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In this article, we address the tenability of Darwin’s musical protolanguage,

arguing that a more compelling evolutionary scenario is one where a prosodic

protolanguage is taken to be the preliminary step to represent the hierarchy

involved in linguistic structures within a linear auditory signal. We hypothesize

that the establishment of a prosodic protolanguage results from an

enhancement of a rhythmic system that transformed linear signals into speech

prosody, which in turn can mark syntactic hierarchical relations. To develop

this claim, we explore the role of prosodic cues on the parsing of syntactic

structures, as well as neuroscientific evidence connecting the evolutionary

development of music and linguistic capacities. Finally, we entertain the

assumption that the capacity to generate hierarchical structure might have

developed as part of tool-making in human prehistory, and hence was

established prior to the enhancement of a prosodic protolinguistic system.
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Introduction: Birdsong and language

Charles Darwin (1871, p. 55) noted that birdsong is the “nearest analogy to
language.” Just as songbirds have an instinct to sing, humans have an instinct to speak,
and both species display a pre-mastery stage: subsongs in birds and babbling in humans
(Aronov et al., 2008). These correlations led Darwin to conjecture that, prior to language,
our ancestors were singing to communicate, what Fitch calls “musical protolanguage”
(Fitch, 2005, 2006, 2010, 2013).

Recent studies show a surprising parallel between language and birdsong beyond
simply sharing a pre-mastery stage (Yip, 2006, 2013; Bolhuis et al., 2010; Bolhuis
and Everaert, 2013; Moorman and Bolhuis, 2013; Samuels, 2015; Miyagawa, 2017). In
observing juvenile zebra finches (Taeniopygia guttata), Liu et al. (2004) identified two
learning strategies. In “serial repetition,” one syllable of the model is repeated and clearly
articulated; in the motif strategy, the juvenile bird tries to imitate the tutor’s vocal display
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in its entirety, and the articulation is noisy and imprecise.
Similarly, O’Grady (2005) and others note that a human infant
may adopt either the “analytic” style, which produces clearly
articulated, one-word utterances, or the “gestalt” style, which
produces large chunks of speech that are poorly articulated.

Regions in the forebrain controlling vocal production have
been identified in humans as well as three independent lineages
of songbirds (e.g., zebra finches; Pfenning et al., 2014). These
regions display convergent specializations in the expression
of 50–70 genes per brain region. Furthermore, in birds that
do not sing (e.g., chickens, Gallus gallus domesticus) and a
primate that does not have language (e.g., macaques; Macaca
fuscata), no direct projection connects the vocal motor cortex
to brainstem vocal motor neurons (Belyk and Brown, 2017;
Nevue et al., 2020). Such observations endorse the assumption
that language and birdsong share a common neurobiological
substrate (Cahill et al., 2021) that would have allowed auditory-
vocal learning, a capacity necessary for linguistic competence to
emerge (Jarvis, 2019).

Taking Darwin’s musical protolanguage as a starting
point, we discuss the possible evolutionary scenario from a
linear musical/rhythmic protolanguage to speech prosody that
would develop into a full-fledged syntactic hierarchical system
underlying language (de Rooij, 1975, 1976; Price et al., 1991;
Schafer et al., 2000; Richards, 2010, 2016, 2017; Speer et al.,
2011; Langus et al., 2012; a.o.). To develop this claim, we
explore the role of prosodic cues on the parsing of syntactic
structures, as well as neuroscientific evidence connecting the
evolutionary development of musical and linguistic capacities.
Finally, we entertain the assumption that the capacity to
generate hierarchical structure might have developed as part of
tool-making prior to language.

Musical protolanguage

Like birdsong, Darwin (1871) assumed that the earliest
musical protolanguage did not contain any propositional
meaning. Birds sing to convey intention, typically the desire
to mate (Marler, 1998, 2000; Berwick et al., 2011; Berwick
et al., 2013; Bowling and Fitch, 2015). Darwin (1871, p. 56–57)
conjectured that the musical protolanguage was for “charming
the opposite sex.” Given the lack of meaning, this musical
protolanguage by itself could not have developed into human
language. Darwin suggested that our ancestors began to
interweave gestures and sound imitations of other animals as
precursors to words in order to insert meaning into the musical
sequences.

In the same vein, but with more knowledge about human
language than what was available to Darwin, Fitch (2005,
2010, 2013) suggests that for the musical protolanguage
to have transformed into language, a second stage must
have added “a fully propositional and intentional semantics”

(2005:220; see also Fitch, 2004). Fitch suggested there was an
integration of existing systems: the musical protolanguage and
the propositional system. More specifically, Fitch’s version of a
musical protolanguage expands Darwin’s original formulation
by offering an account of how an intentional semantics —
as opposed to lexical semantics— was assigned to melodic
strings, as well as how modern humans developed advanced
vocal control and learning; a major obstacle for a cohesive
explanation on the phylogenetic history of a linguistic
capacity. In this article, we argue instead that complex vocal
control, which paved the way for singing and rhythmic
utterances, might have enhanced a parsing mechanism for
syntactic constituency, hence for the identification of hierarchic
structures, by means of prosodic cues (e.g., pauses, prominence,
nuclear stress, etc.). Fitch (2010, p. 499) also refers to
his model as a “prosodic” protolanguage, which “[. . .]
consisted of sung syllables, but not of notes that could be
arranged in a scale, nor produced with a steady rhythm”
(see also Fitch, 2006). His prosodic protolanguage model,
however, focuses on the evolutionary development of prosodic
units rather than on the impact of prosodic cues in
the identification of syntactic hierarchical structure, as we
are proposing.

Miyagawa et al. (2013, 2014) and Miyagawa (2017) note
that components of human language existed long before
language emerged.1 These components became integrated in
recent evolutionary time, perhaps around 300–200 thousand
years ago (kya) (Tattersall, 2008, 2010, 2012, 2016; Huybregts,
2017), to give form to language as we know it today. This
integration of the musical protolanguage with the propositional
component, as envisaged by Fitch, would have been a very
complex process. Human language is associated with the
core syntactic component, which generates structured phrases,
and the interfaces to which the structured phrases are sent:
the phonological form (PF), which connects to the sensory-
motor system, and is responsible for the externalization of the
structured phrases; and the logical form (LF), which connects to
the conceptual-intentional system, assigning an interpretation
to the structure (Chomsky, 1995, 2000; see Figure 1).

We argue that a prosodic protolanguage, resulting from
complex vocal control —fundamental for singing and rhythmic
vocal displays—, would have been part of the PF component,
enabling externalization of the core syntactic component.
For this to happen, it developed the capacity to represent
hierarchy within a linear signal. This proposal, when compared
to Fitch’s, has the benefit of being more easily tested, since
we can assess whether the absence of prosodic cues lead
to divergent/unexpected parsing strategies or makes syntactic
interpretation difficult.2 By pulling together research from

1 See also Fitch (2002) and Hauser et al. (2002).

2 For example, Sandler et al. (2011) stress the role of prosodic
cues in the development of syntactic complexity when analyzing the
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FIGURE 1

The architecture of the human language faculty.

neuroscience, primatology, and linguistics, we develop in this
article a reasonably coherent picture of how hierarchy might
have emerged in speech.3

One region that has been implicated in the creation of
hierarchical relations is Broca’s area, specifically, the pars
opercularis, or Brodmann area 44 (BA44) (Friederici et al.,
2006; Friederici, 2009; Friederici et al., 2012; Kemmerer, 2012,
2015, 2021; Zaccarella and Friederici, 2015a,b,c). Studies have
also explored the evolution of this region in humans and its
homologs in other species, such as the great apes. These studies
suggest that human BA44 is proportionately much larger than
its homolog in other species (compared with the entire brain
or specific regions like the entire frontal cortex; see Schenker
et al., 2010; Smaers et al., 2017; Donahue et al., 2018), and
that left BA44 in humans may have greater neuropil volume,
suggesting greater space for local and inter-regional connectivity
(Palomero-Gallagher and Zilles, 2019; Changeaux et al., 2021).
We explore the idea that if the musical protolanguage played
a role in the evolution of language by transforming into what
we call speech prosody, as Darwin originally suggested, it
may have involved BA44 and its critical connections to other
regions.4

development of the Al-Sayyid Bedouin emergent sign language. In this
language, rhythmic and facial cues are directly aligned at constituent
boundaries. The importance of prosodic cues in the development of
syntactic constituency can further be tested in other nascent linguistic
system that lack any previous linguistic bias, such as the Cena rural sign
language in Northeast Brazil (Almeida-Silva and Nevins, 2020).

3 It is relevant to point out that Benítez-Burraco and Elvira-García
(2022) reach similar conclusions by exploring the role of self-
domestication in the evolutionary development of speech prosody. In
their view prosody, which is argued to have been affected by human self-
domestication, might have favored syntactic complexification through a
series of bootstrapping effects.

4 Katz and Pesetsky (2011) and Roberts (2012) show that both music
and language employ a parallel computation for hierarchical structure
building. We acknowledge that the cognitive mechanisms underlying
hierarchical structure in both music and language might have had a
common ancestry, as will be explored later (see also Jackendoff, 2009;

Prosody

Words in language are uttered in a linear fashion.
The words are not simply linearly ordered but are also
hierarchically organized, and this hierarchy comprises the
essential component for associating meaning to the expression.
The hierarchy itself is an abstract representation, and is
commonly communicated by prosody, as a layer of supra-
segmental phonological information on top of the string of
words (e.g., Selkirk, 1986; Jackendoff, 1997; Büring, 2013).
There are two types of prosody: emotional and linguistic.
Emotional prosody signals the speaker’s emotional state or
the emotional content of the expression, while linguistic
prosody signals syntactic structure and thematic relations.5

Here we will focus on the latter. We give three examples
of such prosody: (i) pauses, which mark clausal structure,
(ii) relative prominence assigned to units within a noun
phrase, and (iii) nuclear stress, which is assigned within a
verb phrase.

Pause

The following shows how pause, or major prosodic
constituents, can be placed within a sentence (from Büring,
2013, p. 865).

Boeckx and Fujita, 2014; Fitch and Martins, 2014; Asano and Boeckx,
2015; Asano, 2021; Asano et al., 2022).

5 Prosody often marks structure in neutral focus. If there is narrow
focus in way of stress for emphasis, prosody does not necessarily
mirror the structure of the expression (Ladd, 2008). Some languages,
however, seem to involve a different pattern. Shanghainese and some
Bantu languages display a mismatch between prosody and syntactic
structure in neutral focus (e.g., Zubizarreta, 2009; Han et al., 2013). This
linguistic variability with respect to prosodically marked neutral focus led
some linguists to suggest that prosody may not have a faithful one-to-
one mapping from syntax, being responsible for mapping only certain
syntactic domains (Selkirk, 2009, 2011).
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(1) when Roger left the house became irrelevant.

(a) when Roger left [PAUSE] the house became
irrelevant

(b) when Roger left the house [PAUSE] became
irrelevant

(1) shows how pauses indicate structural boundaries.
The silent intervals in (1a) and (1b) signal the end of a
subordinate clause, with the varying positions leading to
different interpretations.6

Prominence: Noun phrase

Speakers can tell which syllable is prominent in an utterance.
Prominence can often be measured by duration, intensity,
fundamental frequency (pitch) and other acoustic measures.
Prominent syllables tend to be longer and louder. So, a syllable
(along with the word that contains it) is perceived as prominent
if it is in the location of the local maximum in the fundamental
frequency curve. Conversely, it is perceived as less prominent if
it is in the location of the local minimum in the fundamental
frequency curve (see Büring, 2013, and references therein). In
English, very roughly, the last syllable/word in a constituent
receives relative prominence (e.g., Selkirk, 1986). The following
is modeled on similar examples from Büring (2013).

(2) a. (∗)

(∗) (∗)

(∗) (∗) (∗)

fancy shirt and slacks

b.

(∗)

(∗) (∗) (∗)

tie, shirt and slacks

The number of asterisks indicates relative prominence. In
(2a), fancy and shirt differ in prominence, with shirt receiving

6 Yip (2013, p. 191) indicates that a “motif” could be roughly equated to
a phrase, “in its tendency to be surrounded by ‘pauses”’. Such category in
birdsong plays a crucial role during ontogeny, since infants first begin
copying small chunks of the target song. Williams and Staples (1992)
show that the chunk boundaries produced by infants correlate with the
silent interval delimited by the pauses circumscribing a motif, suggesting
that similar acoustic cues assist on the identification of the internal
structure of a song, facilitating its segmentation — a strategy that is
parallel to the prosodic bootstraps in language acquisition (Yip, 2013; Mol
et al., 2017). Song segmentation, however, seems to be circumscribed
to the identification of which note strings might comprise a motif, and
which are the linear organizations of motifs into a complete song.
Birdsong involves a finite-state mechanism to combine notes into motifs,
and motifs into songs (Berwick et al., 2011, Berwick et al., 2012). A finite-
state mechanism resorts to strictly sequential steps (linear probability),
hence lacks hierarchical organization. The latter is only available in
combinatorial systems that demand a more powerful working memory,
such as context-free or context-sensitive systems (Joshi, 1985), which
was not observed in songbirds.

more prominence. This indicates that shirt is at the right edge
of the phrase that also contains fancy. The third word, slacks,
receives more prominence than shirt, indicating that it is at the
right edge of another phrase.

(3) [[fancy shirt] and slacks]

This is a hierarchical relation, with fancy shirt in the lower
tier of the hierarchy.

(4)
fancy shirt (and) slacks

In (2b), no distinction exists between tie and shirt, so these
words do not constitute a phrase. The relative prominence of the
last word, slacks, shows that this word is on the right edge of the
entire phrase: [tie shirt and slacks].

(5)
tie shirt (and) slacks

Prominence: Nuclear stress rule

Within a verb phrase of a sentence with neutral focus, a
rhythmically prominent stress falls on a particular constituent,
called Nuclear Stress (NS) (Chomsky and Halle, 1968; see also
Zubizarreta, 1998; Reinhart, 2006). The NS in the example below
falls on book, the final element in the verb phrase (and the
sentence).

(6) Mary read a book.

There is general recognition that syntactic structure plays
a crucial role in the assignment of NS (e.g., Chomsky, 1971;
Jackendoff, 1972; Cinque, 1993; Selkirk, 1995; Kahnemuyipour,
2004, 2009; Reinhart, 2006; Truckenbrodt, 2006; Kratzer and
Selkirk, 2007; Féry, 2011). It appears at first that the NS is
assigned to the last element in the sentence. This would be
a linearly based analysis of NS. A key observation for the
structurally based NS assignment is that in a language such as
German, where the object precedes the verb, the NS falls not on
the final element, but on the object, just as in English.

(7) Hans hat ein Buch gelesen.
Hans has a book read
“Hans has read a book.”
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In either order, English or German, the verb and the object
are in the verb phrase: [VP Verb OBJ]. There is an assumption
that the verb must vacate the verb phrase and move to a higher
position, leaving, in this case, only the object: [VP __ OBJ]. Is it
always the object that is assigned the NS? The example below
shows that it is not.

(8) Mary read a book about the moon.

The NS in (8) falls on moon within the prepositional phrase
that follows the object. This indicates that the NS is assigned to
the highest element in the verb phrase (Kahnemuyipour, 2004,
2009; Kratzer and Selkirk, 2007).

(9) VP

V DO

DO PP

The NS assignment is not dependent on linear order, but
strictly on hierarchical structure. In this way, speech prosody
marks hierarchy.7

Music and prosody

Some evolutionary theories contend that music and
language have a common progenitor that gave rise to an
early communication system (Brown, 2001; Mithen, 2005).
Both human speech and music contain prosody, which in
turn contains melody (intonation) and rhythm (stress and
timing) (Nooteboom, 1997; see also Yip, 2013). Music and
prosody have been shown to recruit overlapping neural regions,
supporting Darwin’s original idea and the evolutionary theories
that it spawned (Peretz et al., 1994; Patel, 2008, 2012). Some
have suggested that language and music are on a continuum,
without a sharp line of demarcation (Jackendoff, 2009; Patel,
2010; Koelsch, 2012). Early in life, infant-directed speech (IDS),
or “motherese” (Gleitman et al., 1984; Bates et al., 1995; de

7 Further prosodic phenomena responsible for marking constituent
boundaries are (i) stress prominence in English, which normally falls
on the rightmost constituent within a phrase (e.g., [[A sènator [from
Chicágo]] [wòn [the làst eléction]]] (Chomsky and Halle, 1968 apud<ref>
Selkirk, 2011, p. 435), (ii) liason in French, i.e., maintenance of a word-final
consonant before a vowel, [[Le petit âne] [le suivait]] “The little donkey
followed him” vs. [[Le peti] [[aime] [le Guignol]] “The little one loves the
puppet theater” (Selkirk, 1974 apud Selkirk, 2011, p. 435– 436). Several
additional phenomena can be found in Selkirk (2011). In sign languages,
non-manual markers, such as head position and facial expression, serve
the role of prosodic cues, and are equally relevant for syntactic parsing
involved in topicalization, relative clauses, and wh-constructions (see
Baker and Padden, 1978; Liddell, 1978, 1980; Neidle et al., 2000, for
American Sign Language).

Boysson-Bardies, 1999) seems to imitate song, and infants show
overlapping neural activity to IDS and instrumental music
(Kotilahti et al., 2010).

In studies of amusia without aphasia, Patel et al. (1998)
observed that prosodic and musical discrimination were
preserved or affected together, suggesting that the perception
of prosody and musical contour share overlapping cognitive
and neural resources.8 Furthermore, studies showing that
individuals with a congenital deficit in music perception
typically also exhibit deficits in perception of pitch in
language (Peretz, 1993; Liu et al., 2010; Nan et al., 2010;
Tillmann et al., 2011).

Over the last several decades, melodic intonation therapy
(MIT) has been used to improve language production in
patients with aphasia. Often, these patients have global aphasia
and respond poorly to other forms of classical therapies.
Patients who benefit from MIT may be activating remaining
frontoparietal networks critical to language, music and motor
processing (Sparks et al., 1974; Leonardi et al., 2017).

According to Hausen et al. (2013), studies using fMRI
have shown that music and language recruit overlapping neural
regions, including superior, anterior and posterior temporal,
parietal, and inferior frontal areas (Koelsch et al., 2002;
Tillmann et al., 2003; Brown and Martinez, 2007; Rauschecker
and Scott, 2009; Schön et al., 2010; Abrams et al., 2011;
Rogalsky et al., 2011).

While music and prosody are largely processed in the right
hemisphere of the brain (Weintraub et al., 1981; Bradvik et al.,
1991), hierarchy is associated with left Broca’s area (BA44)
(Friederici et al., 2006; Friederici, 2009; Friederici et al., 2012;
Zaccarella and Friederici, 2015a,b,c). Meyer et al. (2002) showed
that speech normally recruits both hemispheres, while prosodic
speech without any segmental information activates mostly
the right hemisphere. Speech processing streams connect the
hemispheres via the posterior portion of the corpus callosum.
As evidence of this, syntax-prosody mismatches in an ERP
paradigm did not elicit an anterior negativity in patients with
lesions to the posterior third of the corpus callosum (vs. patients
with lesions to the anterior two-thirds of the corpus callosum
and controls) (Sammler et al., 2010).

Stone tools: Source of hierarchy?

If BA44 is a critical piece of the puzzle when it
comes to generating hierarchy, then presumably the
original musical protolanguage would have undergone
enhancement by connecting to this region to produce

8 Earlier studies have reported a dissociation between the processing
of language and music (Marin, 1989; Peretz and Morais, 1989, 1993;
Sergent, 1993). See Patel (2012) for comments on this apparent
dissociation.
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speech prosody. Under this view, the capacity to generate
hierarchical structures existed prior to the enhancement.
If so, how did the capacity to generate hierarchical
structure develop? One view is that hierarchical cognition
developed as part of tool-making, as initially suggested
by Lashley (1951), and recently expanded by Fitch
and Martins (2014), Asano and Boeckx (2015), and
Asano (2021). This idea, which is controversial (Putt
et al., 2017), was primarily developed by Greenfield’s
grammars of action (Greenfield, 1991, 1998). From
their studies with non-human primates, Greenfield
and colleagues suggested three general “grammatical”
strategies: pairing strategy, pot strategy, and subassembly
strategy; this last one, subassembly, requires hierarchical
organization of information. They observed that while
non-human primates could engage in the first two
strategies, only humans are capable of the third strategy,
suggesting hierarchical organization is an exclusively
human trait.

A large body of work has applied this general approach
to stone tools, with the assumption that higher cognitive
functions in modern humans are linked with the evolution
of motor control (Lieberman, 2006; see also Holloway,
1969; Wynn, 1991; Fitch and Martins, 2014). Stone tools
are made from flake units, which are combined to form
assemblies, and these assemblies make up the tool’s
higher-order architecture (Miller et al., 1960). Earlier (i.e.,
Pleistocene era) tools do not evidence this kind of hierarchical
structure. Moore (2010) argues that it appeared in late
Middle Pleistocene, around 270 kya, when the Mousterian
style of tool-making appeared with the Neanderthals;
however, rudimentary hierarchical cognition may have
supported tool-making much earlier, approximately 800
kya or earlier, during the Acheulean phase (Moore, 2010;
Stout and Hecht, 2014; Gaucherel and Noûs, 2020).9 If true,
the capacity for hierarchical cognition existed long before
human language emerged. If so, this baseline would have
allowed the musical protolanguage to evolve and give rise
to speech prosody. Additional support for these ideas comes
from imaging studies showing overlapping activations for
language and tool use tasks (Stout et al., 2008; Higuchi
et al., 2009; Stout and Chaminade, 2012; Osiurak et al.,
2021).10

9 More specifically, Moore (2010) shows that hierarchical flaking is
necessary for stone tool types that demand multiple preparatory steps
prior to a flake removal, such as Acheulean bifaces and the Levallois
method. The production of Oldowan choppers, differently from bifaces
and the Levallois’ core preparation, only requires the extraction of high
mass from the core, lacking preparatory flaking (see also Stout, 2011;
Stout et al., 2018, for similar conclusions).

10 It is relevant to point out that vocal learning and vocal control
evolved independently from language (Jarvis, 2004, Jarvis, 2019), hence
prior to syntactic structuring. We also find suggestive evidence that
hierarchy was presumably co-opted from the abilities involved in the

What came first?

In this article, we traced our arguments beginning
with Darwin’s original suggestion that “[. . .] musical
cries by articulate sounds may have given rise to words
expressive of various complex emotions” (Darwin, 1871;
see also Oesch, 2020). This statement implies the following
sequence of emerging functions: isolated melodic cries,
then complex vocalizations (with increasing articulatory
refinement), then simple linguistic utterances, followed
by increasingly complex language containing words
capable of conveying emotions. A parallel theory suggests
music and language may have evolved simultaneously
on a spectrum (Morley, 2013; Oesch, 2019). This last
theory gains strength in the fact that fossil records —
the only direct source of information on this matter—
are inherently limited, which currently precludes us from
determining causality.

Thus, given these limitations, an equally plausible
proposal would be the reverse: that speech in fact preceded
music. Here we list a few arguments that make this
possibility less convincing. As mentioned above, studies
have revealed an expansion of several cortical regions
(e.g., BA44, auditory-vocal cortical regions) as well as
sensorimotor connectivity in humans relative to non-
human primates, which is thought to have permitted
the enhancement of critical components of language,
including vocal working memory and vocal repertoire size
(Schenker et al., 2010; Smaers et al., 2017; Aboitiz, 2018;
Donahue et al., 2018; Ardesch et al., 2019; Palomero-
Gallagher and Zilles, 2019; Changeaux et al., 2021).
Compared with non-human primates and other species
known to engage in “cooperative vocal turn-taking,”11

humans arguably have the most complex language, at least
in terms of vocabulary size and internal structure. Thus,
the work in comparative neuroanatomy and connectivity
would suggest that language, at least in its most evolved,
modern state, would not have emerged earlier than
musical abilities.

Although archeologists have suggested that the fine
motor control required for modern-day vocalizations
may have been present in Homo heidelbergensis as early
as 5–800,000 years ago (MacLarnon and Hewitt, 1999;
Martinez et al., 2013; Oesch, 2019), some forms of musical

motor actions of stone tool-making (see Fitch and Martins, 2014;
Asano and Boeckx, 2015; Asano, 2021). With this timeline in mind, we
can entertain an evolutionary scenario where complex vocal control,
roughly understood as an embryonic stage of prosodic cues, might have
enhanced the representation of hierarchic structure in the expressive
utterances of early human, gradually leading to present-day syntax.
In this scenario, we can say that prosody and syntactic structuring
co-evolved.

11 According to Oesch (2019), these are a rare type of vocalization that
bridges the gap between animal calls and human speech.
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expressions, such as drumming or marking a beat (e.g.,
beat entrainment), do not require any vocalizations at all.
So, in line with the above arguments, the evolutionary
record would suggest that the biological substrates and
mechanisms required for music production would have
been in place before those for the most advanced forms
of language. However, several authors have argued that
beat entrainment requires fine motor control, including
vocal control (see Patel, 2021; Shilton, 2022).12 With this in
mind, we can speculate that until fine motor control and
vocalization systems to support musical as well as linguistic
communication emerged in early hominins, it is very likely
that gestures might have played an even more prominent role
in communication.

So, if the fossil record is limited, what can other lines
of research contribute to elucidating these questions?
One hope lies in modern neuroscientific research. As
our technologies advance at unprecedented rates, well-
designed studies using connectivity, electrophysiology,
electrocorticography, and coherence should test
musical and language processing in humans as well
as other species. As we become progressively closer
to understanding the real time processes involved in
different forms of musical and linguistic processing, we
can further our understanding of how evolutionarily
more recent structures may have supported such
processes, thus providing evidence for or against
theories tracing the sequential or parallel emergence of
these skills.

Concluding remarks

Darwin’s musical protolanguage, if it existed, must
have undergone many critical changes before it became
modern-day language. One crucial step would have
been tapping into the ability to produce hierarchical
structure, which is only present in human language.
We suggest that this step involved enhancement of
the musical system to transform it to speech prosody,
which can mark hierarchical relations. Other steps
were needed for the hierarchical structure marked by
prosody to link up with a fully propositional intentional
semantics. But it is a crucial step, as we can see
by the pervasive nature of hierarchical structure in
human language.

12 We thank one of the reviewers for suggesting us this point.
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