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This paper focuses on the role that mitogen-activated protein kinases (MAPKs) play in drug-induced kidney injury. The MAPKs,
of which there are four major classes (ERK, p38, JNK, and ERK5/BMK), are signalling cascades which have been found to be
broadly conserved across a wide variety of organisms. MAPKs allow effective transmission of information from the cell surface to
the cytosolic or nuclear compartments. Cross talk between the MAPKs themselves and with other signalling pathways allows the
cell to modulate responses to a wide variety of external stimuli. The MAPKs have been shown to play key roles in both mediating
and ameliorating cellular responses to stress including xenobiotic-induced toxicity. Therefore, this paper will discuss the specific
role of the MAPKs in the kidney in response to injury by a variety of xenobiotics and the potential for therapeutic intervention at
the level of MAPK signalling across different types of kidney disease.

1. Introduction

Intracellular signalling cascades are the primary routes of
communication between the plasma membrane and regula-
tory targets in various intracellular compartments. Sequen-
tial activation of kinases is a widely conserved mechanism
of signal transduction in many cellular processes. Protein
kinases are ubiquitous enzymes that modulate the activities
of other proteins through the addition of phosphate groups
to tyrosine, serine, or threonine amino acid residues, a
process referred to as phosphorylation. Over the last decade,
several related intracellular signalling cascades, collectively
known as mitogen-activated protein kinase (MAPK) sig-
nalling cascades, have been characterized. MAPKs belong to
a large group of serine/threonine protein kinases which have
been shown to be conserved in organisms as diverse as yeast
and humans [1–3], and which can be activated by numerous
extracellular stimuli [4, 5]. In combination with several
other signalling pathways, MAPKs can differentially alter the
phosphorylation status of numerous proteins including tran-
scription factors, cytoskeletal proteins, kinases, and other
enzymes and can significantly influence gene expression,
metabolism, cell division, cell morphology, and cell survival.

Epigenetic aberrations of these enzymes, or of the signalling
cascades that regulate them, have been implicated in a
variety of human diseases including cancer, inflammation,
and cardiovascular disease. Dysregulation of normal MAPK
signalling has also been implicated in both acute and chronic
kidney disease. In this paper we focus on the role of MAPKs
in kidney disease, and in particular, the role that MAPK
signalling plays in drug-induced kidney injury and disease.

2. The MAPK Family in Kidney Injury

The transmission of extracellular signals to various intracel-
lular targets is a multifaceted process which often involves
the activity of one or more MAPKs. The process begins in
response to external stimuli such as binding of a growth
factor to its associated receptor on the cell surface. The
resulting activation of the integral or associated protein
tyrosine kinases contained within the intracellular domain
of the receptor then initiates intracellular signalling events.
Activation of a MAPK employs a core three-kinase cascade
whereby a MAPK kinase kinase (MAP3K or MAPKKK)
phosphorylates and activates a MAPK kinase (MAP2K or
MKK) which in turn phosphorylates one or more MAPKs
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Figure 1: The MAP kinase signalling pathways (adapted from http://www.sabiosciences.com/).

[6–8]. An overview of the signalling pathways is outlined in
Figure 1. Once activated, MAPKs can phosphorylate several
different intracellular targets including transcription factors,
nuclear pore proteins, membrane transporters, cytoskeletal
elements, and other protein kinases [8–10]. This three-
tier module mediates ultrasensitive switch-like responses

to stimuli. Uniquely, MAPKs themselves can be activated
by addition of phosphate groups to both their tyrosine
and threonine amino acids (dual phosphorylation) after
stimulation of a receptor by growth factors, mitogens,
hormones, cytokines, or environmental stresses [11]. These
various members of the MAPK family have been duplicated

http://www.sabiosciences.com/
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with slight variations, allowing cells to instigate multiple
biological responses through a set of MAP kinase networks.

2.1. ERK 1/2 Signalling Cascade. In the early 1980s, the
42 kDa extracellular signal-regulated protein kinases 1 and
2 (ERK1/2) were the first members of the MAPK family
to be identified and cloned from a vertebrate species [12–
16]. ERK1/2 functions have been linked to the regulation
of growth and differentiation [17, 18]. ERK1/2 activation is
mediated by the specific protein kinases MAPK/ERK kinases
(MEK) 1/2, which are members of the MAPK supergene
family MEK2. MEK1 and MEK2 are encoded by different
genes, but are very similar in terms of sequence, substrate
specificity, and regulation [19, 20]. MEK1/2 themselves are
activated through phosphorylation by three distinct MAPKK
kinases (MAP3K or MAPKKK), Raf, c-Mos, and MEK kinase
(MEKK). The major pathway by which tyrosine kinase
mediated signals are directly conveyed to the ERK1/2 cascade
is through Ras-mediated recruitment of Raf to the plasma
membrane. Ras activation is dependent on the tyrosine-
kinase-mediated membrane translocation of the guanine
nucleotide exchange factor SOS by the Grb2 adapter protein,
which connects SOS to the tyrosine-phosphorylated receptor
[21]. Elk-1 and SRF are target genes regulated by ERK1/2 [6].
An overview of the ERK1/2 signalling pathway is outlined in
Figure 2.

ERK signalling plays a major role in mediating renal
cell responses to a diverse range of stimuli and has pre-
viously been shown to be involved in compensatory renal
hypertrophy and pathological conditions such as glomerular
and tubulointerstitial diseases. Robust ERK activation has
been detected in the cyst epithelium in polycystic kidney
disease (PKD), while inhibition of the ERK pathway led
to inhibition of cyst-induced gain in kidney mass and
improved renal function [22]. In instances of drug-induced
nephropathy such as kidney injury associated with cisplatin
administration, stimulation of ERK occurs via the EGF-R/Src
cascade [23]. Cisplatin-induced nephrotoxicity is dependent
on DNA damage-induced apoptosis. Conversely, inhibiting
ERK in vivo, in a rat model of progressive membranous
nephropathy (PHN), was demonstrated to worsen DNA
damage observed in the podocytes and resulted in an
upregulation of p21, suggesting a protective role of ERK in
this model [24]. This suggests a dual nature of this particular
MAPK: on the one hand mediating a kidney injury response
while on the other hand playing a role in renal defence.

2.2. JNK Signalling Cascade. The JNK cascade was first dis-
covered through studies on the oncogenic cooperation
between Ras and the target JNK transcription factor c-Jun,
and on the activation of transcription factor AP-1 by UV
irradiation [25]. Both studies indicated that phosphorylation
of a component of AP-1 at Ser63 and Ser64 occurred in
response to either Ras activation or UV irradiation such
phosphorylation, especially at Ser73, enhances the ability
of c-Jun to activate gene transcription [26]. The protein
kinases that bind to c-Jun and phosphorylate it at Ser63
and Ser73 were subsequently identified as JNKs. There

are two JNK polypeptides, the products of two distinct
genes, and they share 81% sequence identity [27]. Like
all MAPKs, the JNKs are activated by phosphorylation on
conserved threonine and tyrosine residues. Consistent with
the different sequences surrounding their activating phos-
phorylation sites, the JNKs are not phosphorylated by
MEK1/2 but by another MAPKK, named SEK 1, MKK4 or
JNKK1. Similar to other MAPKKs, JNKK1 is phosphorylated
and activated by a MAP3K called MEKK1 [28]. An overview
of the JNK signalling pathway is outlined in Figure 3.
Activation of JNKK1 by MEKK1 was demonstrated in vitro
[29]. Very strong JNK activation is observed after irradiation
of cells with either UV light or treatment with certain
translational inhibitors such as anisomycin, exposure to IL-1,
costimulatory activation of T-cells, ischemia reperfusion, and
exposure to alkylating agents. JNK activation is also observed
after treatment of certain cell types with growth factors
such as EGF and NGF. The mechanisms by which these
stimuli activate the JNK cascade have not been elucidated.
The majority of experimental analysis has focused on the
mechanisms of JNK activation by growth factors and mem-
bers of the Src family of tyrosine kinases [28, 30].

In the context of renal injury, JNK signalling is mediated
by different insults including ischaemia/reperfusion (I/R),
ureteric ligation, immune-mediated injury, and hypergly-
caemia [31, 32]. JNK activation has been demonstrated
in several glomerulonephritides [33], and JNK inhibition
suppresses inflammation in rat antiglomerular basement
membrane disease [34] and also suppresses tubular apoptosis
and interstitial fibrosis in unilateral ureteral obstruction
(UUO) models [35]. Kanellis et al. demonstrated that acute
activation of JNK signalling occurs following I/R, with higher
JNK activation detected in deceased donor compared to live
donor allografts, thus suggesting that increased JNK reflects
greater ischaemic damage [36]. Administration of a JNK
inhibitor prior to I/R injury prevented tubular damage and
renal dysfunction, suggesting involvement of JNK activation
in both cellular rejection and acute tubular necrosis [36].

2.3. P38 Signalling Cascade. p38 is another MAPK protein,
which is most similar to the yeast MAPK HOG-1 which is
activated in response to osmotic shock [37]. Like HOG-1,
p38 is also activated in response to osmotic shock, as well as
by LPS and IL-1. For the most part, p38 also responds to the
same agonists that activate the JNKs. The similarity between
the regulation of p38 and JNK is not surprising since JNKK1
(SEK1) is also a direct activator of p38. Downstream targets
of p38 include the genes MAPKAP kinases 1 and 2 and ATF-2
[38, 39]. p38 MAPK is an important regulator of senescence
growth arrest due to its ability to activate both the p53
and pRb/p16 growth arrest pathways. p38 MAPK inhibition
has been demonstrated to moderately delay replicative
senescence [40]. Furthermore, p38 MAPK activity is required
for the senescence arrest caused by oncogenic RAS, and
constitutive p38 MAPK activity can induce a growth arrest
in normal human cells [41, 42]. p38 MAPK is known
to upregulate specific cytokines such as IL-6, IL-8, and
TNFα in several biological contexts including kidney damage
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Figure 2: Structure of the ERK pathway (adapted from http://www.sabiosciences.com/). Upon ligand binding, RTK autophosphorylates
on tyrosine residues, which serve as docking sites for adaptor and signalling molecules. Ras is activated by the recruitment of guanosine-
nucleotide exchange factors (SOS, C3G) via adaptor proteins (Shc and Grb2; Crk). Ras can activate Raf-1 and B-Raf; Rap1 presumably can
activate B-Raf. Raf proteins phosphorylate and activate MEK-1/2, which in turn activate ERK-1/2 (indicated by black arrows).
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Figure 3: The JNK signalling pathway (adapted from http://www.sabiosciences.com/). Upstream events are poorly defined, but in the case
of growth factors and the cytokine TNF are known to involve G proteins such as Rac and cdc-42 and the protein TRAF2. Activated JNK1
and JNK2 isoforms phosphorylate the AP-1 subunit c-Jun, increasing its transcriptional activity. ASK1, apoptosis signal-stimulating kinase
1; MLK, mixed-lineage protein kinases; TAK1, transforming growth factor-β-activated kinase-1.

[39, 43, 44]. An overview of the p38 MAPK signalling
pathway is outlined in Figure 4. p38 MAPK activity has been
shown to be necessary and sufficient for the development of
a senescence-associated secretory phenotype (SASP). SASP is
a persistent, nonacute inflammatory response in cells which

have been induced to senescence by direct DNA damage or
oncogenic RAS [45–47].

It has been reported that inhibition of p38 MAPK in
autoimmune renal disease reduced the severity of the disease,
resulting in a prolonged life span in MRL-Faslpr mice [48].
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Figure 4: The p38 signalling cascade (adapted from http://www.sabiosciences.com/). RNA-binding proteins mediate regulation of cytokine
mRNA stability through p38/MK2 signalling. LPS activates p38 MAPK signalling in a variety of cells, leading to transcriptional activation
of cytokine genes or enhanced mRNA stability and translation (highlighted areas). The fate of adenine- and uridine- (AU-) rich elements
(ARE) mRNA is dependent on the presence of destabilizing and stabilizing mRNA-binding proteins. p38 MAPK activates MK2 in the nucleus,
allowing for MK2 translocation to the cytoplasm. MK2 subsequently phosphorylates destabilizing mRNA-binding proteins such as TTP. This
action prevents TTP from interacting with ARE cytokines. Simultaneously, activation of the p38 MAPK pathway results in translocation of
HuR, a stabilizing RNA-binding protein, from the nucleus to the cytoplasm. Thus, upon p38/MK2 activation and phosphorylation of TTP,
cytokine mRNA stability is enhanced, because TTP is no longer dictating mRNA triage and exonuclease decay.
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This protection against renal injury in vivo resulted from
reduced infiltration of leukocytes, diminished expression
of cytokines which are known to promote renal injury,
and reduced production of Ig, leading to the conclusion
that activation of p38 MAPK is required to promote
cytokine/chemokine and Ig production, which in turn result
in lethal autoimmune renal injury in vivo. Stambe et al. local-
ized components of the p38 MAPK pathway to podocyte-
like cells, endothelial cells, and infiltrating neutrophils
in a model of acute renal inflammation [49]. A similar
pattern of p38 activation was observed in postinfectious
glomerulonephritis [49]. It was shown that blockade of
the p38 pathway significantly inhibited acute renal failure
and proteinuria in rat anti-GBM glomerulonephritis via
a neutrophil-platelet and P-selectin-dependent mechanism,
thus suggesting that blockade of the p38 MAPK pathway may
be a novel therapeutic strategy for the treatment of acute
renal inflammation.

2.4. Ras Signalling. Ras is a small GTP-binding protein with
multiple effector molecules, each of which defines a pathway
with specific functions. Ras has been implicated, to different
extents, as a mediator of ERK, JNK, and p38 activities. p38
has been implicated in cell motility stimulated by PDGF, in a
Ras-dependent pathway [50]. Phosphatidylinositol 3-kinases
(PI3K) have been suggested to be involved in cell motility
through Ras-mediated activation of Rac. Rac is a member of
the Ras superfamily of small GTP proteins which has a well-
established role in cell migration and invasiveness [51–53].
Rac can be activated by Ras directly via recruitment to the cell
membrane or via Ras activation of PI3Kinase. In contrast to
its functions in motility, Rac has been shown unambiguously
to strengthen cell-cell adhesion thereby preventing tumour
cell invasiveness [54, 55]. Studies have shown these opposing
effects of Rac arise due to dependency on the cell substrate
[56]. On substrates permissive for locomotion, expression of
active Rac promotes motile behaviour, whereas, on substrates
impeding cell motility, Rac-dependent cell-cell adhesion is
favoured.

Other members of the Ras superfamily of small G pro-
teins are Rho and Cdc42. Along with Rac, Rho and Cdc42
control different aspects of the cytoskeleton and seem to act
in a cascade in which Cdc42 acts upstream of Rac which in
turn acts upstream of Rho. Rho displays complex functions
in cell scattering and it is involved in the assembly of focal
contacts and actin stress fibres in fibroblast cells [57, 58].
Rho plays a positive role in colony-stimulating factor-1
induced macrophage translocation and in the migration and
metastatic properties of human hepatocellular carcinomas
[59]. Rho carries out these actions by stimulating the
phosphorylation of myosin light chain and adducin, an
actin-binding protein [60]. Like Rac, Rho can also have
antagonistic effects on epithelial cell scattering by reinforcing
cell-cell adhesion sites. Again, like Rac, the contrasting Rho
activity is cell substrate dependent [61].

Activated Ras is sufficient for full ERK activation but is
only a weak JNK activator producing about one-third of the
JNK activity observed after treatment with EGF or expression

of v-Src. Rac and cdc42 are effective JNK activators and
can act synergistically with Ras. It is proposed that Rac
in turn can stimulate Pak1 via cdc42, which could induce
phosphorylation of myosin light chain, thus linking this
Ras/Rac-induced pathway to proteins directly affecting cell
movement [37, 62]. Pak1 has been demonstrated to induce
modest activation of JNK suggesting autocrine upregulation
of JNK signalling.

2.5. Src Signalling. Src tyrosine kinase is another positive
regulator of growth-factor-induced cell scattering [63]. Src
belongs to a family of cytoplasmic tyrosine kinases. These
enzymes have a pivotal role in the regulation of a variety
of biological functions which are associated with changes in
morphology, including malignant transformation [64, 65],
epithelial plasticity [66], and modulation of intercellular
adhesion [67]. In addition, the Src family is required during
mitogenesis induced by EGF, PDGF, and colony-stimulating
factor-1 [68, 69]. Src regulates much of the activities of the
JNK and p38 pathways. There are nine members in the Src
family; Src, Fyn, and Yes are ubiquitously expressed while the
other members have a more restricted pattern of expression.
There is a possibility of redundancy of function amongst
the Src family members [70] so the specificity of action
of each individual member is not clear. This redundancy
can arise by the phosphorylation of common substrates
important for signalling, and it is probable that Src and Yes
have redundant functions during cell scattering [71]. Three
mechanisms by which Src kinases exert their functions have
been suggested. Firstly, Src may phosphorylate specific sub-
strates that are mainly cytoskeletal-based components, and
molecules localised in cell-cell and cell-substrate adhesion
sites, tyrosine phosphorylation of which could in turn alter
cellular architecture [72–75]. Secondly, by inducing Myc via
a specific transduction pathway, Src may also participate in
entry into S-phase [76]. Finally, Src could interact with other
signalling pathways, as it has been shown that it is capable of
binding Shc, an early element of the Ras cascade leading to
the activation of this pathway [77, 78].

A role for Src signalling in the repair mechanisms of
acute kidney injury has also been indicated. A recent
study by Takikita-Suzuki et al. has provided evidence to
suggest the importance of active Src kinase in the early
phase of PDGF-B-dependent nephrogenic repair after acute
ischemia/reperfusion injury and has identified the distribu-
tion of active Src kinase in the normal and reperfused kidney
[79].

3. Drug-Induced Kidney Injury

The anatomical, biochemical, and physiological specialisa-
tions which permit the kidney to perform its vital roles in
homeostasis may increase the risk of drug exposure to the
components of the nephron, and its ancillary structures.
The kidneys receive 25% of cardiac output, filtering 180 L of
plasma, producing 1.5 L of urine each day. As a result, high
levels of drugs may be concentrated, leaving the epithelium
of the nephron at a significantly greater risk of damage
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from pharmaceutical agents. In addition, the kidney is a
metabolically active organ which contributes significantly to
metabolism of xenobiotics. While renal metabolism usually
contributes to the detoxification of xenobiotics, there are
instances whereby substances undergo bioactivation to more
toxic metabolites [80]. In addition to glomerular filtration,
removal of xenobiotics and waste products from the blood
can occur via transcellular transport, which transports
compounds directly from the blood into the lumen by
organic ion transporters. This organic ion transport system
may allow toxic compounds to accumulate in the cells of the
nephron which may otherwise not gain access to the cytosol
[81].

4. Antibiotic-Induced Kidney Injury

4.1. Antibiotics. Antibiotics are a group of drugs used to
treat various infections caused by bacteria and other mi-
croorganisms. The first antibiotic was discovered by Sir
Alexander Fleming in 1928 in a significant breakthrough for
medical science. The development of antibiotics is probably
the largest advance in medicine in the 20th century and has
saved millions of lives worldwide from infections such as TB.

Gentamicin is an aminoglycoside broad spectrum Gram-
negative antibiotic which is routinely used in clinical prac-
tices for the treatment of Gram-negative infections alone or
in synergy with beta-lactam antibiotics in adults, children,
and neonates. Gentamicin use is however associated with
significant nephrotoxicity—it is estimated that roughly 30%
of patients receiving gentamicin for 30 days show some
signs of renal impairment [82–84]. Gentamicin-induced
nephrotoxicity is characterized by morphological alterations
including destruction of cell organelles and necrosis, lyso-
somal swelling and mitochondrial vacuolisation preceding
functional alterations marked by proteinuria, increased levels
of serum urea and creatinine, which lead to acute kidney
injury (AKI). The site of gentamicin nephrotoxic action is
the kidney cortex, especially the proximal tubules. Animal
models of aminoglycoside nephrotoxicity also present areas
of interstitial fibrosis in the renal cortex and progressive
tubular injury [85, 86].

Vancomycin is a cationic glycopeptide antibiotic used
in the treatment of penicillin-resistant Gram-positive infec-
tions, methicillin-resistant Staphylococcus aureus infections,
and Clostridium difficile infections, which has seen a resur-
gence in use due to the emergence of β-lactam-resistant
Gram-positive organism-associated infections. Vancomycin
is known to be both ototoxic and nephrotoxic [87], with
vancomycin-induced nephrotoxicity reported to occur in up
to 25% of patients [88, 89]. Studies carried out in animal
models showed increased urinary excretion of proximal
tubule cells and in the activity of malate dehydrogenase
(MDH) following vancomycin administration [90, 91]. Fur-
thermore, a recent study also suggested that oxidative stress
might underlie the pathogenesis of vancomycin-induced
nephrotoxicity [92].

Acute kidney injury (AKI) is a common side effect of
antibiotic therapy. However, given the diversity of the

mechanisms of action of the most commonly used antibiotic
therapies, it is perhaps not immediately clear whether this
injury occurs as a result of a defined process. There is
evidence however to implicate involvement of the MAPK
signalling cascade in antibiotic-induced renal injury initiated
by several distinct classes of antibiotics.

4.2. MAPK in Antibiotic-Induced Nephrotoxicity. A study
carried out by Volpini et al. in 2006 showed that MAPKs
may be involved in the pathogenesis of acute renal failure
following gentamicin treatment [93]. Since there is evidence
that both the MAPK and NF-κB systems can be activated by
oxidative stress in gentamicin-treated animals, the expression
of p-p38 MAPK and NF-κB in the kidney during the
evolution of tubulointerstitial nephritis and its relationship
with histological features and renal function was investigated
in gentamicin-treated rats in the presence or absence of an
NF-κB inhibitor. Western blot analysis demonstrated the
presence of the 43-kDa phosphorylated p38 MAPK and the
65-kDa NF-κB proteins in the renal cortex from all treatment
groups compared to control. The gentamicin-treated animals
showed a greater p38 expression than the control and NF-
κB inhibitor and gentamicin-treated animals. Data obtained
in this study showed that p38 MAPK expression is increased
during the development of gentamicin-induced interstitial
nephritis and that such alteration is associated with enhance-
ment of NF-κB expression and the inflammatory process in
the renal cortex, suggesting that the p38 MAPK pathway may
be involved in the renal lesions induced by gentamicin [93].
Other studies verify this involvement of MAPK in antibiotic-
associated nephrotoxicity; p38-MAPK has been found to be
upregulated in rat kidneys following gentamicin treatment,
and it has been shown that combination treatment with the
lipid-lowering drug, atorvastatin, ameliorated gentamicin-
induced nephrotoxicity, through inhibition of p38-MAPK
and NF-κB expression [94]. Previous studies have also
demonstrated that the proliferative response observed after
sublethal toxicant-induced renal injury may be mediated
by activation of the MAPK signalling pathway, which is
ultimately regulated by bioenergetic capacity [95–98].

A study carried out investigating the effects of vanco-
mycin exposure in renal LLCPK1 cells on cell proliferation
showed a dose- and time-dependent increase in cell number
and total cellular protein [99]. These effects were inhibited by
pretreatment with a MAPK inhibitor, PD098059, preventing
vancomycin-induced entry into the cell cycle, thus suggest-
ing an association between the cell proliferative effects of
vancomycin and the induction of MAPK signalling cascades
[99].

5. Calcineurin-Inhibitor-Induced
Kidney Injury

5.1. Calcineurin Inhibitors. In 1954, the first successful
transplantation of a human kidney was performed between
identical twins; the success of which was based on the
lack of significant rejection between genetically identical
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twins, thus circumventing the requirement for immunosup-
pression [100]. Solid-organ transplantation was not truly
implemented until the 1970s following significant technical
and pharmacological advances, in particular, the discovery
and development of the calcineurin inhibitors (CNIs) [101].
Despite the advances over the past four decades, the majority
of renal allografts fail after a period of progressive func-
tional decline which is associated with glomerulosclerosis,
tubular atrophy, interstitial fibrosis, and arteriosclerosis, in
a process referred to as chronic allograft injury (CAI) or
chronic allograft nephropathy (CAN). The deterioration of
renal allograft function and structure associated with CAI
can occur due to immunological processes (i.e., chronic
rejection) and/or a range of simultaneous nonimmunolog-
ical factors such as CNI-induced nephrotoxicity, hyperten-
sion, and infection. The two most commonly employed
immunosuppressants are the CNIs cyclosporine A (CsA) and
tacrolimus (FK506).

CsA, also known as Sandimmune, is a 1203 dalton,
lipophilic, cyclic compound, derived from fungal origins
which was discovered in 1976. The first incidence of CsA em-
ployed as an immunosuppressant was in 1978, revolutioniz-
ing the field of organ transplantation [102]. CsA is primarily
renowned as a powerful immunosuppressant for use in organ
transplantation to prevent graft rejection in kidney, liver,
heart, lung, and combined heart-lung transplants [103].

Tacrolimus, also known as FK506 or Prograf, is a
822 Da, 23-membered macrolide compound (C44H69NO12)
that was isolated from a soil microorganism Streptomyces
tsukubaensis in Japan in 1984, [104, 105]. FK506 is a potent
immunosuppressive agent employed worldwide since the
early 1990s that is effective in allograft prophylaxis after
organ transplantation, for therapy of acute rejection and in
treatment of different immune diseases [106, 107]. In 2003,
FK506 was used as initial immunosuppression in 67% of
kidney recipients and 89% of liver recipients (UNOS United
Network for Organ Sharing 2004). FK506 is up to 100 times
more potent than CsA [108], which has significantly reduced
the incidence and severity of acute rejection rates in organ
transplantation [109, 110].

Both CNIs follow similar molecular pathways, with
both FK506 and CsA eventually inhibiting NFAT-dependent
production of IL-2 and other cytokines and prevention of
T-cell growth [111, 112]. Recently, alternative molecular
pathways have been identified for CsA, which has been
found to inhibit the JNK and p38 signalling pathway activity
triggered by antigen recognition in T cells (Figure 5) [113].

5.2. MAPK in CNI Nephrotoxicity. CsA and FK506 are
widely used in transplant organ recipients, but in the
kidney allograft, they may cause tubulointerstitial as well as
mesangial fibrosis [114]. The fibrogenic effect of CNIs in
the renal allograft is predominantly mediated by elevated
intrarenal expression of TGF-β [57, 115], and subsequent
excessive extracellular matrix (ECM) generation [116, 117].
Using the rMC cell line, rat kidney mesangial cells, it has been
shown that CsA and FK-506 induce an extremely rapid and
dose-dependent increase of Y-Box-binding protein-1 (YB-1)

content in a cell type-specific manner. The highly conserved
YB-1 is a member of the family of cold-shock proteins with
mitogenic properties which play a role in cellular stress
responses and tumourigenesis and also controls TGF-β1
translation in proximal tubular cells [118–120]. Given the
fact that YB-1 is a downstream target of MAPK ERK1/2 [121,
122], the study continued to investigate the involvement of
ERK1/2 in CsA-triggered cell activation. Previous studies
have documented that YB-1 undergoes phosphorylation at
serine 102 (Ser102) by activated serine/threonine protein
kinase Akt/protein kinase B [114, 123]. Hanssen et al.
showed that inhibition of Akt/ERK signals upstream of YB-
1 activation prevents its phosphorylation at Ser102 and abol-
ishes the CsA-mediated YB-1 protein increase demonstrating
that CsA-induced YB-1 accumulation was dependent on
MAPK/ERK and PI3K/Akt signalling [124]. Hanssen et
al. also verified these results in vivo, treating mice either
with a vehicle control or CsA and analysing the renal YB-
1 content [124]. Immunoblotting indicated elevated YB-1
protein content in the CsA-treated mice, localised in the
mesangial compartment [124].

6. Cancer-Chemotherapeutic-Agent-Induced
Kidney Injury

6.1. Cancer Chemotherapeutic Agents. Chemotherapy con-
tinues to play a crucial role in the management of cancer,
with the basic aim to kill cancerous cells whilst causing min-
imal damage to the other healthy cells in the body. Cancer
chemotherapeutics are divided into different categories with
several members in each category, including alkylating agents
(e.g., cyclophosphamide); antimetabolites (e.g., methotrex-
ate); plant alkaloids (e.g., etoposide); anthracyclines(e.g.,
doxirubicin); antitumor antibiotics (e.g., mitomycin C);
platinum compounds (e.g., cisplatin); taxanes (e.g., taxol)
[125]. Cancer chemotherapeutic agents can cause nephro-
toxicity in various ways, with some drugs exerting immediate
effects on renal function while others are known to have
cumulative effects, causing renal injury after long periods of
use [126]. Cisplatin is one of the most successful antineo-
plastic agents to date. It is used to treat a wide variety of solid
tumours, and successful cure rates for certain cancers such
as testicular cancer are as high as 90% following cisplatin
treatment. One of the major limiting factors in the use of
cisplatin however is development of acute kidney injury, with
clinically measureable nephrotoxicity usually detected 10
days after administration. It is estimated that 20% of patients
receiving high doses of cisplatin develop renal dysfunction
[127]. The kidney is particularly susceptible to cisplatin-
induced toxicity due to the high concentration of the organic
cation transporter 2 (OCT2), which is expressed mainly
in the kidney and facilitates cellular entry of the cisplatin
compound [128].

6.2. MAPK in Cisplatin-Induced Nephrotoxicity. The exact
mechanisms governing cisplatin-induced nephrotoxicity are
not completely understood; however, it is believed that
MAPK plays a pivotal function. Indeed several studies both in
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vitro and in vivo have shown that pharmacological inhibition
of ERK1/2 ameliorates cisplatin-induced nephrotoxicity.
There is conflicting evidence about the role that both p38 and
JNK/SAPK play in cisplatin-induced kidney injury. Arany et
al. [23] showed that ERK, and not p38 or JNK/SAPK inhi-
bition, prevented cisplatin induced toxicity. However, other
studies have shown that pharmacological inhibition of p38
both in vitro and in vivo prevented toxicity [129–131]. The
role that JNK/SAPK plays in acute kidney injury following
cisplatin exposure has been less well characterised; however,
it has been shown that JNK/SAPK inhibition resulted in a
significant reduction in cisplatin-induced nephrotoxicity in
vivo [132].

A study by Pabla et al. identified PKCδ as a critical
regulator of cisplatin nephrotoxicity, which can be effectively
targeted for renoprotection during chemotherapy. The data
showed that during cisplatin nephrotoxicity, Src interacted
with, phosphorylated, and activated PKCδ in mouse kidney
lysates. After activation, PKCδ regulated MAPKs, but not
p53, to induce renal cell apoptosis. Thus, inhibition of
PKCδ, pharmacologically or genetically, attenuated kidney
cell apoptosis and tissue damage, preserving renal function
during cisplatin treatment. Conversely, inhibition of PKCδ
enhanced cisplatin-induced cell death in multiple cancer
cell lines and, remarkably, enhanced the chemotherapeutic
effects of cisplatin in several xenograft and syngeneic mouse

tumour models while protecting kidneys from nephrotoxi-
city. Together these results demonstrate a role of PKCδ in
cisplatin nephrotoxicity and support targeting PKCδ as an
effective strategy for renoprotection during cisplatin-based
cancer therapy [133].

7. Nonsteroidal Anti-Inflammatory
Drug- (NSAID-) Induced Kidney Injury

7.1. NSAIDS. The NSAID family includes several classes of
drugs such as the carboxylic acids, for example, aspirin;
acetic acids, for example, diclofenac; propionic acids, for
example, ibuprofen and ketoprofen; and Cox-2 inhibitors,
for example, celecoxib which are used worldwide as anal-
gesics and antipyretics to combat pain, fever, and inflamma-
tion. They are especially effective for treating inflammatory
diseases (e.g., arthritis) through nonspecific inhibition of
cyclooxygenase (COX) enzymes which limits production of
prostaglandins. Serious gastrointestinal side effects have been
minimized with the advent of selective and specific COX-
2 inhibitors and misoprostol. However, the newer NSAIDs
continue to be nephrotoxic much like the conventional
NSAIDs [134]. The spectrum of nephrotoxicity includes
acute tubular necrosis, acute tubulointerstitial nephritis,
glomerulonephritis, renal papillary necrosis, chronic renal
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failure, salt and water retention, hypertension, and hyper-
kalaemia [135, 136].

7.2. MAPK in NSAID Nephrotoxicity. Hou et al. investigated
the molecular basis of the renal injury by evaluating the
expression of the stress marker, haeme oxygenase-1 (HO-
1), in celecoxib-stimulated glomerular mesangial cells [137].
Treatment with celecoxib resulted in concentration- and
time-dependent increase of HO-1 expression. Conversely
treatment with N-acetylcysteine, a free radical scavenger,
strongly decreased HO-1 expression, suggesting the involve-
ment of reactive oxygen species (ROS). Following treatment
with various MAPK inhibitors, the study showed that only
a specific JNK inhibitor attenuated celecoxib-induced HO-
1 expression, and kinase assays demonstrated increased
phosphorylation and activation of c-JNK following NSAID
treatment [137]. The presence of a free radical scavenger
reduced the stimulatory effect of celecoxib on stress kinase
activities, suggesting an involvement of JNK in HO-1 expres-
sion. Treatment with a PI-3K specific inhibitor prevented
the enhancement of HO-1 expression, which correlated with
inhibition of the phosphorylation of the PDK-1 downstream
substrate Akt/protein kinase B (PKB). The data presented in
this study suggested that celecoxib-induced HO-1 expression
in glomerular mesangial cells may be mediated by ROS via
the JNK-PI-3K cascade [137].

8. Conclusion

The complex nature of critical illness often necessitates the
use of multiple therapeutic agents, many of which may
individually or in combination have the potential to cause
kidney injury. Accordingly, the incidence of drug-induced
nephrotoxicity is rapidly increasing [138]. Drugs known
to cause nephrotoxicity have been shown to exert their
toxic effects through one or more common pathogenic
mechanisms [139]. It is important to appreciate that a
single drug causing renal toxicity can involve multiple
pathophysiological pathways and that predisposing factors
are common to virtually all causative agents mediating
kidney injury. Various studies, both in vitro and in vivo, have
shown that the administration of certain drugs acts as the
stimulus to trigger various MAPK cascades, thus mediating
cellular responses to kidney injury [139]. Indeed, activation
of these central pathways is evidenced in both acute and
chronic kidney injury. Data from renal biopsies in humans
have shown upregulation of MAPKs in a variety of renal
conditions, suggesting involvement in human renal disease,
and may provide a new target for intervention. Interventions
aimed at providing renoprotection, such as ACE-inhibition
or statin therapy, can reduce the renal MAPK expression,
suggesting that increased renal MAPK expression is involved
in the pathophysiology of kidney damage. The use of specific
MAPK inhibitors has further elucidated this role. Animal
data presented in this paper suggests that MAPK inhibition
may be of use in acute inflammatory renal disorders, and
in chronic conditions characterized by fibrosis. In order
to explore the potential of MAPKs as a novel intervention

strategy in kidney disease, it is important to establish the
renal conditions that can specifically benefit from MAPK
inhibition, since studies have shown that not all conditions
can be improved through inhibition of the MAPK signalling
cascade [24]. However, since the MAPK cascades have been
implicated in numerous studies in the development of
kidney damage and disease, continued research in this area
will hopefully highlight novel therapies or mechanisms of
prevention of kidney injury.
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