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Multiple sclerosis (MS) is an inflammatory demyelinating disease of the human central nervous system (CNS). Neurotropic
demyelinating strain of MHV (MHV-A59 or its isogenic recombinant strain RSA59) induces MS-like disease in mice mediated
by microglia, along with a small population of T cells. The mechanism of demyelination is at least in part due to microglia-
mediated myelin stripping, with some direct axonal injury. Immunization with myelin oligodendrocyte glycoprotein (MOG)
induces experimental autoimmune encephalomyelitis (EAE), a mainly CD4" T-cell-mediated disease, although CD8" T cells may
play a significant role in demyelination. It is possible that both autoimmune and nonimmune mechanisms such as direct viral
toxicity may induce MS. Our study directly compares CNS pathology in autoimmune and viral-induced MS models. Mice with
viral-induced and EAE demyelinating diseases demonstrated similar patterns and distributions of demyelination that accumulated
over the course of the disease. However, significant differences in acute inflammation were noted. Inflammation was restricted
mainly to white matter at all times in EAE, whereas inflammation initially largely involved gray matter in acute MHV-induced
disease and then is subsequently localized only in white matter in the chronic disease phase. The presence of dual mechanisms of
demyelination may be responsible for the failure of immunosuppression to promote long-term remission in many MS patients.

1. Introduction

Multiple sclerosis (MS), one of the most common neuro-
logical diseases of the central nervous system (CNS), is
characterized by multifocal inflammation, demyelination,
and axonal damage [1-3]. It is believed to be an autoimmune
disease in which exposure of genetically predisposed people
to environmental factors triggers a breakdown in T-cell
tolerance to myelin antigens. Most studies have focused on
the pathogenic role of myelin-specific CD4" T cells because
of the relatively strong association of susceptibility to MS with

major histocompatibility complex (MHC) class II alleles [4-
7], but there is also increasing recognition of the importance
of CD8" T cells in the pathogenesis of demyelination [8-10].
Conditions that lead to a loss of tolerance in myelin-specific T
cells are not known. Viral infection has long been postulated
to be an environmental trigger that contributes to the etiology
of MS [11-14], although no specific virus has been confirmed
as being a causative agent.

To better understand the structural-morphological diver-
sity of MS, many studies use experimental autoimmune
encephalomyelitis (EAE) induced by the MBP-PLP fusion
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protein MP4, MOG peptide 35-55, or PLP peptide 178-191
in mice, which, respectively, display distinct pathologies [15].
Major differences between the models reside in regional/tract
specificity, kinetics of demyelination, and motor neuron
involvement. All three models of induced EAE in mice
provide a reasonable strategy for reproducing distinct adap-
tive immune-mediated pathologic features of demyelination.
Previous studies [15] showed that the MP4 model is char-
acterized by coinfiltration of B cells, CD8", CD4" T cells,
dendritic cells, and macrophages, whereas in MOG- and
PLP-induced models, CD4" T cells and macrophages were
the predominant cell types. It is generally accepted that in
different EAE models, CD4" T cells and macrophages are the
predominant lesional cell types, while CD4" T cells are the
main effector cells.

Similarly, a few animal models exist in which viral infec-
tion triggers CNS demyelination such as Theiler’s murine
encephalomyelitis virus (TMEV) [16, 17] and neurotropic
strains of mouse hepatitis virus (MHV) [18-21]. Chronic
viral-induced demyelination is associated with viral per-
sistence [22, 23] and concomitant upregulation of major
histocompatibility complex class I antigens [24-28]. While
studies suggest that an intact adaptive immune system is
required to promote demyelination in many viral induced
models, one neurotropic strain of MHV, MHV-A59, promotes
demyelination even in the absence of B and T cells [29].
Furthermore, depletion of CD4" or CD8" T cells after the
acute phase of infection does not prevent demyelination
[30]. Thus, different related strains of MHV may induce
demyelination via unique mechanisms, and it is likely that
in the absence of an intact immune response, CNS infection
with some strains of MHYV is responsible for onset of axonal
loss and demyelination, possibly through direct destruction
of CNS cells [31].

While EAE is useful in dissecting the role of T-cell-
mediated myelin damage, viral models are helpful in under-
standing direct CNS cellular injury and demyelination that
does not require an intact immune system. EAE- and MHV-
induced demyelinating diseases are widely used MS models.
Such studies have utilized that differing genetic backgrounds,
or similar genetic backgrounds may have been used but
in different laboratories or at different times, thus limiting
direct comparison of the models. While some similarities and
differences in mechanisms of demyelination have been noted,
it is not clear whether differences are due to the disease itself
or due to genetic or environmental differences. In the current
study, we compared EAE- and RSA59- (isogenic recombi-
nant strain of MHV-A59)-induced neuroinflammation in the
identical genetic background (C57BL/6) at the same time and
in the same laboratory and directly compared the type and
pattern of CNS inflammation.

2. Materials and Methods

2.1. Mice. Four-week- and eight-week-old virus-free
C57BL/6 mice were purchased from the Jackson Laboratory
(Bar Harbor, ME, USA). All animal procedures and care were
conducted in accordance with ethical guidelines approved
by the Institutional Animal Care and Use Committee.
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2.2. Induction of EAE and Scoring of Clinical Symptoms.
Eight-week-old C57BL/6 mice were injected subcutaneously
with 100 ug MOG35-55 peptide (MEVGWYRSPESRVVH-
LYRNGK) [32, 33] in complete Freund’s adjuvant contain-
ing 4mg/mL Mycobacterium tuberculosis H37Ra (DIFCO,
Michigan, USA) at two sites on the back. 200 ng pertussis
toxins were given intraperitoneally on days 0 and 2 after
immunization. Mice were scored daily for neurologic dys-
function according to a 0-5 scale as follows: partial limp
tail, 0.5; full limp tail, I; limp tail and waddling gait, 1.5;
paralysis of one hind limb, 2; paralysis of one hind limb and
partial paralysis of the other hind limb, 2.5; paralysis of both
hind limbs, 3; ascending paralysis, 3.5; weakness of the upper
limb, 4; moribund, 4.5; death, 5 [32, 33]. At different days
after immunization, mice were sacrificed, and tissues were
harvested for histology.

2.3. Viruses. RSA59, an isogenic recombinant strain of MHV-
A59, was used as previously described [31, 34, 35]. RSA59
expresses enhanced green fluorescence protein (EGFP) which
facilitates detection of viral antigen by fluorescence without
tissue staining [36]. Virulence was assessed in previous
studies by calculating the lethal dose that killed 50% of mice
(LDs4,). Mice were injected intracranially (i.c.) with serial 10-
fold dilutions of viruses (five mice per dilution). Signs of
disease or death were monitored on a daily basis up to 30
days after infection. LDy values were calculated by the Reed-
Muench method [37].

2.4. Inoculation of Mice. Four-week-old, MHV-free, C57BL/6
(B6) mice (Jackson Laboratory) were inoculated intracra-
nially with 50% LDs, dose of RSA59 strain (20,000 PFU) as
described previously [36].

Mice were monitored daily for signs of disease. Mock-
infected controls were inoculated similarly but with an
uninfected cell lysate at a comparable dilution. Animals were
sacrificed (five mice per group) at day 3, 5, 7, and 30 after
infections.

2.5. Estimation of Viral Replication. The efliciency of repli-
cation of the RSA59 was determined in mice inoculated
intracranially at the designated dose. On days 1, 3, 5, and 7
after infection, mice were sacrificed and perfused with 20 mL
of PBS, and the brains and livers were removed. The left
halves of the brain were placed directly into 2 mL of isotonic
saline with 0.167% gelatin (gel saline). The remainder of the
brain and liver was fixed in 4% paraformaldehyde (PFA)
and processed for histology. All organs collected for viral
titer were weighed and stored frozen at —80°C until titered
for virus. Brain and liver tissues from infected and control
mice were homogenized, and viral titers were determined by
plaque assay on an L2 cell monolayer [38-40].

2.6. Histopathology. MOG-immunized or viral-infected mice
were sacrificed and perfused transcardially with 40 mL of
PBS followed by PBS containing 4% PFA. Brain and spinal
cord tissues were collected, postfixed in 4% PFA overnight
at room temperature (RT), and embedded in paraffin. 5 ym
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FIGURE I: (a) Clinical profile of EAE. Female C57BL/6 mice (n = 9) were immunized with MOG 35-55 and scored daily using a previously
reported 5-point scale of ascending paralysis [32, 33]. Data represent mean and standard error of the mean (SEM) generated from multiple
animals in one experiment. One representative experiment of three is shown. (b) RSA59 replication in the brains of mice. C57BL/6 mice were
infected with 20,000 PFU of RSA59 by intracranial inoculation. Mice were sacrificed at days 1, 3, 5, and 7 after inoculation, and viral titers
were determined by plaque assay as in prior studies [36, 39]. The data represent the means (and standard deviations) of the titers from five

mice. Titers are expressed as log,, PFU per gram of tissue.

sections were processed and stained with Hematoxylin and
Eosin (H&E) for assessment of inflammation and Luxol fast
blue (LFB) for demyelination. Spinal cord histopathology was
assessed as in prior studies [32, 35]. Briefly, two sections were
examined from each of three spinal cord levels (cervical,
thoracic, and lumbar) for each mouse. All slides were coded
and read in a blinded manner. Sections were assessed as
follows; inflammation: 0, none; 1, few inflammatory cells;
2, organization of perivascular infiltrates; and 3, increasing
severity of perivascular cuffing with extension into the
adjacent tissue. Demyelination was scored based on detection
of focal white matter areas lacking LFB staining using the
relative four-point scale; 0, none; 1, rare foci; 2, a few areas
of demyelination; 3, large (confluent) areas of demyelination;
3.5, large confluent areas in different quadrants of spinal cord
white matter; 4, loss of myelin from all quadrants of the spinal
cord. To confirm expected virulence of the strains used, livers
from the infected mice were embedded in paraffin, sectioned
at 5 ym, and stained with H&E [39, 41].

2.7. Immunohistochemical Analysis. Serial sections from
spinal cords were stained by the avidin-biotin-immuno-
peroxidase technique (Vector Laboratories) using 3, 3-
diaminobenzidine as substrate, and a 1:100 dilution of anti-
CD45 (LCA; leukocyte common antigen, LY-5, BD Pharmin-
gen), anti-Ibal (Wako, Richmond, VA, USA), or CD3 (Dako;
Carpinteria, CA, USA) as primary antibodies. Control slides
from mock-infected mice were incubated in parallel.

3. Results and Discussion

3.1. Classical Clinical Symptoms in EAE Mice. Evidence
suggests that immunization of mice with MOG to induce
EAE results in an encephalitogenic T-cell response and
a demyelinating autoantibody response. Immunization of

MOG35-55 peptide together with Mycobacterium tuberculosis
and pertussis toxin results in a chronic progressive form of
EAE in C57BL/6 mice. In the current studies, 8-week-old
C57BL/6 mice (N = 30) were immunized with MOG35-55
and were monitored daily for signs and symptoms of EAE
for 30 days. Mice developed the classical chronic progressive
clinical profile of EAE (Figure 1(a)). Onset of disease occurs
between days 9-12. Mice were sacrificed at EAE onset, the
progressive phase (days 13-15) and at the peak of disease (days
16-30). Remaining mice (n = 9) were kept for scoring of
neurologic symptoms throughout the 30 days.

3.2. Viral Virulence and Replication in the Brain. Four-week-
old, MHV-free, C57BL/6 (B6) mice were inoculated intracra-
nially with 50% LD, dose of isogenic recombinant strain
RSA59 strain (20,000 PFU) as described previously. Mice
were monitored daily for signs of disease. Mock-infected
controls were inoculated similarly but with an uninfected cell
lysate at a comparable dilution. The efficiency of replication
of RSA59 was determined in mice inoculated intracranially,
and the peak of viral replication was at day 5, similar to prior
studies (Figure 1(b)).

3.3. Comparative Analysis of Disease Symptoms. Mice immu-
nized with MOG displayed classic features of EAE including
tail limpness, waddling gait, hind limb paralysis and ascend-
ing paralysis. In contrast, MHV-infected mice do not man-
ifest obvious clinical neurologic impairment. Instead, they
typically demonstrate ruftled fur, hunched back posturing,
and significant weight loss (data not shown).

3.4. Typical CNS Inflammation in EAE Mice. Histological
analysis of EAE spinal cords was done as in prior studies
[32, 33] and showed expected mononuclear cell infiltration
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TABLE 1: Average demyelination score in RSA59-infected mice and EAE mice.
% mice with Mean score of
No. of mice No. of sections oo demyelination P values
demyelination
(mean + SD)
Acute phase RSA59 (day 7) 10 60 100% 0.60 + 0.46 P <0.0010
Chronic phase RSA59 (day 30) 12 72 100% 2.0 £0.40 P < 0.0001
Acute phase EAE (days 8-15) 20 100 85 1.88 £ 0.99 P < 0.0005
Chronic phase EAE (day 30) 10 60 80 2.25+0.85 P < 0.0001
TABLE 2: Pattern and level of inflammation in EAE- and RSA59-infected mouse spinal cords.
Distribution of inflammation Acute phase MHV Chronic phase MHV Acute phase EAE Chronic phase EAE
Gray matter 1/8 (12.5%) 0/5 (0%) 0/8 (0%) 0/12 (0%)
White matter 1/8 (12.5%) 5/5 (100%) 8/8 (100%) 12/12 (100%)
Both gray and white matters 6/8 (75%) 0/5 (0%) 0/8 (0%) 0/12 (0%)
No inflammation 0/8 (0%) 0/5 (0%) 0/8 (0%) 0/12 (0%)

X/Y = number of mice exhibiting the staining pattern (X) out of the total number examined (Y). Numbers in parentheses are the percentages of mice exhibiting

each staining pattern.

(leukocyte common antigen (LCA) staining), demyelination
(Luxol fast blue (LFB) staining), and T-cell infiltration (CD3
staining) at all time points examined after disease onset
(Figure 2). Similar inflammation was present in other parts of
the CNS, including the meninges of the brain and deep cere-
bellar white matter (Figure 3). CNS inflammation was present
throughout the disease course, and levels of demyelination
progressed over time (Figure 2; Table 1). At all time points,
infiltrating inflammatory cells (LCA™ and CD3") in EAE
spinal cords were restricted to white matter, without signif-
icant gray matter inflammation (Figure 2; Table 2). Overall,
LCA staining increased by days 10-13 and then decreased by
day 30. CD3" cells initially increased then decreased by days
12-15 only to rebound and localize to demyelinating plaques
in the chronic phase. Average demyelination scores are shown
in Table 1.

3.5. Inflammatory CNS Pathology of RSA59. Pathology was
assessed in sagittal brain sections and cross-sections from
each spinal cord level at day 7 (peak inflammation) and
day 30 (peak demyelination) after infection with RSA59.
Demyelinating plaques were detected by LFB staining at day
7, and spinal cords showed a similar pattern of demyelination
at day 30, but the number and area of plaques was larger
(Figures 4(c) and 4(d)). Average demyelination is shown
in Table 1. In contrast to EAE, LCA" cells are present in
both gray and white matters of brain and spinal cord during
acute MHYV infection, but by day 30, they localize to white
matter tracts, especially in spinal cord and deep cerebellar
white matter (Figures 3 and 4; Table 2). In spinal cord, at
days 3 and 5, most LCA™ are Iba-1"(microglia/macrophage
marker), and these cells are present in gray matter (data not
shown), and by day 7, LCA"/Iba-1" cells localize in both gray
and white matters (Figure 4; Table 2). By day 30, LCA" and
Ibal® cells are present mainly in demyelinating plaques. In
addition to the change in distribution of LCA™ cells, there is
also a change in staining intensity and morphology. At early

phases (Figure 4(a)), cells are compact and darkly staining,
whereas at late phases (Figure 4(b)), cells are more ramified
and less intensely stained, reflecting a change from newly
arrived monocytes to mature activated macrophages. Data
demonstrates that in viral-infected spinal cord there is an
increase of Ibal™ cells; however, the distribution of these
inflammatory cells varies significantly at different days after
infection. Interestingly, in contrast to EAE, CD3" cells are
virtually absent.

4. Conclusion

Demyelination was a prominent and consistent finding, with
100% of MHV-infected mice and 85% of EAE mice develop-
ing demyelination. Though the gross level of inflammation
was similar between the two models, significant differences
were observed in the pattern of CNS inflammation. In
EAE, inflammation was observed only in white matter
at all phases of disease (Table2). This is not unexpected
since the myelin antigenic target is concentrated in white
matter. In contrast, almost all MHV-infected mice exhibited
inflammation within gray matter during the acute phase
of disease, with inflammation becoming restricted to white
matter in the chronic phase (Table 2). This pattern is con-
sistent with the neuronal tropism of demyelinating strain of
MHYV and its subsequent axonal transport into white matter
reported previously [31, 40]. Findings are consistent with
prior studies suggesting that CNS tissue injury in MHV
infection is mediated both by viral-induced cytotoxicity
and by immune mechanisms. The relative contributions of
these two components differ depending on viral tropism,
rate of viral spread, and specificity of the immune response
[40]. Recent neural cell tropism studies indicate that axonal
transport of MHV from gray to white matter is necessary
to induce demyelination [31, 34]. Results show how direct
autoimmune inflammation along CNS white matter tracts
and inflammation secondary to viral infection tracking from



BioMed Research International

LCA LFB CD3

© 0
e ,
Q A
A 3
(@) ®) ©
=
&
w
&
a
wn ” !
1 ;
&
A

Day 30

(k)

FIGURE 2: Comparative histopathology of EAE spinal cords at different days after immunization. Representative cross-sections of spinal cords
(5 ym thick) of EAE mice at different days after immunization were stained with Luxol fast blue (for myelin) and immunohistochemically
for CD45 (LCA for inflammatory cells) and CD3 (for T cells). A hemi cord is shown in (f). ((a)-(c)) Day 6 after immunization (before EAE
onset). ((d)-(f)) Days 9-10 after immunization (EAE onset). ((g)-(i)) Days 13-15 after immunization (progressive phase), ((j)-(1)) Days 30
after immunization (chronic phase). ((a), (d), (g), (j)) LCA stain. ((b), (e), (h), (k) Luxol fast blue. ((c), (f), (i), (1)) CD3. In comparison to
day 6 spinal cords, days 9-10 cords demonstrate an influx of LCA and CD?3 positive cells in the white matter. Luxol fast blue stain identifies
early demyelinating plaques in the white matter. During the progressive phase, there is persistent LCA immunoreactivity, whereas CD3 is
decreased. The size of demyelinating plaques increases. At later times (chronic phase), LCA immunoreactivity decreases, while CD3 increases.
Demyelinating plaques increase in number and size. Arrows mark locations of demyelinating plaques.

gray matter to white matter can both produce similar chronic ~ with RSA59-induced demyelination provides insight into
white matter demyelinating plaques. Comparison of EAE ~ mechanisms operative in such a complex disease as MS.
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FIGURE 3: Brain inflammation in EAE and RSA59-infected mice. EAE ((a)-(d)): mid-sagittal sections of brains (5 um thick) at early and
late phases after immunization were stained immunohistochemically for CD45 (LCA). ((a), (b)) day 9 after immunization. ((c), (d)): day 30
post immunization. There is mostly leptomeningeal (surface) and deep cerebellar white matter LCA immunoreactivity at early phases that
decrease dramatically but remains in the same locations at late time points. ((a), (c)) Scanned images. ((b), (d)) Higher magnification of
corresponding deep cerebellar white matter (100x). RSA59-infection ((e)-(h)) mid-sagittal sections of brains (5 ym thick) at early and late
phases after inoculation were stained immunohistochemically with CD45 (LCA). ((e), (f)) Day 7. ((g), (h)) Day 30. At early phases post-
inoculation, there are both white and gray matters’ infiltration by LCA immunoreactive cells that diminishes in intensity over time and is
mainly observed in deep cerebellar white matter at day 30. ((e), (g)) Scanned images. ((f), (h)) Higher magnification of corresponding deep
cerebellar white matter (100x). Black lines in (e) and (g) show areas magnified in (f) and (h).
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FIGURE 4: Spinal cord inflammation and demyelination in RSA59 infection. Representative cross-sections of spinal cords (5 ym thick) of
virally infected mice at different days after inoculation were stained with LFB (for myelin) and immunohistochemically for CD45 (LCA),
CD3 (T cells), and Ibal (macrophages/microglia). ((a), (), (e), (g)) Day 7 after inoculation (peak of inflammation). ((b), (d), (f), (h)) Day
30 after inoculation (late phase). ((a), (b)) LCA stain. ((c), (d)) Luxol fast blue. ((e), (f)) CD3. ((g), (h)) Ibal. At day 7 after inoculation, both
gray and white matter are infiltrated by LCA positive cells, whereas by day 30, LCA immunoreactivity is predominately localized to the white
matter. In contrast, there are few CD3 positive cells at both early and late phases. Ibal immunoreactivity increases and becomes progressively
localized to demyelinating plaques. Inset in (e) shows higher magnification of rare CD3 immunoreactive lymphocytes. LEB stains demonstrate
increasing numbers and sizes of demyelinating plaques over time. Arrows mark locations of demyelinating plaques.
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