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In this paper, we propose a window-based mechanism visualization approach as an alterna-
tive way to measure the seriousness of the difference among data-insights extracted from a 
composite biodata point. The approach is based on two components: undirected graph and 
Mosaab-metric space. The significant application of this approach is to visualize the seg-
mented genome of a virus. We use Influenza and Ebola viruses as examples to demonstrate 
the robustness of this approach and to conduct comparisons. This approach can provide re-
searchers with deep insights about information structures extracted from a segmented ge-
nome as a composite biodata point, and consequently, to capture the segmented genetic 
variations and diversity (variants) in composite data points. 
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Introduction 

In recent years, biodata mining has new research problems that are related to the concept 
of composite data points. A data point is said to be a composite data point when it is a data-
set; in other words, when it has a number of biosequences or data-vectors. The composite 
data point is a new generalization to the concept of the data point from the ordinary defini-
tion (e.g., a biosequence or a data-vector). In case of visualizing a composite data point us-
ing window-based mechanism, few technical problems arise in this context. In this paper, 
we shall address those technical problems and provide insights about the window-based 
mechanism visualization approach. In the next part of this section we shall present a sum-
mary of recent related research work. We will focus on the research achievements in the 
area of alignment-free sequence analysis. 

Alignment-free sequence analysis is a developing research area [1,2], and recent years 
have shown this scientific fact clearly. Alignment-free sequence analysis algorithms (AF-
SAA) have several strengths compared with alignment-based sequence analysis algorithms 
(ABSAA). First, AFSAA can be used to map sequences into feature space as data-vectors; 
therefore, several algorithms, techniques, and approaches in data mining, machine learn-
ing, and statistical computing can be implemented effectively to analyze data-vectors that 
are extracted from sequences in feature space. Second, AFSAA are computationally less 
expansive compared with ABSAA [3]. AFSAA are window-based algorithms. Those algo-
rithms are applicable to any sequences [3] without any prior assumption about degrees of 
dissimilarities; in other words, prior knowledge about homology assumption is not re-
quired. Moreover, AFSAA can be used when ABSAA are inapplicable. 
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Daoud [4] proposed an alignment-free sequence analysis tech-
nique to measure the distance between two unaligned biosequenc-
es. The technique has the capacity to measure the distance between 
two sliding segmented windows. Quantum of distance values are 
concluded after sliding a segmented window on the longest se-
quence from left-end to right-end. The whole shortest sequence is 
considered as another static segmented window. The distance dis-
tribution is used to analyze the quantum of distance-values. The 
membership value of a given query sequence with respect to differ-
ent classes can be estimated using stochastic approximation, and 
without assuming any prior stochastic assumptions. 

Pham and Zuegg [5] proposed an alignment-free probabilistic 
measure to measure the distance between two unaligned sequenc-
es. Precisely, the probabilistic measure is defined to measure the 
distance between two estimated Markovian models, where each 
Markovian model represents a sequence. The research addressed 
the problems of alignment based-algorithms in terms of aligning se-
quences with low similarity rates and the time complexity to ac-
complish the required computational process. 

Borozan et al. [6] proposed another approach to improve the 
classification outcomes of sequence comparison by combining 
alignment-free and alignment-based measures to obtain similarity 
scores as discriminatory information about sequences. 

Vinga and Almeida [7] reviewed the majority of overwhelming 
alignment-free sequence comparison algorithms. The paper classi-
fied those algorithms into two categories. The first category is de-
fined in terms of the frequency distribution of n-grams and the dis-
tance/similarity measures are defined in a feature space (Cartesian 
space). In this context, the data-vectors are the frequency vectors of 
n-grams. The second category is based on the implementation of 
Kolmogorov complexity and Chaos Theory. 

The structure of this paper can be summarized as follows: we 
present the proposed method in section II; experiments and dis-
cussions are presented in section III; and finally, the conclusion and 
the expected future work are presented in section IV. 

Methods 

The window-based mechanism is a well-known mechanism in data 
science and biodata mining. Usually, it can be implemented with 
data that has a sequential relation to capture the local statistical pa-
rameters and to infer the main global information structure. The 
window-based mechanism has specific computational parameters, 
these parameters can be summarized as follows: (1) window-length 
or size (L), (2) shifting distance (α), and (3) random feature vector 
(Xn). Those computational parameters play a key role in estimating 
the local statistical parameters and in inferring the main global in-

formation structure of the data under consideration. Therefore, 
those computational parameters provide the analyst with various 
insights about data, and they can help to understand data and to 
evaluate the implemented computational mechanism. In case of 
composite data point, each data point is a dataset, thus, we have an-
other level of computations. In other words, we have to model da-
ta-insight of extracted information using a distance measure/metric 
or a composite distance measure/metric and a visualization tool 
(e.g., graphs). In case of a segmented genome of a virus, each seg-
ment can be encoded to 1 or more proteins, and each protein is a 
sequence. Therefore, a segmented genome is a composite data 
point. Now, without loss of generality, let us assume that we define 
a (p × 1) random feature vector X in IRp, to use it in screening a 
composite data point and model its information structure. Howev-
er, to model any information structure, we have to define a statisti-
cal concept, and in this case, we choose the variation theory as a 
statistical concept. In other words, we aim to model variation-based 
information structure as data-insight to evaluate the window-based 
mechanism and to visualize composite data point in a given feature 
space. In case of univariate or multivariate, the variation theory has 
various statistical parameters and models. One of those parameters 
is the variance-covariance matrix. Define Xn as occurrence of all 
possible n-grams, hence X has the dimension (p × 1), where p = | Σ 
|n, Σ is a finite alphabet, and n is string-length. Define the vari-
ance-covariance matrix of Xn as ΩXn, which it has the dimension 
(p × p). Up to this point, each sequence in a composite data point 
can be represented by a variance-covariance matrix. Thus, let the 
composite data point be denoted by CDP =  {Seq1, Seq2, ... , Seqm}, 
thus, obviously each sequence Seqi in CDP can be represented by a 
variance-covariance matrix ΩXn . To compute ΩXn , we have to ex-
tract data-vectors {x1, x2, ..., xl} from Seqi as defined by Xn using the 
window-based mechanism. We can motivate the main idea of this 
paper in the following way. We aim to model an existing informa-
tion structure as a data-insight of a given composite data point us-
ing undirected graph as a visualization technique, and to evaluate 
window-based mechanism as a feature extraction technique. One 
of the essential difficulties involved in this problem is measuring the 
distance between any two variance-covariance matrices. As stated 
in his PhD dissertation, Mosaab Daoud [8] proposed a solution for 
the composite data points proximity problem. The solution defined 
a new metric space (Ψ,Dij(γ1)), where Ψ is a class of composite 
data points, and Dij(γ1)is a metric. Dij(γ1) is defined as follows: 

 

where λ1 is the largest generalized eigenvalue (associated with the 
generalized eigenvector γ1) of the matrix (                      ). Now, by us-
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ing the window-based feature extraction mechanism we can map 
CDP into a family of sets of data-vectors 

thereafter, we can map each DVα,L into a set of variance-covariance 
matrices VC =  {ΩXn ; Seqi       CDP}. In this way, we compose a 
family of sets of variance-covariance matrices. By implementing the 
metric Dij(γ1), we can map each V C into a set of distance values in 
the interval [0, ∞). It should be noted that Θ is a set of all possible 
values of the shifting-distance α, L is the window-size, and Z+ is the 
set of positive integers (Θ and Z+ are parameter spaces). In deci-
sion theory and risk analysis [9], we have a concept called the seri-
ousness of the difference. It is hard to measure the seriousness of 
the difference in a family of variance-covariance matrices (note: a 
family is a set of instances, and each instance is a set of variance-co-
variance matrices), but we can depict the seriousness of the differ-
ence among instances in a family of variance-covariance matrices 
using undirected graph, which is one of the objectives of this paper. 
Consequently, in an undirected graph, each sequence will be repre-
sented by a node and each distance value will be represented by an 
edge. In this way, we can measure the seriousness of the difference 
in a family of variance-covariance matrices. Finally, in the next sec-
tion, we shall discuss the proposed approach by using real data. The 
computational process of this approach is illustrated in Figs. 1 and 
2. 

Fig. 1. Computational process of window-based mechanize.

Results and Discussion 

In this section, we shall present the implementation of the proposed 
approach using real data. Meanwhile, we shall discuss the practical 
outputs and implementations in details. We will use the segmented 
genomes of flu virus, and segments of Ebola virus as composite 
data points. 

One of the highly mutable viruses is the flu virus, and it has seri-
ous negative impacts on various populations (e.g., human popula-
tion). The genome of influenza virus has eight segments, and each 
segment can be encoded into either 1 or 2 proteins. The virus is 
classified under the family Orthomyxoviridae [10-12]. The eleven 
RNA-proteins of influenza virus genome are: PB1 (polymerase 
protein), PB2 (polymerase protein), PA (polymerase protein), HA 
(haemagglutinin protein), NP (nucleoprotein), NA (neuramini-
dase), M1 (matrix protein), M2 (matrix protein), NS1 (non-struc-
tural protein), and NS2 (non-structural protein). The variability of 
the influenza virus is embedded in the genetic text of the two sur-
face proteins: (1) HA and NA [13, 14]. The identification of influ-
enza sub-type can be accomplished using the variability of HA and 
NA proteins. 

The other composite data point that we shall consider in this pa-
per is Ebola virus. The Ebola virus is a negative-sense RNA virus, 
and it is classified under the family Filoviridae [15]. The genome of 
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Ebola has seven segments. The seven RNA proteins of Ebola virus 
genome are follows: nucleoprotein (NP), nucleocapsid protein 
(VP35), matrix protein (VP40), glycoprotein (GP), nucleocapsid 
protein (VP30), nucleocapsid protein (VP24), and polymerase 
protein (L). 

To proceed further, we downloaded a few composite data points 
from on-line databases. The composite data points represent the 
segmented genomes of influenza virus type A, influenza virus type 
B, and Ebola virus. Consequently, we compose a family of vari-
ance-covariance matrices for the composite data point: influenza 
virus type A, which it has 4 instances: the first instance: α =  1, L =  
50, and n =  1; the second instance: α =  1, L =  50, and n =  2; the 
third instance: α =  1, L =  50, and n =  3; and the forth instance: α 
=  1, L =  50, and n =  4. Each instance represents an information 
structure of the composite data point, and each undirected graph 
represents an insight of the information structure. To measure the 
seriousness of difference in a family of variance-covariance matri-
ces, we depict those instances in Figs. 3–6. From those figures we 
can conclude the seriousness of the difference caused by consider-

ing different feature vectors. Fig. 3 has the highest variability 
(spread) compared with Figs. 4–6. In other words, in the graph, the 
distances among nodes can be used as an indicator about the seri-
ousness of the difference caused by biodiversity and/or variability 
to detect new variants. 

In the second part of this experiment, we compare three compos-
ite data points. Each composite data point is a segmented genome. 
Those composite data points are follows: (1) influenza virus type 
A, (2) influenza virus type B, and (3) Ebola virus. We compose a 
family of variance-covariance matrices with three instances using 
the following parameters: α =  1, L =  80, and n =  1. Figs. 7–9 de-
pict those instances respectively. It is clear that the insights of inner 
information structure of those composite data points are different 
in terms of distance-variability and inner information structure, and 
this variability reflects the genetic diversity in the segmented ge-
nomes of the considered viruses. 

Another comparison can be conducted between the two instanc-
es of variance-covariance matrices given in Figs. 3 and 7, and it is 
clear that the seriousness of the difference occurs between the two 

Fig. 2. Prototypes for a composite data point, a family of variance-covariance matrices, an undirected graph model for an instance of 
variance-covariance matrices.  
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Fig. 3. The insight of information structure for Influenza A virus. 
This instance of variance-covariance matrices is captured using the 
following parameters: α = 1, L = 50, and n = 1.  

Euclidean of Mosaab Distance-(CompositeDataPoint)

Fig. 5. The insight of information structure for influenza A virus. 
This instance of variance-covariance matrices is captured using the 
following parameters: α = 1, L = 50, and n = 3.  

Euclidean of Mosaab Distance-(CompositeDataPoint)

Fig. 4. The insight of information structure for Influenza A virus. 
This instance of variance-covariance matrices is captured using the 
following parameters: α=1, L = 50, and n = 2.  

Euclidean of Mosaab Distance-(CompositeDataPoint)

Fig. 6. The insight of information structure for influenza A virus. 
This instance of variance-covariance matrices is captured using the 
following parameters: α = 1, L = 50, and n = 4. 

Euclidean of Mosaab Distance-(CompositeDataPoint)
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Fig. 9. The insight of information structure for Ebola virus. This 
instance of variance-covariance matrices is captured using the 
following parameters: α 1, L = 80, and n = 1.  

instances due to the window-size. 
Based on these results, we should shift the purpose of this ap-

proach to the level of a tool. This tool can help researchers and users 
in the field of computational biology to understand and evaluate 
the mechanisms of window-based approaches, and to understand 
the segmented genetic variation of a composite data point through 
depicting the seriousness of the difference among information 
structures extracted from a given composite data point using win-
dow-based mechanism. In addition, the tool can be used to visual-
ize the genetic diversity of composite data points. 

We presented experiments and results, and in the next section, 
we shall present conclusions and future work. 

In this paper, we have analyzed window-based mechanism ap-
proach as a sequence analysis approach. We introduced the termi-
nology: the seriousness of the difference, composite data point, 
data insight, and information structure. There is a difficulty in mea-
suring the seriousness of the difference among the existing insights 
of information structure in a composite data point. The contribu-
tions of this paper can be summarized as follows: we proposed the 
concept of a family of variance-covariance matrices, where each in-
stance of this family is a set of variance-covariance matrices, which 
represents a data-insight about the information structure of a com-
posite data point. We proposed an alternative approach to measure 
the seriousness of the difference among data-insights extracted 

Fig. 7. The insight of information structure for influenza A virus. 
This instance of variance-covariance matrices is captured using the 
following parameters: α = 1, L = 80, and n = 1.  

Euclidean of Mosaab Distance-(CompositeDataPoint)

Euclidean of Mosaab Distance-(CompositeDataPoint)

Fig. 8. The insight of information structure for influenza B virus. 
This instance of variance-covariance matrices is captured using the 
following parameters: α 1, L = 80, and n = 1.  

Euclidean of Mosaab Distance-(CompositeDataPoint)
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from a composite data point by using undirected graph and Mo-
saab-metric space to visualize the differences caused by estimates of 
the parameters: (1) window-length or size (L), (2) shifting dis-
tance (α), and (3) random feature vector (Xn). This approach can 
be used to evaluate window-based sequence analysis algorithms, 
and to capture segmented genetic variation and diversity in com-
posite data points. The approach can be used to answer critical bio-
logical questions: for example, are the corresponding segments of 
influenza A and B similar in distance? Can we capture the rates of 
change in those segments? Which may be interesting to epidemiol-
ogists. Finally, as future work, we can use this approach as an inte-
grated tool to visualize the diversity and variability of outliers (vari-
ants) in a dataset of composite data points.
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