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Abstract: Obesity has been recognized to increase the risk of such diseases as cardiovascular diseases,
diabetes, and cancer. It indicates that obesity can impact genome stability. Oxidative stress and
inflammation, commonly occurring in obesity, can induce DNA damage and inhibit DNA repair
mechanisms. Accumulation of DNA damage can lead to an enhanced mutation rate and can alter
gene expression resulting in disturbances in cell metabolism. Obesity-associated DNA damage
can promote cancer growth by favoring cancer cell proliferation and migration, and resistance to
apoptosis. Estimation of the DNA damage and/or disturbances in DNA repair could be potentially
useful in the risk assessment and prevention of obesity-associated metabolic disorders as well as
cancers. DNA damage in people with obesity appears to be reversible and both weight loss and
improvement of dietary habits and diet composition can affect genome stability.
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1. Introduction

The rising prevalence of obesity has become a major health problem in adults, as well as among
children and adolescents. Obesity is a complex chronic disease, characterized by a significant increase
in body fat tissue mass, and it is associated with disturbances in lipid and glucose metabolism,
chronic inflammation and oxidative stress, and an increased risk of several diseases, most notably
cardiovascular diseases, diabetes, and cancers, and with a decrease in life expectancy [1–3]. In people
with obesity accumulation of DNA damage has been reported and suggested to be involved in the
development of obesity-related disease [4–6]. DNA lesions have an impact on DNA replication, leading
to mutations and thus may create a hazard for cell metabolism and cell survival [7]. Body weight loss
has been found to result in a reduction in the level of DNA damage [8].

The aim of this paper is to underline obesity as DNA damaging factor and to present the
relationship between obesity, DNA damage and development of metabolic disorders, and cancer.

2. Inflammation and Reactive Oxygen Species (ROS)-Induced DNA Damage

Inflammation is activated to protect the body against these harmful stimuli [9]. Chronic
inflammation has been linked to aging and numerous chronic diseases such as cardiovascular diseases,
autoimmune diseases, and cancer [10,11]. Proinflammatory signal recruits and activates neutrophils
and macrophages and in turn, endogenous oxygen and nitrogen species are created. Moreover,
reactive oxygen species (ROS) are also formed in cells during mitochondrial oxidative metabolism,
apoptosis or the enzymatic reaction of nicotinamide adenine dinucleotide phosphate (NADPH)
oxidases, superoxide dismutase (SOD), myeloperoxidase (MPO) and nitric oxide synthase (NOS) [12].
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Despite the presence of the specific defense system against radicals, constant ROS production
and low antioxidant activity can lead to the loss of balance between the formation of ROS and the
operation of a protective system, resulted in the development of oxidative stress. The increased ROS
production and oxidative stress may induce endogenous DNA damage, transcription interruption and
induce cell-cycle arrest [13,14]. Lipid peroxidation processes are also induced by ROS and lead to the
formation of DNA reactive lesions [15].

Among ROS, free radicals such as superoxide or hydroxyl radical are the most hazardous.
The superoxide (O2 •−) is generated during aerobic respiration and hydrogen peroxide (H2O2)
during dismutation of superoxide by superoxide dismutase. In addition, several oxidases can
also produce hydrogen peroxide [16]. Hydroxyl radical (HO•) can be formed as a result of
both Fenton reaction and Weber-Weiss reaction [17]. Activated macrophages and neutrophils
involved in inflammation generate oxidants as peroxynitrite (ONOO−) and nitrosoperoxycarbonate
(ONOOCO2−), hypohalous acids (HOCl, HOBr), and nitrosating agent (N2O3) [18]. Furthermore,
ROS can participate in lipid peroxidation and generated products such as etheno-, propano-, and
malondialdehyde interact with DNA, form DNA adducts and damage DNA structure [14,19]. ROS
attack can lead to base lesions such as oxidation, alkylation, methylation, nitration, deamination
and single or double-strand DNA breaks, or cross-links in DNA structure. The frequently occurred
DNA lesions caused by ROS are 8-hydroxyguanine, 7,8-dihydro-8-oxoguanine (commonly termed
8-oxoguanine: 8-OHdG), thymine glycol, Fapy Ade (4,6-diamino-5-formamidopyrimidine) and Fapy
Gua (2,6-diamino-4-hydroxy-5-formamidopyrimidine) [20]. The occurrence of DNA lesions can induce
mutations during DNA replication, as 8-OHdG can cause a change in GC to TA (transversion), resulting
in mutagenesis and cancer initiation [20,21].

3. DNA Damage Repair

The DNA repair system exists to overcome DNA damage and maintain the integrity of the DNA
structure. In general, DNA damage repair process involves the recognition of DNA damage by specific
sensors, generation, and amplification of the DNA damage signal, transduction of this signal to the
cytoplasm and activation of specific effectors [21]. Inter-individual variations in the activity of enzymes
that participate in DNA repair pathways have been described [22,23]. Therefore, some differences in
the efficiency of DNA repair and observed levels of endogenous DNA damage can be expected [24,25].

Among several known DNA repair mechanisms, direct repair occurs during the replication, while
indirect repair takes place after the DNA synthesis [26]. The indirect repair strategy includes base
excision repair (BER), nucleotide excision repair (NER), mismatch repair (MMR), the non-homologous
end-joining (NHEJ) and homologous recombination (HR) pathways. Explanation of the pathways
involved in DNA repair by three scientists was recognized by award them the Nobel Prize in chemistry
in 2015 [27]. Tomas Lindahl described the model of BER, which is involved in modified bases repair [28].
Paul Modrich discovered a distinct pathway that detects and removes bases that are misincorporated
during DNA replication. Finally, Aziz Sancar proposed the mechanism for removal of DNA adducts
NER [29]. Overview of DNA damaging agents, induced DNA lesions, and their repair pathways is
presented in Figure 1.
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In people with obesity, a broad range of DNA lesions such as double strand breaks (DSB), single 
strand breaks (SSB) or oxidized bases and about 2-times higher DNA damage in lymphocytes than 
in normal weight subjects have been observed and a correlation between body–mass index (BMI) and 
DNA damage was also found [5,30,31]. A significant difference in levels of DNA damage measured 
by H2AX phosphorylation was also observed in children with overweight and obesity compared to 
lean controls [32]. Lymphocytes from people with obesity had more mitomycin C-induced DNA 
damage compared to cells from normal weight subjects [33]. However, available data regarding the 
relationship between obesity and levels of oxidized bases in DNA such as 8-oxodG and 8-OHdG are 
inconsistent [34–37]. 

There is well accepted that in obesity chronic energy overload results in enhanced ROS 
production and inflammation [38]. Available data indicate that ROS source can differ depending on 
the stage of obesity [39]. In the early stages of obesity increased adipocyte uptake of glucose and fatty 
acids activates NOX4, the major NADPH oxidase isoform in adipocytes, and induces ROS 
production. NOX4 silencing was reported to decrease ROS generation and inhibition of monocyte 
chemoattractant protein-1 [40]. Excessive accumulation of fat in adipocytes promotes 
proinflammatory adipokines production. Proinflammatory cytokines induce invasion of the target 
tissue by immune cells and development of chronic inflammation [41]. Accumulation of T-
lymphocytes and macrophages in adipose tissue during obesity development promote ROS 
production by NOX2, the NADPH oxidase expressed in inflammatory cells. In addition, adipocytes 
and smooth muscle cells exposed to high FFA (free fatty acid) or high glucose concentrations showed 
increased mitochondrial fission and increased mitochondrial ROS production [42–44]. Characteristic 
for obesity excessive accumulation of triglycerides in adipocytes results in enhanced mitochondrial 
β-oxidation of FFA and increased mitochondrial ROS generation.  

Furthermore, chronic inflammation associated with obesity is strongly involved in the formation 
of DNA lesion [38]. Activated macrophages secrete cytokines such as TNFα, and IL-6 which can 
induce DNA damage in non-targeted tissue distant from the site of inflammation [45,46]. Released 
cytokines can travel to different regions of the body and activate resident macrophages to produce 
proinflammatory molecules such as COX2, NOS, superoxide, ROS, and NO [47,48]. The release of 

Figure 1. Overview of DNA damaging agents, induced DNA lesions, and their repair pathways
(BER—base excision repair, NER—nucleotide excision repair, MMR—mismatch repair, DR—direct
repair, NHEJ—non-homologous end-joining; and HR—homologous recombination). Shortcuts are
explained in the abbreviation section.

4. Obesity and DNA Damage

In people with obesity, a broad range of DNA lesions such as double strand breaks (DSB), single
strand breaks (SSB) or oxidized bases and about 2-times higher DNA damage in lymphocytes than in
normal weight subjects have been observed and a correlation between body–mass index (BMI) and
DNA damage was also found [5,30,31]. A significant difference in levels of DNA damage measured
by H2AX phosphorylation was also observed in children with overweight and obesity compared
to lean controls [32]. Lymphocytes from people with obesity had more mitomycin C-induced DNA
damage compared to cells from normal weight subjects [33]. However, available data regarding the
relationship between obesity and levels of oxidized bases in DNA such as 8-oxodG and 8-OHdG are
inconsistent [34–37].

There is well accepted that in obesity chronic energy overload results in enhanced ROS production
and inflammation [38]. Available data indicate that ROS source can differ depending on the stage
of obesity [39]. In the early stages of obesity increased adipocyte uptake of glucose and fatty acids
activates NOX4, the major NADPH oxidase isoform in adipocytes, and induces ROS production.
NOX4 silencing was reported to decrease ROS generation and inhibition of monocyte chemoattractant
protein-1 [40]. Excessive accumulation of fat in adipocytes promotes proinflammatory adipokines
production. Proinflammatory cytokines induce invasion of the target tissue by immune cells and
development of chronic inflammation [41]. Accumulation of T-lymphocytes and macrophages in
adipose tissue during obesity development promote ROS production by NOX2, the NADPH oxidase
expressed in inflammatory cells. In addition, adipocytes and smooth muscle cells exposed to high
FFA (free fatty acid) or high glucose concentrations showed increased mitochondrial fission and
increased mitochondrial ROS production [42–44]. Characteristic for obesity excessive accumulation
of triglycerides in adipocytes results in enhanced mitochondrial β-oxidation of FFA and increased
mitochondrial ROS generation.

Furthermore, chronic inflammation associated with obesity is strongly involved in the formation
of DNA lesion [38]. Activated macrophages secrete cytokines such as TNFα, and IL-6 which can
induce DNA damage in non-targeted tissue distant from the site of inflammation [45,46]. Released
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cytokines can travel to different regions of the body and activate resident macrophages to produce
proinflammatory molecules such as COX2, NOS, superoxide, ROS, and NO [47,48]. The release of
these molecules can lead to oxidative DNA damage in cells. Also, macrophages that must absorb
apoptotic cells can move to another region of the body and then release factors inducing DNA
damage [49]. The translocation of DNA damaging factors via macrophages can deliver a high amount
of damage-inducing signals from distant sites and can also be specific to regions where the macrophages
are likely to travel (e.g., gut, spleen, skin, lymph nodes). Thus, obesity-associated oxidative stress and
inflammation can induce DNA damage in different tissues.

Published intervention weight loss trails in obese in which DNA damage assessment was
performed are limited. A significant decrease in levels of DNA damage was found after a low
caloric diet-induced weight loss [8,50]. Improvement of genomic stability, characterized by a reduction
of oxidative damage in saliva, was observed also after bariatric surgery associated weight loss in
patients with morbid obesity [51].

4.1. Obesity and DNA Damage Repair

Disturbances in DNA damage response pathway related to enhanced increased body weight
were reported [52]. An inverse association between BMI and nucleotide excision repair (NER) capacity
was found in young females [53]. Presence of obesity was also recognized to alter the repair of DSBs
induced by genotoxic agents [34]. Obesity-associated enhanced ROS production can modulate the
DNA damage response through the impact on the expressions of genes involved in DNA repair
(Figure 2) [54,55]. Inhibition of DNA repair enzymes provoked by the oxidative stress has been
reported [56,57]. In obese alter expression of genes related to response to stress and toxic agents were
also recognized [58].Int. J. Mol. Sci. 2017, 18, x 5 of 17 
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Figure 2. Obesity and DNA damage. Obesity is associated with inflammation and oxidative stress
which induces DNA damage and inhibits DNA damage repair resulting in the accumulation of DNA
damage in adipocyte and other tissues.

It can be hypothesized that epigenetic mechanisms might be involved in the regulation of genes
encoding DNA repair proteins. Unbalanced and high-fat diet commonly observed in overweight and
obese subjects can alter methyl group availability and disturb epigenetic regulation of DNA repair
genes. Enhanced dietary fat consumption was reported to significantly alter DNA methylation and
gene expression [59,60]. Recently high-fat diet was also found to suppress DNA damage repair by
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increasing lysine homocysteination in proteins involved in DNA damage repair [61]. Low intakes of
vitamins C and E, as well as vitamins B and zinc, were reported to be associated with enhanced
DNA damage [62,63]. In obese women, daily intakes of vitamins C and E were recognized to
significantly affect DNA damage in lymphocytes indicating that in obese adequate vitamins C and
E consumption could reduce levels of basal DNA damage probably, by the antioxidant effect of this
vitamins [5]. However, in obese mice, an active antioxidant, EGCG (epigallocatechin-3-gallate) was
shown to enhance methylation of MGMT (O6-Methylguanine-DNA methyltransferase) and MLH1
(MutL homolog 1) genes involved in direct and mismatch DNA repair, respectively [64]. Reduction of
MLH1 gene expression was also observed and methylation rate of MLH1 was related to DNA damage
in mice on high-fat diet supporting the role of epigenetic mechanisms in the regulation of DNA damage
response [65].

4.2. Obesity and Mitochondrial DNA Damage

DNA lesions occur in both nuclear and mitochondrial DNA (mtDNA). Because of the absence
of nucleotide excision repair mechanism in mitochondria, mtDNA is more susceptible to damage
caused by reactive species than nuclear DNA. Photodimers and bulky adducts arising as a result
of oxidative stress related to inflammation and environmental factors are not efficiently removed
from mtDNA [66,67]. Despite mtDNA encodes only 1% of the mitochondrial proteins, mitochondrial
diseases are associated with a high number of lesions in mtDNA [68]. In addition, enhanced
degradation of mtDNA and decreased mtDNA copy number are related also to diabetes, cancer
or neurodegenerative diseases [69–71]. The accumulation of oxidative mtDNA lesions may result in
rearrangements or point mutations which can be maternally inherited [72].

In obesity, mitochondrial dysfunction leads to failure in fatty acid (FA) oxidation and disturbances
in glucose homeostasis [43,73,74]. Elevated urinary excretion of mtDNA observed in morbidly obese
patients was found significantly reduced after bariatric surgery associated weight loss [75]. The animal
study showed that in mice fed high-fat diet mtDNA damage increased and was associated with
mitochondrial dysfunction [76]. Additionally, oxidized mtDNA was found to induce synthesis of
proinflammatory cytokines such as IL-6, TNF-α, pro-IL-1β through the activation of toll-like receptor
9 (TLR-9) [77,78]. Therefore obesity-associated inflammation could be in part both a cause and a
consequence of the accumulation of mtDNA lesions.

4.3. Effect of Parental Obesity-Related DNA Damage on Offspring

The obesity-associated DNA damage may at least in part be responsive for disturbances in
reproductive capacity of obese subjects and their offspring’s health [79]. Adiposity was recognized
to cause sperm DNA fragmentation, affect DNA methylation and cause aberrancies in chromatin in
male germ cells [80,81]. In patients with obesity, high DNA fragmentation index (DFI) in sperm and
reduced fertility was recognized [82,83]. DNA damage in germ cells may be a result of increased
ROS production characteristic for obesity [59,84,85]. DNA damage was present in the daughter cells
after subsequent cell division indicating ineffective DNA damage response [86]. Therefore, it is
suspected that the appearance of DNA lesions in germ cells can be transmitted to the genome of
future generations [87]. Maternal obesity may cause de novo mutations in the embryo, change the
methylation status of the genes in embryo and through miRNA affects the expression of embryonic
proteins [88–91].

5. DNA Damage and Obesity-Related Metabolic Disorders

Obesity is well recognized to be involved in the development of diabetes and
atherosclerosis-related diseases and to increase the mortality rate, particularly deaths from
cardiovascular diseases [92]. In mice and humans, mutations of genes related to the DNA repair result
in phenotypic changes similar to those observed in obesity-associated metabolic and cardiovascular
abnormalities [93]. The p53 protein, the transcriptional factor mediating the DNA damage response
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and involved in preserving genomic stability, has been shown to affect obesity-associated diseases [94].
DNA damage-induced p53 activation was found to be involved in aging-related diseases, since
mice with a p53 mutant allele associated with p53 activation developed premature aging and mice
overexpressing naturally occurring truncated p53 isoform have a short lifespan [95,96]. A higher
mutation amount in the p53 gene was found in cancers [97]. In breast cancer enhanced BMI
was related to p53 mutation [98]. Activation of p53 signaling in vessels, heart, and the visceral
adipose tissue of obese was found to contribute to diabetes progression and atherosclerosis [99].
DNA damage in obese adipocytes can induce p53 pathway involved in altered metabolism of
adipocytes. In consequences of adipocyte dysfunction, tissue inflammation and insulin resistance
appear [100]. Under a high-calorie diet, the p53/p21-signaling pathway was found to be involved
in adipocyte differentiation, hypertrophy, induction of inflammation, and development of systemic
insulin resistance, which commonly occurs in obese patients. In mice overexpression of ∆40p53,
p53 isoform alters the balance between the full-length and short isoforms and hyperactivates p53
resulting in increased p21 expression and developed of hypoinsulinemia, glucose intolerance, and
diabetes [101]. Accumulation of DNA damage in pancreatic β-cell as well as in adipocytes results
in cell senescence, which contributes to the development of disturbances in glucose metabolism
and systemic insulin resistance [100,102]. Insulin resistance is an important underlying mechanism
accelerating development of obesity-associated comorbidities [103]. The relationship between type 2
diabetes and DNA double-strand breaks was recognized. In people with obesity and diabetes, BMI was
positively correlated with oxidative DNA damage measured by serum 8-OHdG [104]. Observations
from in vitro studies indicate that hyperglycemia can cause DNA damage and mutation [105,106].
Hyperglycemia increases production of AGEs (advanced glycation end products) which promote DNA
breaks and 8-OHdG accumulation [107,108]. High glucose levels may induce DNA damage in cells
through AKT (Protein Kinase B) phosphorylation and tuberin phosphorylation [109,110]. The AKT
pathway is involved in cell growth and DNA repair. AKT activation leads to inhibition of protein
recruitment to DNA damage site and therefore disturbs homologous repair [111]. ROS-related AKT
induction was associated with low expression of OGG1, a protein involved in repair of oxidative
DNA lesion and resulted in the accumulation of DNA damage [109,112,113]. Also, XPD (Xeroderma
Pigmentosum group D) gene involved in DNA repair by NER was down-regulated as a result of
long-term exposure to high glucose concentration. Insulin was found to affect XPD gene expression
via p70S6 kinase signaling pathway critical for cell-cycle progression and via RAS—a regulator of
DNA damage checkpoint [114,115].

There is no doubt that obesity is associated with oxidative stress causing DNA damage. Repair
of oxidized, saturated, and ring-fragmented bases via the BER pathway are known to be critical
for maintaining genomic stability. On the other hand, an important role of DNA repair proteins in
modulating mitochondrial energetics and whole-body energy balance was shown [116]. Products
of such genes as OGG1, NTH1, NEIL1, and NEIL2 participate in the initiation of repair of oxidative
DNA lesions. NEIL1 is an enzyme that initiates BER of ring-fragmented purines and some saturated
pyrimidines [117,118]. The neil1 knockout mice developed symptoms consistent with metabolic
syndrome: severe obesity, fatty liver, dyslipidemia, and insulin resistance [119]. OGG1, a critical
enzyme of the BER repair pathway, participates in the repair of the most common oxidative DNA
lesion as 8-oxo-7,8-dihydroguanine (8-oxoG) and OGG1 expression is induced in response to a high-fat
diet [120]. Mice lacking OGG1 (Ogg1−/−) developed features of metabolic syndrome, including
increased adiposity, fatty liver, elevated triglycerides, and impaired glucose tolerance [116].

Therefore, obesity can induce DNA damage and disturbances in DNA repair resulting in cellular
accumulation of DNA damage, which causes inflammation and alterations in gene expression and
disturbances in cellular metabolism (Figure 3). As a consequence of these alterations, metabolic
disorders can develop, and reduction of DNA damage may be important for the prevention and
treatment of obesity-related metabolic diseases [5,121].



Int. J. Mol. Sci. 2019, 20, 1146 7 of 18

Int. J. Mol. Sci. 2017, 18, x 7 of 17 

 

disturbances in cellular metabolism (Figure 3). As a consequence of these alterations, metabolic 
disorders can develop, and reduction of DNA damage may be important for the prevention and 
treatment of obesity-related metabolic diseases [5,121].  

 

Figure 3. Obesity-induced DNA damage and development of metabolic disorders. 

6. DNA Damage and Development of Obesity-Related Cancer 

Obesity-induced DNA damage and dysregulation of the DNA repair pathways can lead to 
increased mutation rate and transformation of healthy tissues to cancer [25,122–125]. 

The International Agency for Research on Cancer has identified several cancers associated with 
overweight and obesity including postmenopausal breast cancer, endometrial cancer, renal cell 
carcinoma, esophageal adenocarcinoma, pancreatic, colorectal, and liver cancers [126–130]. About 
55% of all cancers diagnosed in women and 24% of those diagnosed in men are associated with 
overweight and obesity [131]. Between 2005-2014 cancers associated with overweight and obesity, 
excluding colorectal cancer, increased 7%. Colorectal cancer incidence decreased by 23 %, but this is 
due in large part to the screening. The pooled analysis of 42 prospective and 14 retrospective studies 
have shown that each increase in BMI by 5 kg/m2 was significantly associated with an 18% higher 
risk of colorectal cancer [132]. The meta-analysis of 82 studies on breast cancer (including 213,075 
breast cancer survivors with 23,182 deaths) has shown that relative risks of mortality are 1.75 for pre-
menopausal and 1.34 for postmenopausal breast cancer for obese women. Each 5 kg/m2 BMI increase 
before and after 1 year of cancer diagnosis increases risks by 18% and 29% for breast cancer mortality, 
respectively. In this case, obesity was associated with poorer breast cancer survival regardless of BMI 
ascertainment period [126]. Cancers associated with overweight and obesity, excluding colorectal 
cancer, increased among adults younger than 75 years. Moreover, there is an increase in the frequency 
of cancers associated with overweight and obesity (by 7%) in comparison to non-obesity cancers (13% 
drop). 

Obesity-associated DNA damage cannot only enhance cancer risk but also promote cancer 
growth (Figure 4). DNA damage induced chronic inflammation, insulin resistance and alter gene 
expression can favor cancer cell proliferation and migration, resistance to apoptosis as well as tumor 
angiogenesis [133–137]. In addition, associated with obesity reduced secretion of adiponectin and 
increased secretion of leptin by adipose tissue can promote cancer development in obese. 
Adiponectin possesses anti-inflammatory and anti-angiogenic properties and can inhibit cancer 
growth [138]. Some tumor cells express adiponectin receptors, thus adiponectin by binding and 
activating these receptors can downstream signaling pathways in cancer cells and adiponectin 
deficiency excludes such action [139,140]. Leptin is a mitogenic, anti-apoptotic, pro-angiogenic, and 
proinflammatory factor [141]. Therefore, high leptin favors cancer growth and the relationship 

Figure 3. Obesity-induced DNA damage and development of metabolic disorders.

6. DNA Damage and Development of Obesity-Related Cancer

Obesity-induced DNA damage and dysregulation of the DNA repair pathways can lead to
increased mutation rate and transformation of healthy tissues to cancer [25,122–125].

The International Agency for Research on Cancer has identified several cancers associated
with overweight and obesity including postmenopausal breast cancer, endometrial cancer, renal
cell carcinoma, esophageal adenocarcinoma, pancreatic, colorectal, and liver cancers [126–130]. About
55% of all cancers diagnosed in women and 24% of those diagnosed in men are associated with
overweight and obesity [131]. Between 2005–2014 cancers associated with overweight and obesity,
excluding colorectal cancer, increased 7%. Colorectal cancer incidence decreased by 23%, but this is due
in large part to the screening. The pooled analysis of 42 prospective and 14 retrospective studies have
shown that each increase in BMI by 5 kg/m2 was significantly associated with an 18% higher risk of
colorectal cancer [132]. The meta-analysis of 82 studies on breast cancer (including 213,075 breast cancer
survivors with 23,182 deaths) has shown that relative risks of mortality are 1.75 for pre-menopausal
and 1.34 for postmenopausal breast cancer for obese women. Each 5 kg/m2 BMI increase before and
after 1 year of cancer diagnosis increases risks by 18% and 29% for breast cancer mortality, respectively.
In this case, obesity was associated with poorer breast cancer survival regardless of BMI ascertainment
period [126]. Cancers associated with overweight and obesity, excluding colorectal cancer, increased
among adults younger than 75 years. Moreover, there is an increase in the frequency of cancers
associated with overweight and obesity (by 7%) in comparison to non-obesity cancers (13% drop).

Obesity-associated DNA damage cannot only enhance cancer risk but also promote cancer
growth (Figure 4). DNA damage induced chronic inflammation, insulin resistance and alter gene
expression can favor cancer cell proliferation and migration, resistance to apoptosis as well as tumor
angiogenesis [133–137]. In addition, associated with obesity reduced secretion of adiponectin and
increased secretion of leptin by adipose tissue can promote cancer development in obese. Adiponectin
possesses anti-inflammatory and anti-angiogenic properties and can inhibit cancer growth [138].
Some tumor cells express adiponectin receptors, thus adiponectin by binding and activating these
receptors can downstream signaling pathways in cancer cells and adiponectin deficiency excludes
such action [139,140]. Leptin is a mitogenic, anti-apoptotic, pro-angiogenic, and proinflammatory
factor [141]. Therefore, high leptin favors cancer growth and the relationship between circulating
leptin concentrations and colorectal cancer risk has been demonstrated [142]. Obesity-associated
abnormalities in the secretion of adipokines and cytokines lead to the activation of oncogenic
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intracellular molecular networks such as NF-κB, JAK2/STAT3 or PI3K/AKT pathways [143,144].
NF-κB signaling plays important role in modulating cancer cell response to DNA damage [145,146].
Hyperinsulinemia, commonly observed in obese, can reduce PI3K/AKT and affect p53 function.
Gain-of-function p53 mutations enhance activation of AKT and, in turn, a modified response of cancer
cells to insulin, leading to increased proliferation and migration [147].
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Figure 4. Obesity-induced DNA damage and cancer development.

The described above effect of DNA damage on the development of disturbances in glucose
metabolism and hyperglycemia, commonly observed in obese, may promote tumor growth by
providing cancer cells with energy and allowing them to maintain a rapid rate of cell division [148–150].
The high rate of glucose metabolism has been also reported to be associated with both activation of
oncogenes and loss of tumor suppressors [150–152].

The accumulation of adipose tissue is a significant source of estrogens after the menopause.
Enhance levels of estrogens can increase cell proliferation in the breast and uterus and increase the
risk of cancer. ROS generation during estrogen metabolism may also promote oxidative DNA base
damage [153]. Quinone and semiquinone metabolites of endogenous estrogens undergo redox cycling
in breast epithelial cells, resulting in superoxide radical anion and H2O2 production [154,155]. In
addition, 2,3-quinone and 3,4-quinone have the potential to initiate the cancer process by forming
DNA adducts [156,157]. Estrogen signaling has been also recognized as a factor regulating DDR (DNA
damage response) proteins such as ATM, ATR, p53, BRCA1, and BRCA2, as well as directly interacting
with the DNA repair machinery [158,159]. Any disruption of DNA repair pathways may support
cancer cell proliferation. Obesity-induced alterations in expression of proteins involve in DNA repair,
such as PARP1, γH2AX, ATM, FANCD2, PTEN, BRCA1, and p53 were found to affect carcinogenesis
and disease outcomes [160–162].

7. Conclusions

Obesity, caused mainly by chronic energy overload resulting from consumption of high-energy
meals and reduced physical activity, and associated with oxidative stress and inflammation, has been
recognized as a key factor inducing DNA damage and inhibiting DNA damage repair mechanisms,
favoring accumulation of DNA damage, and leading to enhanced mutation rate and altering gene
expression. Cellular response to DNA damage can result in irreversible cell-cycle arrest, activation
of several proteins which can induce adipocyte differentiation and hypertrophy, inflammation,
disturbances in cell metabolism, impair glucose metabolism, and promote the development of
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systemic insulin resistance. Accumulation of mutagenic DNA lesions is related to cancer development.
In addition, obesity-associated metabolic disturbances and excessive DNA damage can promote cancer
growth by favoring cancer cell proliferation and migration, and resistance to apoptosis. Estimation
of the DNA damage and/or disturbances in DNA repair could be potentially useful in the early risk
assessment and prevention of obesity-associated metabolic disorders as well as cancers since DNA
damage in obesity appears to be reversible and both weight loss and improvement of dietary habits
and diet composition can affect genome stability.
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8-OHdG 8-OH deoxyguanosine
AGEs advanced glycation end products
APE apurinic endonuclease
ATM ataxia telangiectasia–mutated protein
BER base excision repair
BLM bloom syndrome protein
BMI body mass index
COX-2 cyclooxygenase 2
CSA cockayne syndrome protein A
CSB cockayne syndrome protein B
DAPI 4′,6-diamidino-2-phenylindole
DDR DNA damage response
DFI DNA fragmentation index
DNA-PK DNA-dependent kinase
DR direct repair
DSB double-strand breaks
ELISA enzyme-linked immunosorbent assay
ENDS electronic nicotine delivery devices
EtBr ethidium bromide
EXO1 human exonuclease 1
FANCF fanconi anemia complementation group
Fapy Ade 4,6-diamino-5-formamidopyrimidine
Fapy Gua 2,6-diamino-4-hydroxy-5-formamidopyrimidine
FEN1 flap endonuclease 1
FFA free fatty acids
FISH fluorescence in situ hybridization
GC-MS gas chromatography-mass spectrometry
GGR global genome repair
H2O2 hydrogen peroxide
HPLC high performance liquid chromatography
HR homologous recombination
IL-6 interleukin 6
LIG DNA ligase
MGMT O6-methylguanine DNA methyltransferase
MN micronucleus assay
MMR mismatch repair
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NADPH nicotinamide adenine dinucleotide phosphate
NER nucleotide excision repair
NF-κB nuclear factor κB
NHEJ non-homologous end-joining
NO nitric oxide
NOS nitric oxide synthase
NOX4 NADPH oxidase 4
OGG1 8-Oxoguanine glycosylase
PAH polycyclic aromatic hydrocarbons
PARP poly ADP-ribose polymerase 1
PCR polymerase chain reaction
PCNA proliferating cell nuclear antigen
PhIP 2-amino-1-methyl-6-phenylimidazo(4,5-b)pyridine
PTEN phosphatase and tensin homolog
ROS reactive oxygen species
RPA replication protein A
SCGE Single cell gel electrophoresis
SSB single-strand breaks
ssDNA single-strand DNA
SOD superoxide dismutase
TCR transcription-coupled repair
TFIIH transcription factor complex IIH
TNFα tumor necrosis factor
TUNEL terminal deoxynucleotidyl transferase dUTP nick end labeling UV
UV ultraviolet
WHO World Health Organization
WRN Werner syndrome protein
XP xeroderma pigmentosium
XRCC X-ray repair cross-complementing group
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