

0.541

�6 42 31
7e9 89 78
10e11 78 71
12e13 59 67
14e15 44 40
16e20 47 51
21e32 10 9

Comorbidity 0.533
No symptoms 245 215
One symptom 68 71
Two or more

symptoms
56 61

Previous ESWL
sessions

<0.001

Yes 262 146
No 107 201

Analgesia 0.013
Yes 16 31
No 353 316

Number of shocks 0.118
2500e3500 349 325
�3500 22 20

Intensity 0.060
<40% 3 2
40%e60% 78 52
61%e80% 265 267
81%e100% 23 26

Pig-tail existence 0.797
Yes 80 78
No 289 269

Table 1 (continued )

Patient category Complication
after ESWL, n

No
complication
after ESWL, n

p-Value

Hydronephrosis, n <0.001
Yes 74 137
No 295 210

BMI, body mass index; ESWL, extracorporeal shockwave
lithotripsy.

Table 2 Statistical analysis of input variables.

Variable Mean SD

Age, year 54.70 14.19
BMI, kg/m2 27.66 4.25
Stone size (diameter), mm 11.50 4.45
Number of shock 3050.54 484.92

BMI, body mass index; SD, standard deviation.
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through the network in the forward direction through
layers. These neural networks are commonly referred to as
multiple layer perceptrons and have been successfully
implemented to solve difficult and varied problems through
their education in a supervised way, using algorithms,
known as error back-propagation algorithms. These algo-
rithms are based on the error-correction learning rule and
can be regarded as a generalization of an equally wide-
spread adaptive algorithm filtering, called least mean
square algorithm. The process of error back-propagation
consists of a forward and a backward passage through the
different layers of the network. In the forward passage, an
activity pattern (input path) is applied to the sensing con-
nections of the network and its action is transmitted
through the layers; eventually an output is produced.

During the forward passage, the synaptic weights are all
fixed. On the other hand, during the backward passage, the
synaptic weights are all adjusted according to the error-
correction rule. In particular, the real network response is
subtracted from the anticipated response (target) to
deliver the error signal. Then, this error signal propagates
back through the layers to the opposite path of the synaptic
nodes (error back-propagation). The synaptic weights are
adapted in such a way to bring the actual network response
closer to the desired response [8,9].

2.3. ANN structure

A high-level programming language and an environment for
numerical computation and visualization were developed
for a feed-forward error back-propagation neural network
using MATLAB (Matrix Laboratory). Data from 716 patients
were divided into two sets: A training set of 549 patients
and an evaluation set of 167 patients, intending to maintain
equal frequency of outcomes in each set. A group of 12
variables, according to patients’ characteristics, was
defined as input variables (Fig. 1).



Table 3 ANN input data.

Variables Neuron/
variable, n

Input value (neuron)

Sex 1 - Male or female
Age 1 - Positive number
BMI 1 - Positive number
Stone location 5 - Right kidney, left

kidney, bladder, left
ureter, or right ureter

Stone size 1 - Positive number
Comorbidity 5 - Anticoagulant, heart

issues, diabetes,
hypertension, or
coagulation issues

Previous ESWL 1 - Yes or no
Analgesia 1 - Yes or no
Number of

shocks
1 - Positive number

percentage
Intensity 1 - Yes or no
Pig-tail

existence
1 - Yes or no

Hydronephrosis 1 - 1: For complications; 0:
Without complications

Output neuron 1 - 1: For complications; 0:
Without complications

ANN, artificial neural network; BMI, body mass index; ESWL,
extracorporeal shockwave lithotripsy.
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Variables such as age, BMI, and stone size contributed to
the input layer with their initial values. Other variables
such as intensity, stone location, and analgesia had the
value of 1 when the category was present and 0 otherwise.
“Sex” variable had the value of 1 for female patients and
0 for male. Due to the values of each variable, the input
layer of ANN had 20 neurons in maximum (Table 3). Fig. 2
shows how stone location has been labeled with binary
values and, as a result, the variable splits into five neurons
in input layer. Each neuron corresponds to one organ in the
renal system. For example, if a stone exists in right kidney,
we set the value at (1, 0, 0, 0, 0). The same method was
followed for comorbidity.

After the training process and careful evaluation of the
network results, the hidden layer consisted of 20 neurons,
giving the best network performance. The output layer
consisted of one neuron, giving the value of 1 when com-
plications were present and the value of 0 when there were
no complications. Transfer function (from layer i to layer j)
and training function were the default functions of
MATLAB.

All participants were informed and gave their written
consents. The study was approved by the Ethics Committee
of the University of Thessaly (349/29.01.2016).

3. Results

In all 716 patients, efficacy and complications of the ESWL
were evaluated in a univariate and multivariate analysis,
for all the known parameters that affect the lithotripsy
treatment. Univariate analysis revealed that diabetes and
hydronephrosis were positively correlated to the ESWL
complications; previous therapies and analgesia were not
found to lead to any side effect. When adjusted for sex and
age, multivariate analysis confirmed these results.

Regarding efficacy, univariate analysis revealed that
stone location, stone size, the number and density of
shockwaves delivered, and the presence of a stent in the
ureter were independent factors of the ESWL outcome.
Figure 1 Artificial neural network nodes and connection.
BMI, body mass index; ESWL, extracorporeal shockwave
lithotripsy.

Figure 2 Stone location. Numbers (1, 0) were used in the
ANN to denote the presence of the stone in kidneys, ureters,
and bladder. 1: Stone presence; 0: Stone absence.
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These were further confirmed when adjusted for sex and
age in a multivariate analysis.

Initially, a data set of the statistically significant vari-
ables, as shown from the univariate and multivariate ana-
lyses, was chosen to build the neural network. Seven
variables (stone location, stone size, the number and den-
sity of shockwaves delivered, the presence of a stent in the



Table 5 Artificial neural network with 12 inputs.

Variable Training set
(334 patients),
%

Evaluation set
(84 patients),
%

Performance 99.10 75.00
Specificity 99.40 71.18
Sensitivity 98.80 84.00
Positive predictive value 98.80 91.30
Negative predictive value 99.39 55.26

Table 6 Final artificial neural network.

Variable Training set
(549 patients),
%

Evaluation set
(167 patients),
%

Performance 98.72 81.43
Specificity 98.88 74.02
Sensitivity 98.56 87.77
Positive predictive value 98.52 83.82
Negative predictive value 98.92 79.79
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ureter, age, and sex) were used as inputs in a subset of
patients, giving excellent outcomes in the training of the
network, but poor outcomes in the evaluation (Table 4).
When all 12 parameters were used though, the outcomes
were improved in both the training and the evaluation of
the neural network (Table 5).

A data set of 12 variables was finally applied to construct
the ANN (Fig. 1). The performance of the ANN (predictive/
real values) at the end of the training state reached 98.72%.
The four basic ratios (sensitivity, specificity, positive pre-
dictive value, and negative predictive value) were calcu-
lated for both training and evaluation data sets (Table 6).

The ANN showed high accuracy in predicting complica-
tions (81.43%) in evaluation set with high positive predictive
value (83.82%), indicating that prediction of complications
with the use of a neural network is very likely and
extremely promising. The input given the greatest weight
by the ANN was the stone location. BMI was in fourth po-
sition in terms of significance. Stone size was given negative
weight by the ANN, which may be due to the total number
of patients in our training set or the linearity of size mea-
surements used as inputs that did not enable the program
to locate stones with small size differences.

4. Discussion

Computational intelligence methods are gaining apprecia-
tion more and more nowadays in the medical field. With a
variety of paradigms, comprising expert systems, ANNs,
fuzzy systems, etc., these approaches are oriented in
solving medical problems resistant to conventional
computing methods. ANNs in particular, typically examine a
relationship between the variables of a data set, which is
not clearly understood. With specific variables as inputs and
outputs, the network is trained choosing cases from a data
set, while others are held to be used for testing the trained
network. The trained network’s effectiveness then is
evaluated by giving it input values from the withheld cases
of the data set, which are then compared with the corre-
sponding actual values from the testing cases. A good per-
formance of the ANN indicates that the neural network is
indiscriminate the pattern in the training cases, to identify
it in cases it has never seen before [10].

Numerous studies nowadays compared the different
statistical and neural computing methods, while others
merged neural computing into statistical processes
[11e14]. In most of them, trained neural models have
shown superiority as a predicting approach compared to
Table 4 Artificial neural network with seven inputs.

Variable Training set
(334 patients),
%

Evaluation set
(84 patients),
%

Performance 92.81 59.52
Specificity 93.41 55.93
Sensitivity 92.21 68.00
Positive predictive value 92.30 80.48
Negative predictive value 93.33 39.53
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statistical estimation tools. While the latter usually offer
concise descriptive outcomes, neural networks make fewer
mistakes, uncovering relationships in data sets which con-
ventional statistics fail to identify at all. It is suggested that
the backpropagation training method for ANNs is equivalent
to maximum likelihood estimation, making eventually the
multilayered feed-forward neural network a powerful
modeling instrument. Furthermore, a two-layer feed-for-
ward neural network with an adequate amount of hidden
nodes can estimate any continuous function accurately.
ANNs are back-propagated neural networks, which typically
employ training methods (phases) to minimize errors [15].

In the latter body of evidence, ANNs for the analysis of
medical data are increasing attention in the literature.
Indeed, the nature of medical conditions and the
complexity in differential diagnosis are critical motivators
of this concern. Numerous studies have adopted this
method in almost every medical field. In 1991, Baxt [16]
created a neural network for diagnosing myocardial
infarction. Medical history, clinical condition, comorbid-
ities, and imaging of patients who visited the emergencies
were used as inputs. The diagnostic accuracy was markedly
improved. In another study, ANNs were used in the diag-
nosis of coronary artery disease, reaching 91.2% of accuracy
[17], while age, cholesterol, and arterial hypertension have
been used as data in ANNs to diagnose coronary artery
disease [18]. Neural models have also been employed in
other heart diseases, such as heart valve defects and ar-
rhythmias with 95% and 99.2%e99.8% of accuracy, respec-
tively [19,20]. In 1993, McGonigal et al. [21] constructed a
neural network model to estimate survival in patients with
penetrating trauma, improving sensitivity over the well-
known survival prediction tools [22].

Another field with widespread use of ANNs is oncology.
They were initially adopted for breast and ovarian cancer in
1994, raising an argument on the suitability of certain data
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as inputs for ANN analysis, such as demographic, radiolog-
ical, oncological, and biochemical data [23]. In radiology,
ANNs aim at developing automated decision supporting
systems, with extended application in various fields [24].

In urology, ANNs have been applied mostly in oncolog-
ical diseases, such as prostate cancer (PCa). Snow et al.
[25] constructed a neural model for PCa using prostate
biopsy results and patient outcomes after prostatectomy.
They revealed 87% and 90% of accuracy in predicting bi-
opsy results and tumour recurrence, respectively [25].
Finne et al. [26] compared a neural network based on the
percentage of the free prostate-specific antigen (%fPSA)
to conventional statistical analysis (logistic regression),
showing that the precision in predicting PCa in 656 pa-
tients who had undergone biopsy was higher in the ANN
group than that in the logistic regression group (p<0.001).
Accordingly, Babaian et al. [27] constructed an ANN to
detect PCa in 151 biopsied men. The study showed higher
specificity at 92% sensitivity than the %fPSA biomarker
(62% vs. 11%). Interestingly, they found that 64% of all
biopsies (71 of 114 men without cancer) could have been
avoided using their neural network model [27]. Another
ANN assessed cancer risk in regard to the outcome of
prostate biopsies in 928 patients employing serum pros-
tate-specific antigen, %fPSA, age, prostate volume, and
digital rectal examination as inputs. At 90% of sensitivity,
the neural model performed better than serum prostate-
specific antigen alone [28]. Additionally, ANN was superior
when evaluated in a multicentre study with 1188 patients
[29]. In final, several studies addressing neural networks
exist in the literature in different medical fields, such as
oncology, radiology, and cardiology [30], but they can also
be found in interesting conditions, i.e., auditory brain-
stem response [31], sleep classification in infants [32],
glaucoma [33], and even interhospital transport mode
[34].

Our study is the first attempt in the literature to
construct a neural network predicting urinary lithiasis
treatment. The initial concept was to feed the network
with as many data (inputs) considered statistically signifi-
cant with the conventional statistical methods, as possible.
It is of note that when univariate and multivariate analyses
were used, the significance of their results did not have a
positive effect on the network. The outcome in the evalu-
ation arm of the ANN was rather disappointing (59.52%
performance). When all 12 parameters were used as inputs
though, the performance of the network in the evaluation
arm improved dramatically (75%), indicating that the al-
gorithm used for the ANN delivers better with a greater
number of inputs. Eventually, the performance of our ANN
reached 81.43% in our study population.

Study limitations are the relatively small sample of pa-
tients and the lack of knowing the stone composition prior
to ESWL. The latter gives strength to our ANN, since it can
be used as a prediction method to all stones regardless of
the unknown stone composition. Furthermore, an ANN can
be strengthen by numerous inputs, such as stone to skin
distance (SSD), patient’s performance status, and ureteral
impaction. Our concept was to build a predictive model
exploiting the most commonly parameters used in the daily
practice before the ESWL session. SSD and ureteral wall
thickness measurements depend much on the radiologist’s
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and the radiologist technician’s experience and are gener-
ally not routinely performed before ESWL. Furthermore,
since CT imaging is not routinely performed when planning
a lithotripsy, SSD and stone hardness were not included in
our ANN. Additionally, the high radiation dosage and the
economical costs of CT make it sometimes redundant,
especially when the stone size and location are obvious
from ultrasound and a kidney-ureter-bladder X-ray film.
Still, we agree that SSD and stone hardness based on CT
imaging could improve ESWL prediction and a different
setup of a neural network with these two values included
could be more accurate in the future.

5. Conclusion

The use of a neural network appears to be a powerful
modeling tool for the diagnosis and treatment of several
medical conditions. Our ANN achieved high score in pre-
dicting the outcome and the side effects of the ESWL
treatment for urinary stones. In fact, the accuracy of the
network may further be improved by using larger sets of
data, different architecture in designing the model, or
using different set of input variables, making ANN a quite
promising instrument for effective, precise, and swift
medical diagnosis.
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