
Recent advances in
enzyme-related biomaterials for
arthritis treatment

Xin-Hao Liu1,2†, Jia-Ying Ding1,2†, Zhi-Heng Zhu1,2,
Xi-Chen Wu1,2, Yong-Jia Song1,2, Xiao-Ling Xu3* and
Dao-Fang Ding1,2*
1Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese
Medicine, Shanghai, China, 2School of Rehabilitation Science, Shanghai University of Traditional
Chinese Medicine, Shanghai, China, 3Shulan International Medical College, Zhejiang Shuren University,
Hangzhou, China

Arthritis is a group of highly prevalent joint disorders, and osteoarthritis (OA) and

rheumatoid arthritis are the two most common types. The high prevalence of

arthritis causes severe burdens on individuals, society and the economy.

Currently, the primary treatment of arthritis is to relieve symptoms, but the

development of arthritis cannot be effectively prevented. Studies have revealed

that the disrupted balance of enzymes determines the pathological changes in

arthritis. In particular, the increased levels of matrix metalloproteinases and the

decreased expression of endogenous antioxidant enzymes promote the

progression of arthritis. New therapeutic strategies have been developed

based on the expression characteristics of these enzymes. Biomaterials have

been designed that are responsive when the destructive enzymes MMPs are

increased or have the activities of the antioxidant enzymes that play a protective

role in arthritis. Here, we summarize recent studies on biomaterials associated

with MMPs and antioxidant enzymes involved in the pathological process of

arthritis. These enzyme-related biomaterials have been shown to be beneficial

for arthritis treatment, but there are still some problems that need to be solved

to improve efficacy, especially penetrating the deeper layer of articular cartilage

and targeting osteoclasts in subchondral bone. In conclusion, enzyme-related

nano-therapy is challenging and promising for arthritis treatment.
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Introduction

Arthritis, which is a group of musculoskeletal diseases, is one of the leading causes of

disability in the elderly population (Woolf and Pfleger, 2003). Osteoarthritis (OA) and

rheumatoid arthritis (RA) are the most prevalent types of arthritis and affected

344 million people and 13 million people, respectively, globally in 2019 (Cieza et al.,

2021). OA is characterized by joint degeneration, especially in the knee, and involves

multiple joints, such as the hand, hip, knee and foot. A large-scale survey in the
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United Kingdom in 2017 showed that the prevalence of OA in

adults was 10.7% (Swain et al., 2020-06). The increases in obesity

and the ageing population contribute to the prevalence of OA

(Briggs et al., 2020-10). RA is an immunization-induced systemic

disease characterized by synovial inflammation and joint

destruction, and the prevalence of RA is 0.5–1.0% in the US

(Palmer et al., 2019).

OA and RA are both inflammatory joint diseases that involve

joint and synovial destruction and immune cell infiltration

(Zhang et al., 2019-03) and is associated with joint pain,

swelling, and limited movement, resulting in a decline in

physical function, increased dependence and reduced quality

of life. Furthermore, the prevalence of OA and RA is expected to

increase significantly as the global population ages. The

treatment of arthritis is often a long and complex process due

to irreversible damage and the risk of comorbidities, resulting in

extremely high medical and economic burdens on society, and

these burdens continue to increase globally (Briggs et al.,

2020-10).

To date, there is no effective cure for OA or RA. The current

interventions include medications, physical therapy, and surgical

intervention, all of which are aimed at alleviating symptoms and

reducing joint damage and disability. Medications for OA,

including topical, oral and intra-articular (IA) injectable

drugs, are palliative and limited to controlling symptoms of

joint swelling, pain and stiffness (Tschon et al., 2020-06). A

randomized clinical trial has even shown that IA corticosteroids

may accelerate the destruction of articular cartilage (McAlindon

et al., 2017-05). Currently, non-steroidal anti-inflammatory

drugs (NSAIDs), glucocorticoids (GCs) and disease-modifying

anti-rheumatic drugs (DMARDs) are mainly used in the clinical

treatment of RA. The targets of traditional DMARDs are not

clear, and approximately 30%–50% of patients respond poorly to

these drugs (Sparks, 2019). As a result of the poor bioavailability

and short half-lives of anti-rheumatic drugs, prolonged repeated

use can cause serious adverse reactions such as vomiting, drug

resistance and bone marrow suppression.

Physical therapy for OA and RA includes weight loss,

moderate exercise and knee joint distraction. Knee joint

distraction can improve symptoms and promote tissue repair

in severe knee joint degeneration, but there is frequent infection

during the follow-up (Jansen and Mastbergen, 2022-01; van der

Woude et al., 2017-01). When conservative treatment is not

feasible for end-stage arthritis, surgical intervention, such as total

joint replacement, can be considered, but this treatment strategy

is related to persistent postsurgical pain and infection (Wylde

et al., 2011-03; Chung et al., 2021-11).

Currently, new therapeutic strategies and drugs primarily

alleviate symptoms to treat arthritis, and critically unsolved

problems, such as how to restore abnormal cellular function

in arthritis, should be considered. Cellular activity depends on

various proteins, and some of these proteins are important

enzymes for physiological and pathological processes. Herein,

we summarized the essential enzymes that are involved in

pathological changes in arthritis.

Arthritis-related enzymes

The pathological changes in OA and RA are mainly

characterized by cartilage destruction and synovial

inflammation (Trachana et al., 2019; Scherer et al., 2020). Cell

metabolism is often regulated by different enzymes, and

abnormal levels of enzymes are typically associated with the

occurrence of various diseases. In cartilage, different matrix

metalloproteinases (MMPs) are responsible for destroying

chondrocytes by degrading collagen and proteoglycans.

1 matrix metalloproteinases linked with arthritis
There is increasing evidence that these inflammatory

mediators are involved in the pathogenesis of both OA and

RA (Malemud, 2017; van Dalen et al., 2017). Neutrophils,

monocytes and macrophages infiltrate cartilage and synovial

tissue after inflammation occurs, releasing various

inflammatory factors and chemokines, which cause an

increase in MMPs.

The destruction or degradation of articular cartilage is

regulated by MMPs, which are a family of proteolytic

enzymes that hydrolyse extracellular matrix (ECM). Different

types of MMPs are involved in degrading proteoglycans and

collagens, which are the main components of ECM in cartilage,

especially MMP-1, MMP-2, MMP-3, MMP-9 and MMP-13

(Itoh, 2017; Mehana et al., 2019). MMPs can degrade

collagen, elastin, and other substances in the ECM of articular

cartilage that maintain the structure of cartilage and ultimately

destroy the integrity of ECM structure and function.

Under pathological conditions, the expression level of MMP-

1 was significantly increased in OA and RA, and this factor

degraded ECM collagen and mediated cartilage destruction

(Wang et al., 2020a). In cartilage and synovium, MMP-1

expression increased steadily during the progression of OA in

a rabbit model of anterior cruciate ligament transection (ACLT)

(Wu et al., 2008). MMP-1 could lead to the degeneration of

primary collagen (type Ⅱ collagen) in cartilage, and this effect was
irreversible (Macdonald et al., 2018).

The development of OA and RA is associated with the

increased secretion and activity of MMP-2 in synovial cells

and the joints of RA patients, respectively (Kim et al., 2011;

Galasso et al., 2012). Furthermore, MMP-2-sensitive peptide was

shown to be specifically released in inflammatory joints in vitro

and in vivo, which might be an important approach for drug-

targeted treatment of RA (Yu et al., 2022).

Significantly increased levels of MMP-3 in the serum of OA

patients were positively correlated with the severity of knee OA

and RA in patients (Ma et al., 2014; Georgiev et al., 2018; Pengas

et al., 2018). Furthermore, serum MMP-3 levels were closely
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correlated with disease activity scores, suggesting that serum

MMP-3 levels could be used as an indicator of structural damage

and monitor disease progression (Galil et al., 2016; Tuncer et al.,

2019).

MMP-9 was also positively correlated with disease severity in

OA patients (Lipari and Gerbino, 2013). A meta-analysis showed

that MMP-2 and MMP-9 protein expression levels were

significantly higher in the OA group than in the control

group, indicating that MMP-2 and MMP-9 are involved in

the pathogenesis of OA (Zeng et al., 2015). Multiple studies

have shown that the expression of MMP-9 in synovial fluid and

synovial cells of RA patients is increased (Silosi et al., 2015; Ma

et al., 2019). The degree of inflammation in RA patients

correlated with Toll-like receptor 2 (TLR2) expression in

peripheral blood monocytes. The increased expression of

TLR2 led to the increased expression of MMP-9 (Chen et al.,

2015). MMP-9 could participate in the synovial cell-mediated

inflammatory response and the degeneration of ECM, especially

proteoglycans, which might directly cause joint destruction

(Metzger et al., 2012).

MMP-13 is a crucial enzyme leading to the degradation of

collagen types I, II and III and the cartilage proteoglycan

aggrecans and is considered a significant factor in the

pathogenesis of OA (Fosang et al., 1996). MMP-13 attracted

much attention due to its obvious overexpression in the

articular cartilage of OA patients, but it was almost

undetectable in normal adult tissues (Kaneva, 2022).

Interfering with the expression of MMP-13 in a surgically

induced OA model could efficiently alleviate OA severity

(Hoshi et al., 2017). Given its critical role in ECM

degradation, MMP-13 has been a promising target in OA

treatment (Hu and Ecker, 2021). K/BxN serum-induced

arthritis increases MMP-13 expression in C57BL/6 mice, and

MMP-13-deficient (MMP-13−/−) mice exhibit reduced

inflammation and joint destruction (Singh et al., 2013). In

addition, MMP-13 was also associated with the progression

of RA, providing crucial predictive information about future

structural damage and severity in early RA patients (Tatematsu

et al., 2018).

2 Endogenous antioxidant enzymes linked with
arthritis

Apart from the direct effect of MMPs on ECM degradation in

cartilage and promoting the progression of arthritis, endogenous

antioxidants such as superoxide dismutases (SODs), glutathione

peroxidase (GPx), catalase (CAT), and glutathione reductase

(GR) also affect the occurrence of arthritis by scavenging

intracellular reactive oxygen species (ROS) and alleviating

cellular oxidative stress.

ROS are key signalling molecules in the progression of

inflammatory diseases (Mittal et al., 2014). Under

inflammatory conditions, the oxidative stress induced by

macrophages, monocytes, and neutrophils leads to the

formation of interendothelial junctions, accelerating the

crossing of the endothelial barrier and ultimately promoting

inflammation (You et al., 2018).

The levels of intra-articular ROS (including H2O2, O2
−, OH−,

and HOCl) are significantly increased in OA patients, while ROS

are maintained at low levels in normal articular tissue (Lepetsos

and Papavassiliou, 2016; Yao et al., 2019). The overproduction of

ROS causes overoxidation, protein carbonylation, and DNA

damage and is considered the primary mechanism of

chondrocyte loss and tissue damage (Hosseinzadeh et al.,

2016). The associated ROS, including nitric oxide (NO),

superoxide anion (O2
−) and hydrogen peroxide (H2O2), are

present in the articular cavities of RA patients in large

quantities (Datta et al., 2014). When the local inflammatory

response in RA joints is accelerated and ROS levels exceed

physiological tolerance, they not only damage proteins, lipids,

and nucleic acids but also act as important endogenous signalling

regulators that amplify the synovial inflammatory response (Bala

et al., 2017; Phull et al., 2018). Li et al. found that ROS

significantly promoted the proliferation of RA synovial

fibroblasts and the production of inflammatory factors and

that inhibiting ROS significantly downregulated the

inflammatory factors secreted by RA synovial fibroblasts,

ultimately improving RA conditions (Li et al., 2018).

Therefore, a potent antioxidant compound that can reduce

ROS in inflammatory cells may be a key factor in the

treatment of chronic inflammatory diseases.

ROS clearance is regulated by SODs, GPx, CAT and GR (He

et al., 2017). CAT and GPx are involved in the decomposition of

intracellular hydrogen peroxide and maintain normal ROS levels to

reduce toxic reactions. SOD can catalyse O2
− into O2 and H2O2. GR

catalyses the reduction of glutathione disulfide (GSSG) to the

sulfhydryl form of glutathione (GSH), which plays an important

role in the tissue oxidative stress response (Deponte, 2013). The levels

of SOD, CAT and other antioxidant enzymes in OA chondrocytes

were significantly lower than those in normal chondrocytes,

indicating that insufficient antioxidant capacity might cause

cartilage damage (Zhuang et al., 2018). Unlike the expression

pattern of other antioxidant enzymes, the expression of GR was

increased in arthritis (Meshkibaf et al., 2019; Idzik et al., 2022).

The proliferation and activation of osteoclasts (OCs) are key

factors leading to bone damage and bone metabolism disorders

in RA (Auréal et al., 2020). Recent studies have shown a close

correlation between bone destruction and oxidative stress in the

pathogenesis of RA. ROS promote osteoclast differentiation

(Gamal et al., 2018). Decreased expression of SOD, CAT and

GPx was found in the ankle joints of RA rats (Ren et al., 2019a).

ROS-induced peroxidation is inhibited by antioxidant enzymes,

among which superoxide dismutase 3 (SOD3) is the key enzyme

that protects cells from oxidative stress (Nguyen et al., 2020).

SOD3 reduced proinflammatory cytokines (IL-1β, IL-2, IL-4, and
TNF-α) and the release of MMPs (MMP-2, MMP-3 and MMP-

9), ultimately inhibiting inflammatory responses (Xie et al.,
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2021). Icariin protects synoviocytes induced by

lipopolysaccharide (LPS) by inhibiting ferroptosis by

activating the Xc/GPX4 axis (Luo and Zhang, 2021).

Considering the importance of MMPs and oxide reductase

associated with ROS in the occurrence of arthritis, biomaterials

that target endogenous enzymes have become a hot research

topic in recent years. Next, we will introduce the application of

biomaterials that are linked with these enzymes.

Nanotherapies that target enzymes in
arthritis

Enzymes that play critical roles in arthritis pathology are

categorized into two groups according to their expression

characteristics: upregulated enzymes and downregulated

enzymes, which are listed in Figure 1. Enzyme homeostasis is

critical for the human body. Both the upregulated and

downregulated expression of these enzymes disrupt the

balance of cell metabolism and can cause diseases. Therefore,

therapeutic strategies have been designed according to the

expression of these enzymes. If the expression of these

enzymes is upregulated, nanomaterials can respond and

release an effective drug to inhibit pathological changes, or

nanomaterials can be fabricated to simulate the effects of

downregulated enzymes. Next, we described two different

functional enzymes in arthritis treatment.

1 Nanomaterials associated with upregulated
enzymes in arthritis treatments

It is well known thatMMPs are themain destructive enzymes

in chondrocytes that degrade ECM components, such as

proteoglycans and collagen networks. Degradation of the

ECM leads to functional destruction of chondrocytes and

cartilage erosion. Therefore, MMPs have become an important

molecular target for studies on the treatment of OA. In particular,

MMP-13, a critical protease in chondrocytes, is responsible for

the degradation of type II collagen and proteoglycans.

OA is a chronic inflammatory disease. Growing evidence

reveals that the changes in the OA microenvironment include

excessive inflammation and MMP overexpression (Latourte

et al., 2017; Li et al., 2017; Stocco et al., 2019). The

microenvironment is an important factor in maintaining joint

homeostasis. Long-term inhibition of MMP enzymatic activity

may lead to adverse reactions. Therefore, it is necessary to design

materials that are highly selective for MMPs and can adapt to the

changes in MMP levels in vivo. When MMP expression is

upregulated, MMP-responsive nanoparticles (NPs) work, and

they are inactive when MMPs are at low levels.

The increased expression of MMPs in inflamed tissues may

be a promising breakthrough for arthritis therapy. A

commercially available, Food and Drug Administration

(FDA)-approved molecule known as triglycerol monostearate

(TGMS) has been shown to be responsive to MMPs (Wen et al.,

2019).

FIGURE 1
Upregulated enzymes (red) and downregulated enzymes (green) in arthritis pathology.
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MMP-responsive PEGylated lipid NPs (TGMS/DSPE-

PEG2000 NPs) can be produced through the coassembly of

TGMS and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-

poly (ethylene glycol) (DSPE-PEG2000). Dexamethasone

(Dex)-loaded MMP-responsive NPs were obtained by loading

TGMS/DSPE-PEG2000 NPs with Dex, and Dex can be rapidly

released from the lipid NPs after TGMS is cleaved byMMP-3 and

MMP-9. Dex-loaded MMP-responsive NPs significantly reduced

the degree of joint swelling and inhibited the production of TNF-

α and IL-1β in the joint (He et al., 2020).

In another study, the nanozyme-like role of the hydrogel

form of TGMS(TG-18) was further confirmed in RA treatment.

A hydrogel platform that exhibits disassembly and drug release

controlled by the concentration of enzymes during arthritis flares

was constructed. In this study, a triglycerol monostearate

hydrogel (TG-18) loaded with the corticosteroid triamcinolone

acetonide (TA) exhibited drug release in response to the

increased activities of arthritis-related enzymes in vitro

(MMP-2, MMP-3, MMP-9) or synovial fluid from patients

with RA (Joshi et al., 2018).

In addition to synovial inflammation and joint swelling,

obvious cartilage damage and bone erosion are often observed

in RA. Synovial macrophages mediate joint inflammation once

activated, and OCs are responsible for arthritic bone erosion and

resorption of the bone matrix. Both OCs and synovial

macrophages express high levels of αvβ3 integrin, which plays

an important role in activated macrophage-dependent

inflammation and OC-dependent bone resorption.

Macrophages and OCs fail to undergo apoptosis in the RA

joint, leading to persistent inflammation and joint destruction.

Therefore, inducing OC and macrophage apoptosis in RA joints

represents a promising strategy for advanced RA treatment.

According to the characteristics of OCs and synovial

macrophages, novel CEL-loaded PRNPs (CEL-PRNPs) were

synthesized that contained celastrol (CEL), which can induce

apoptosis in OCs and macrophages, RGD, which is a ligand of

αvβ3 that targets OCs and inflammatory macrophages, and

polyethylene glycol (PEG), which is cleaved by MMP-9. In an

adjuvant-induced arthritis rat model, CEL-PRNPs efficiently

reduced the number of OCs and inflammatory macrophages

and relieved various symptoms, including ankle and paw swelling

and bone erosion, in the inflamed joints of AIA rats with

advanced arthritis (Deng et al., 2021).

To determine the inflammatory condition and investigate the

therapeutic effects of MMP-responsive biomaterials,

fluorescence imaging was considered for diagnosis and therapy.

Inflamed cartilage is characterized by MMP-13

overexpression and an acidic microenvironment. Therefore,

MMP-13/pH-responsive ferritin nanocages (CMFn) loaded

with an anti-inflammatory drug (hydroxychloroquine, HCQ),

termed CMFn@HCQ, were constructed for OA imaging and

therapy. CMFn is a marker for imaging diagnosis that emits light

in response to MMP-13 overexpression. The intensity of CMFn

light increases with the severity of OA. However, in normal

joints, this compound emits no light. The release of HCQ causes

an anti-inflammatory effect in OA joints to reduce synovial

inflammation, and the retention time lasts up to 14 days

(Chen et al., 2019a).

Cartilage-targeting C-PPL was created by grafting collagen

type II-targeting peptides with the sequence WRYGRL onto the

polymer poly (2-ethyl-2-oxazoline)-poly (ε-caprolactone) (PPL).
Additionally, PPL was conjugated with a specific peptide

substrate of the MMP-13 enzyme (H2N–GPLGVRGC–SH)

that was labelled with a fluorescent dye (Cy5.5) and was

subsequently coupled with the black hole quencher-3 (BHQ-3)

that can quench Cy5.5 fluorescence to obtain an MMP-13-

responsive and pH-sensitive polymer (MR-Cy5.5-BHQ-3-

PPL). A cartilage-targeting and OA-specific theragnostic

nanoplatform (MRC-PPL) was obtained by the self-assembly

of C-PPL and MR-PPL. Finally, MRC-PPL was loaded with the

traditional Chinese medicine psoralidin (PSO) to form MRC-

PPL@PSO nano-micelles, which specifically target and protect

cartilage (Lan et al., 2020). The synthesis and mechanism of

MRC-PPL@PSO nano-micelles to treat OA are shown in

Figure 2.

In addition to MMP overexpression in arthritis tissue, the

intrinsic properties of the OA microenvironment, especially

synovial fluid, are also considered when designing novel

nanomaterials. The increased activity of the GR enzyme was

reported in the synovial fluid of RA and OA patients, and a

selectively controlled drug release that is sensitive to the GR

enzyme was designed for the treatment of arthritic diseases

(Ostalowska et al., 2006; Sredzińska et al., 2009). Polymeric

micelles were made of methoxypolyethylene glycol amine-

glutathione-palmitic acid (mPEG-GSHn-PA) polymers. Dex

was loaded into the cores of the polymeric micelles. The

release of Dex was slow under physiological conditions, while

the presence of the GR enzyme stimulated a burst release via a

thiol−disulfide exchange between GSH and GSSG (Lima et al.,

2021). The above biomaterials associated withMMPs are listed in

Table 1.

2 Nanomaterials associated with downregulated
enzymes in arthritis treatments

Apart from the destruction of cartilage tissue induced by the

increased expression of MMPs, the decreased expression of oxide

reductase associated with ROS showed a similar effect on

cartilage. To reduce the expression of oxide reductase, the

strategy was to supply these enzymes directly or mimic the

activities with special biomaterials.

Supplementation with antioxidant enzymes such as SOD has

been shown to be effective in treating arthritis. Chitosan was

chemically conjugated with SOD to generate the nanoparticle-

like conjugate 6-O-2′-hydroxylpropyltrimethyl ammonium

chloride chitosan-SOD (O-HTCC-SOD), which was superior

to unmodified SOD in bioavailability, prolonged half-life and
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residence in the rat joint cavity. After IA injection of O-HTCC-

SOD into rats with MIA-induced OA, mechanical allodynia was

greatly reduced, and changes in the gross morphological and

histological lesions of articular cartilage were dramatically

inhibited (Wang et al., 2020b).

Although the nanosized conjugate O-HTCC–SOD has

exhibited higher enzyme activity and superior membrane

permeability to native SOD, natural enzymes are unstable,

expensive and difficult to store. Currently, biomaterials called

nanozymes have been designed to mimic the effects of these

oxide reductases. Nanozymes are a specific kind of nanomaterial

that have the activities of intrinsic enzymes and possess unique

advantages, such as high efficiency, increased compatibility with

specific environments, such as high temperatures and

pH variations, cyclic use, and a large surface area, and these

materials can be conjugated to multiple ligands to achieve

multifunctionality. These features give rise to their promising

applications in a variety of fields (Pirmohamed et al., 2010).

Recently, numerous nanomaterials with enzyme-like

properties have been discovered for OA treatment, including

metals, metal oxides, and carbon-based materials.

As a representative metal oxide, cerium oxide has been

evaluated in RA treatment. Engineered cerium oxide (CeO2)

nanoparticles (CeONPs), which are also known as nanoceria,

have attracted much attention for exhibiting SOD−, CAT−, and

oxidase-like activity (Heckert et al., 2008; Baldim et al., 2018;

Kalashnikova et al., 2020). In reduction reactions, SOD

catalyses O2
•− into H2O2, which may undergo catalysis by

CAT into H2O.

Given that albumin is a natural protein and scavenging

receptors are widely distributed in the inflamed joints of RA,

albumin-nanoceria NPs (A-nanoceria) were synthesized by

connecting albumin to nanoceria and further conjugated with

near-infrared, indocyanine green (ICG) dye. Enzymatic

properties and ROS scavenging activities against a monocyte

cell line and systemic targeting potential were evaluated in a

collagen-induced arthritis (CIA) mouse model. Such a design has

the advantages of targeting inflammation, assessing severity, and

controlling inflammation with imaging guidance in RA

(Kratschmer et al., 1990).

Moreover, carbon-based materials have also exhibited the

activities of nanozymes in scavenging ROS. Fullerene (C60) is a

FIGURE 2
Schematic illustration of the synthesis and working mechanism of MMP-13 and pH responsive theranostic MRC-PPL@PSO nano-micelles for
OA (Lan et al., 2020). Copyright, 2020, BMC.
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spherical carbon molecule with a unique cage structure that

functions as a free-radical scavenger. Apart from inhibiting ROS-

induced catabolism in cartilage, fullerene also decreases friction

on the cartilage surface and subsequently prevents the further

development of cartilage degeneration. With these advantages,

fullerene has been used to synthesize biomaterials for the

treatment of arthritis. For example, fullerene-like MoS2
(F-MoS2) NPs are efficient lubricants and antioxidants for

artificial synovial fluid. These NPs possess intrinsic dual-

enzyme-like activity, mimicking SOD and CAT under

physiological conditions (pH 7.4, 25°C) and regulating the

ROS level in artificial synovial fluid containing HA (Chen

et al., 2019b).

Prussian blue (PB) has been approved by the U.S. FDA as a

commonly used dye and medicine due to its excellent

biocompatibility and biosafety. The peroxidase, CAT, and

SOD activities of PBzymes mediate the scavenging of •OH,

•OOH, and H2O2, exhibiting outstanding anti-inflammatory

and antioxidative bioactivities (Long et al., 2016; Zhang et al.,

2016; Dacarro et al., 2018; Qin et al., 2018).

A hollow PBzyme (HPBzyme) with a mesopore structure and

a high specific surface area was produced that could remodel the

OAmicroenvironment by mitigating the inflammatory response,

protecting against chondrocyte ECM degradation, and exhibiting

therapeutic efficacy in vivo (Hou et al., 2021).

PB has also been integrated into other therapeutic

approaches, such as exosomes and ultrasound, for arthritis

treatment. Low-density ultrasound is a noninvasive

biophysical treatment that can reduce joint swelling and

inflammation in OA models (Iwabuchi et al., 2014). The

combined therapeutic effects of PB and low-density

ultrasound on animal OA by scavenging oxygen free radicals

TABLE 1 The biomaterials that target the upregulated enzymes in arthritis.

Arthritis Enzymes-responsive
group

Nanomaterial Platform Components Responsive
enzymes

Drug Ref

RA TGMS Dex-loaded TGMS/DSPE-
PEG2000

NPs 1.TGMS MMP-3 Dex He et al.
(2020)

2.Dex MMP-9

3.PEG2000

4.DSPE

RA TGMS TA-loaded TG-18 hydrogel hydrogel 1.TGMS MMP-2 TA Joshi et al.
(2018)2.TA MMP-3

MMP-9

RA PEG CEL-PRNPs NPs 1.celastrol (CEL) MMP-9 Deng et al.
(2021)2.RGD

3.PEG

4.PLGA

OA H2N–GPLGVRGC–SH CMFn@HCQ nanocages 1.MMP-13 cleavble
peptide

MMP-13 HCQ Chen et al.
(2019a)

2.HCQ

3.collagen type II targeting
peptides

4.BHQ3

5.Cy5.5

6.ferrritin

OA H2N–GPLGVRGC–SH MRC-PPL@PSO micelles 1.MMP-13 cleavble
peptide

MMP-13 PSO Lan et al.
(2020)

2.PSO

3.collagen type II targeting
peptides

4.PPL

5.Cy5.5

6.BHQ-3

OA GSSG Dex-loaded mPEG-
GSHn-PA

micelles 1.PEG GR enzyme Dex Lima et al.
(2021)2.GSH

3.PA

4.Dex
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was investigated. It was found that this treatment could

significantly remove ROS, alleviate ROS-induced apoptosis,

and reduce the degeneration of articular cartilage (Zuo et al.,

2021). Furthermore, neutrophil-derived exosomes engineered

with ultrasmall PB nanoparticles (uPB-Exo) have been shown

to be effective in treating RA. uPB-Exo selectively accumulated in

activated fibroblast-like synoviocytes and acted as mimics of

SOD2 and NOX2 in inflamed joints of RA in vivo, subsequently

neutralizing proinflammatory factors, alleviating inflammatory

synovitis and protecting against cartilage damage in an advanced

RA mouse model (Zhang et al., 2022).

Selenium (Se) is an essential dietary nutrient and has been

reported to have lower serum concentrations in RA patients than

healthy individuals (Yu et al., 2016). Supplementation with Se is

controversial in the treatment of arthritis is controversial due to

its toxicity. Nanosized Se is known to have superior antioxidant

effects and reduced toxicity (Malhotra et al., 2016). In a rat RA

model, SeNPs exhibited potent anti-inflammatory effects and

promoted the expression of CAT, SOD and GPX (Ren et al.,

2019b).

Ultrasound, which is a noninvasive biophysical therapy and a

common mode of sonodynamic therapy (SDT), can strongly

penetrate inflammatory tissues and kill inflammatory cells, thus

reducing synovial hyperplasia and minimizing oxidative damage

to surrounding normal tissues. SDT is hampered by the hypoxic

microenvironment of RA caused by fibroblast-like synoviocyte

(FLS) proliferation. Rhodium NP (Rh) nanozymes with concave-

cube shapes could compensate for the deficiency of ultrasound

therapy by exhibiting the activities of POD and CAT, which

generate O2 and •OH to alleviate hypoxia. In addition to its

remarkable sonosensitive properties, the antibacterial drug

sparfloxacin (SPX) can reside for a long time in joint tissues

after systemic administration, which makes it possible to target

the abnormal proliferation of FLSs in synovial tissue in the joint

and block the development of RA. A small glycoprotein rich in

cysteine known as SPARC is overexpressed in the synovial fluid

and synovium from RA patients and increased in mice with CIA

(Liu et al., 2019). SPARC has high affinity for human serum

albumin (HAS) (Park et al., 2019). Therefore, HSA-modified Rh/

SPX nanozyme was fabricated for RA treatment by combining

the advantages and characteristics of these components (Li et al.,

2021). The preparation of Rh-SPX/HSA and its related

mechanisms in the treatment of RA are shown in Figure 3.

In addition to the combination of ultrasound and nanozymes

to treat arthritis, a promising technique that combines near-

infrared (NIR) with nanozymes for the treatment of OA was

proposed. Epigallocatechin gallate (EGCG)-coated Au-Ag

nanojars (E@Au-Ag) were produced based on the POD-like

activity of Au-Ag and the scavenging of oxygen free radicals

by EGCG, which is sensitive to NIR. These multifunctional

enzyme-like nanomaterials can repair mitochondrial damage,

promote cartilage migration, and reduce chondrocyte apoptosis

(Xu et al., 2022). Biomaterials associated with antioxidant

enzymes for arthritis treatment are listed in Table 2.

Discussion

OA and RA are both inflammatory diseases. RA is a systemic

disease that affects joints all over the body, especially the

overloaded knee joints, and affects normal movement (Radu

and Bungau, 2021). OA is a local joint disease, which is common

in patients with metabolic syndrome, trauma, and aging

(Whittaker et al., 2021). In comparing OA and RA, a striking

similarity in gene expression is found. For example, the increased

levels of MMPs and the decreased expression of antioxidant

enzymes occur in OA and RA, but the differences also exist.

MMP-9 is the main enzyme that causes RA while MMP-13 is

reported to be the most important enzyme for the development

of OA. Meanwhile, in terms of pathological changes, the

proliferation of synovial tissue and blood vessels in RA was

more obvious than that in OA. Macrophages distributed in

synovial tissue and osteoclasts from subchondral bone were

the main sources of inflammation, ultimately leading to the

destruction of cartilage. Therefore, chondrocytes, osteoclasts

and macrophages have been the main targets for arthritis

treatment with different biomaterials.

RA is a systemic inflammatory disease, and joint destruction

is generally more intense than that in OA. Compared to IA

injection, oral drug delivery for arthritis causes severe side effects.

Recently, pain has been primarily controlled with corticosteroids

and hyaluronic acid via IA injection. It is possible to deliver high

drug concentrations directly to osteoarthritic joints through

FIGURE 3
Schematic illustration of the synthesis and working
mechanism of MMP-13 and pH responsive theranostic MRC-PPL@
PSO nano-micelles for OA (Li et al., 2021). Copyright, 2021,
Elsevier.
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direct IA delivery. The administration of IA corticosteroids

efficiently reduces articular pain and synovitis, but high

concentrations of corticosteroids can also damage chondrocyte

metabolism, causing changes in ECM composition and articular

cartilage structure. A novel treatment for arthritis is urgently

needed.

Enzymes are involved in various physiological reactions and

participate in the proteolytic degradation of proteins and

complex regulatory signalling pathways. Aberrant expression

of these enzymes in the human body plays a critical role in

pathological processes, especially inflammatory reactions.

Different types of MMPs were upregulated by inflammatory

factors and subsequently degrade the ECM. In addition to

MMPs, ROS also participate in the development of arthritis.

The generation of ROS is inhibited by endogenous antioxidants

such as SOD, CAT, GPX, and heme oxygenase (HO-1). Despite

the complex pathological process of arthritis, different types of

arthritis including OA and RA share the common features: the

increased levels of MMPs and the decreased expression of

antioxidant enzymes. Hence, it is extremely feasible to design

nanomaterials based on these enzymes as molecular targets for

arthritis therapy.

Although nanomaterials have the advantages of high

biocompatibility and bioavailability due to their structural

and functional characteristics, the biosafety of nanomaterials

cannot be ignored (Chen et al., 2021-09). Nanomaterials enter

the body through ingestion, injection, inhalation and skin

contact and subsequently accumulate in organs through

blood flow, affecting the structure and function of organs

(Ai et al., 2011-01). For arthritis treatment, intra-articular

injection of enzyme-related biomaterials can guarantee the

controlled release and targeted therapy without affecting

other tissues or organs through blood circulation. Natural

polymers are more suitable and safer for clinical application

due to their biodegradation. Especially, hyaluronic acid from

cartilage tissue has been commonly used for biomaterial. It is a

promising strategy for arthritis treatment through discovering

more biologically active materials from the human body in the

future and combining them with drugs to regulate the

expression of the enzymes mentioned above.

Given that cartilage and the synovium are affected in

arthritis, various NPs that target these upregulated or

downregulated enzymes mainly act on these sites, especially

macrophages from the synovium and OCs from the

subchondral bone. Both macrophages and osteoclasts are

inflammatory cells with the same receptor on the surface of

the membrane and release inflammatory factors. Therefore,

biomaterials that target these inflammatory cells or

chondrocytes are the current options for arthritis treatment.

For the treatment of inflammatory arthritis, nano-drug delivery

technologies that respond to subchondral enzymes are rare.

There are technical challenges, such as how to penetrate the

TABLE 2 Biomaterials that mimic the downregulated enzymes in arthritis.

Arthritis Nanomaterial Platform Components Enzyme mimics Drug Ref

RA A-nanoceria-ICG NPs 1.Albumin SOD metal oxides Kratschmer et al. (1990)

2.cerium oxide CAT

3.ICG POD

OA F-MoS2 NPs 1.Fullerene SOD carbon-based materials Chen et al. (2019b)

2.MoS2 CAT

OA HPBzyme NPs Prussian blue POD Prussian blue Hou et al. (2021)

CAT

SOD

OA PBNPs NPs Prussian blue POD Prussian blue Zuo et al. (2021)

CAT

SOD

RA uPB-Exo NPs 1.neutrophil-derived exosomes SOD2 Prussian blue Zhang et al. (2022)

2.Prussian blue NOX2

RA SeNPs NPs Selenium SOD metal Ren et al. (2019b)

CAT

GPx1

RA HSA-modified Rh/SPX nanocube 1.human serum albumin (HSA) POD noble metal Li et al. (2021)

2.Sparfloxacin (SPX) CAT

3.Rhodium (Rh)

OA E@Au-Ag nano-jars 1.EGCG POD noble metal Xu et al. (2022)

2.Au-Ag
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cartilage and reach the deep layer to target OCs that destroy the

subchondral bone. Second, aside from MMPs and endogenous

reductase, many enzymes are also involved in the pathological

processes of arthritis. The expression of cyclooxygenase-2

(COX-2) in joints has also been linked to synovial

inflammation in arthritis, and COX-2 inhibitors (celecoxib)

have been frequently used and have shown therapeutic benefits

in arthritis. Synergistic treatments targeting several enzymes

may obtain better results. Finally, avoiding rapid clearance after

IA injection is critical for maintaining drug concentrations and

guaranteeing efficacy.

It should be noted that the current studies regarding

enzyme-related biomaterials in the field of arthritis are not

numerous; nanotherapies are extremely challenging and are

also promising based on the molecular mechanism underlying

arthritis.
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