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Abstract

Background

Cirrhosis can alter several metabolic pathways. Metabolomics could prognosticate out-

comes like hepatic encephalopathy (HE), transplant, hospitalization and death.

Aim

Determine changes in serum and urine metabolomics in cirrhotics who develop outcomes.

Methods

Cirrhotic outpatients underwent data, serum/urine collection and were followed for 90 days.

Demographics, cirrhosis details and medications were collected. Metabolomics was per-

formed on urine/serum using GC/MS with subsequent bioinformatics analyses (ChemRICH,

MetaMAPP and PLS-DA). Logistic regression adjusting for covariates (demographics, alco-

hol etiology, prior HE, PPI, SBP prophylaxis, rifaximin/lactulose) were performed and ROC

curves comparing MELD to adjusted serum & urine metabolites were created.

Results

211 patients gave serum, of which 64 were hospitalized, 19 developed HE, 13 were trans-

planted and 11 died. 164 patients gave urine of which 56 were hospitalized, 18 developed

HE, 12 were transplanted and 11 died. Metabolomics: Saturated fatty acids, amino acids

and bioenergetics-related metabolites differentiated patients with/without outcomes. After

regression, 232, 228, 284 and 229 serum metabolites were significant for hospitalization,

HE, death and transplant. In urine 290, 284, 227 & 285 metabolites were significant for hos-

pitalization, HE, death and transplant respectively. AUC was higher for serum metabolites

vs MELD for HE (0.85 vs.0.76), death (0.99 vs.0.88), transplant (0.975 vs.0.94) and hospi-

talizations (0.84 vs.0.83). Similarly, urinary metabolite AUC was also higher than MELD for

HE (0.87 vs.0.72), death (0.92 vs 0.86), transplant (0.99 vs.0.90) and hospitalizations (0.89

vs.0.84).
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Conclusions

In this exploratory study, serum and metabolites focused on lipid, bioenergetics and amino

acid metabolism are altered in cirrhotics who develop negative outcomes.

Introduction

The development of complications in cirrhosis can result in hospitalizations, death and need

for liver transplant[1]. These complications such as hepatic encephalopathy (HE) are a major

burden[2]. Currently, the prediction of outcomes is focused on clinical severity scores and the

presence of complications[3]. Other biomarkers related to inflammation and microbiota have

been reported but have not been studied across a breadth of outcomes[4–7]. In prior studies,

metabolomics is helpful in predicting survival in decompensated cirrhosis, could differentiate

between patients with without HE, and could be used to follow therapy withdrawal[8–11].

They are also able to provide pathophysiological insight into the development of these compli-

cations, including HE. However, the impact of blood and urine metabolites in those who

experience a broader range of outcomes and their potential role in the prediction of these out-

comes needs to be studied.

In this exploratory study, our aim was to determine the alterations in serum and urine

metabolomics at baseline in patients who developed outcomes, and to study the additional

impact of serum and urine metabolomics in the prediction of clinically relevant outcomes

such as HE, hospitalizations, transplant and death over 90 days in outpatients with cirrhosis

adjusted for clinical biomarkers.

Materials and methods

We recruited cirrhotic outpatients prospectively from GI and Hepatology Clinics at Virginia

Commonwealth University and McGuire VA Medical Centers after informed consent. Cirrho-

sis was diagnosed using either liver biopsy, cirrhotic liver on imaging, frank decompensation

(ascites, HE, prior variceal bleeding) or evidence of varices in patients with chronic liver dis-

ease. We excluded patients with an unclear diagnosis of cirrhosis, prior organ transplant, HIV

infection, hepatocellular cancer (HCC), those unable to consent, unable to provide any sample

or those who were not willing to allow follow-up reviews. We obtained written informed con-

sent from all participants after IRB approval at Virginia Commonwealth University and

McGuire VA Medical centers (approval numbers BAJAJ004, BAJAJ015, HM13191 and

HM13466). The population was recruited between October 2015 and November 2016 and is

representative of patients with cirrhosis found in this region of the world.

Patients were then followed for 90 days for evaluation of (a) hospitalizations (b) overt HE

(c) transplant and (d) death. Only non-elective hospitalizations were considered. Overt HE

was defined as grade� 2 on West-Haven criteria[2]. These follow-ups were performed as part

of a scheduled chart review at days 30 and 90 post-enrollment. If no follow-up was noted in

the chart review and the patient was still alive and without transplant, they were called to

inquire about hospitalizations and other outcomes that may have required interventions at

other facilities.

Data collected were demographics, diabetes, etiology of cirrhosis (alcohol/not), MELD

score, prior HE, use of PPI, lactulose, rifaximin and SBP prophylaxis. Fasting morning serum

and urine samples were collected. These were adjusted for in the final analysis of the serum
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and urine metabolites with respect to individual outcomes apart from MELD score, which was

used as the clinical comparator. The biological MELD score was calculated without exception

points apart from if the patient was on dialysis.

Metabolomics analysis methods

Serum and urine were analyzed for multi-variate metabolomics at the NIH West Coast Meta-

bolomics Center using published GC-TOF MS techniques[12] (Supplementary methods).

Statistical analysis methods

The data was first transformed using the generalized log 10 transformation and then auto-

scaled[13]. Using the statistical analysis website Metabox, we performed multivariate logistic

regressions based on each single metabolite against each outcome, having age, gender, diabe-

tes, alcoholic etiology, prior HE, PPI, SBP prophylaxis, rifaximin use as covariates[14]. We

concluded statistical significance with p<0.05 and regression coefficients were used as a mea-

sure of the effect size. Benjamini-Hochberg procedure was used to control the false discovery

rate (FDR).

Two analyses were performed to determine the changes in metabolomics and their effect

on outcomes.

Analysis 1: was to determine the inter-relationship and pathophysiology of the metabolites that

were significantly associated with individual outcomes. We performed chemical similarity

enrichment analysis (ChemRICH) to provide chemical classes significantly altered in

patients who developed a particular outcome compared to the rest[15]. ChemRICH per-

formed enrichment analysis based on the chemical structures that are not defined by the

pathways, which can be inherently flawed and depended on the background databases. The

p-values of the clusters were obtained by employing the Kolmogorov-Smirnov test. A p-

value less than 0.05 indicates a statistically significant enriched compound cluster. In addi-

tion, the compound significance, the effect sizes and the altering directions were visualized

by MetaMapp[16]. Individual metabolite VIP scores were calculated for each outcome and

the top 20 metabolites by the VIP score for each outcome were further analyzed.

Analysis 2: was the comparison of the predictability of using urine and serum metabolites and

using MELD respectively. We first adjusted the confounder effects on the urine and serum

data. Then the adjusted urine and serum metabolites and the MELD score was used to

build the partial least square–discriminant analysis (PLS-DA) for each of the outcomes. The

predictions were made based on leave-one-out cross-validation procedure, and the area

under the ROC curve (AUC) was used to access the predicting power of each PLS-DA mod-

els. These were compared statistically.

Results

We recruited 211 cirrhotic outpatients (Table 1) who gave serum, of which 164 patients pro-

vided urine samples. Of the 211 patients, at 90 days, 64 were hospitalized, 19 developed an HE

episode, 13 were transplanted and 11 died. In those who gave urine (Table 1), 56 were hospital-

ized, 18 developed an HE episode, 12 were transplanted and 11 died. Of the people who did

not provide urine, the majority were on dialysis (n = 35), while the rest were not willing to pro-

vide it. Patients with an outcome (death, overt HE, transplant or hospitalization), largely had a

higher MELD score, lactulose, SBP prophylaxis and prior HE compared to the rest. Age, gen-

der, diabetes, rifaximin use and PPI were largely non-significant. Prior HE did not affect
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transplant but there was a difference in gender between those did or did not get transplanted.

Hospitalizations were due to liver-related causes in the majority (n = 43, HE, n = 19, renal/

metabolic causes, n = 13, ascites/anasarca n = 9, others n = 2) followed by infection (n = 13,

SBP n = 4, Urinary tract infections n = 4, pneumonia n = 3 and C.difficile n = 2) and liver-

Table 1. Clinical characteristics of patients who gave serum and urine and developed outcomes within 90 days.

Patients who gave serum All patients

(n = 211)

Hospitalization Overt HE Death Transplant

No

(n = 147)

Yes

(n = 62)

No

(n = 192)

Yes

(n = 19)

No

(n = 200)

Yes

(n = 11)

No

(n = 198)

Yes

(n = 13)

Age (median, IQR) 58.0 (7.5) 58.0 (6.0) 58.0 (10.25) 58.0 (7.0) 58.0 (9.0) 58.0 (16.0) 58.0 (6.75) 58.0 (7.0) 61.0 (7.0)

Male Gender 163 (77%) 107(73%) 56 (90%)

p = 0.005

147 (77%) 16 (84%) 152 (67%) 11 (100%) 148 (67%) 13 (100%)

p = 0.04

Diabetes 63 (30%) 47 (32%) 16 (25%) 61 (32%) 2 (11%)

p<0.001

62 (31%) 1 (9%) 58 (30%) 5 (39%)

Alcohol etiology 52 (25%) 33 (22%) 19 (31%) 49 (25%) 3 (16%) 51 (25%) 1 (9%) 49 (25% 3 (23%)

MELD score (median, IQR) 11.0 (7.0) 9.0 (5.0) 17.0 (9.25)

p<0.0001

10.0 (7.0) 17.0 (8.0)

p<0.0001

10.0 (7.0) 22.0 (10.0)

p<0.0001

10.0 (7.25) 22.0 (8.0)

p<0.0001

Ascites 113 (54%) 73 (49%) 40 (65%)

p = 0.05

98 (51%) 15 (79%)

p = 0.03

102 (51%) 11 (100%)

p = 0.001

101 (52%) 12 (92%)

Prior variceal bleeding 23 (11%) 15 (10%) 8 (13%) 19 (10%) 4 (21%) 20 (10%) 3 (27%) 17 (9%) 6 (48%)

Prior HE 121 (57%) 77 (52%) 44 (71%)

p = 0.01

105 (53%) 16 (84%)

p = 0.01

112 (66%) 9 (81%) 113 (57%) 8 (62%)

PPI use 97 (46%) 59 (40%) 38 (61%)

p = 0.005

87 (45%) 10 (51%) 90 (45%) 7 (64%) 89 (46%) 8 (62%)

Lactulose use 70 (33%) 28 (19%) 42 (72%)

p<0.001

55 (30%) 15 (79%)

p<0.001

61 (30%) 9 (81%)

p = 0.001

60 (31%) 10 (77%)

p = 0.001

Rifaximin use 88 (42%) 60 (41%) 28 (45%) 77 (40%) 11 (56%) 84 (42%) 4 (36%) 84 (43%) 4 (31%)

SBP prophylaxis 18 (9%) 7 (5%) 11 (18%)

p = 0.002

13 (7%) 5 (27%)

p = 0.01

14 (7%) 4 (36%)

p = 0.009

16 (9%) 2 (15%)

Patients who gave urine All patients

(n = 164)

Hospitalization Overt HE Death Transplant

No

(n = 108)

Yes

(n = 56)

No

(n = 146)

Yes

(n = 18)

No

(n = 153)

Yes

(n = 11)

No

(n = 152)

Yes

(n = 12)

Age (median, IQR) 59.0 (7.0) 60.0 (7.0) 58.0 (10.25) 59.0 (7.0) 58.0 (10.5) 59.0 (7.0) 58.0 (16.0) 58.0 (7.25) 61.0 (3.75)

Male Gender 123 (75%) 76 (70%) 47 (84%) 107 (73%) 16 (89%) 112 (73%) 11 (100%) 111 (73%) 12 (100%)

p = 0.03

Diabetes 54 (33%) 37 (34%) 17 (25%) 52 (36%) 2 (11%) 51 (33%) 3 (27%) 50 (35%) 4 (33%)

Alcohol etiology 42 (26%) 27 (25%) 17 (25%) 39 (27%) 3 (17%) 41 (27%) 1 (10%) 38 (25%) 3 (25%)

MELD score

(median, IQR)

11.0 (9.0) 9.0 (5.0) 17.0 (9.25)

p<0.0001

10.0 (9.0) 21.0 (5.5)

p<0.0001

11.0 (8.0) 22.0 (10.0)

p<0.0001

10.0 (8.0) 21.0 (5.5)

p<0.0001

Ascites 78 (47%) 42 (43%) 36 (64%)

p = 0.01

68 (47%) 10 (56%) 68 (44%) 10 (91%)

p = 0.003

68 (45%) 10 (89%)

p = 0.01

Prior variceal bleeding 20 (12%) 14(13%) 6 (10%) 17 (12%) 3 (17%) 17 (11%) 3 (27%) 15 (10%) 5 (41%)

Prior HE 84 (51%) 45 (42%) 39 (70%)

p = 0.001

68 (47%) 16(89%)

p = 0.03

75 (49%) 9 (89%)

p = 0.05

77 (53%) 7 (60%)

PPI use 87 (53%) 56 (52%) 31 (55%) 78 (53%) 9 (50%) 80 (52%) 7 (64%) 79 (52% 8 (67%)

Lactulose use 66 (40%) 28 (26%) 38 (69%)

p<0.001

51 (35%) 15(83%)

p = 0.006

57 (37%) 9 (89%) 57 (38%) 9 (75%)

Rifaximin use 54 (33%) 31 (29%) 22 (39%) 43 (30%) 11(62%)

p = 0.006

50 (32%) 4 (37%) 50 (33%)) 4 (33%)

SBP prophylaxis 19 (12%) 6 (6%) 13 (23%)

p = 0.001

14 (10%) 5 (28%)

p = 0.03

15 (10%) 4 (37%)

p = 0.02

16 (11%) 3 (25%)

Data in median (IQR) or in raw numbers (%); Significant p-values on Mann-Whitney test, Fisher exact or Chi-square test as appropriate are shown in each box in those

who developed that outcome compared to those who did not.

https://doi.org/10.1371/journal.pone.0223061.t001
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unrelated in the rest (n = 6, cardiovascular n = 3, pulmonary n = 2, other n = 1). Of the 13

renal/metabolic causes, 7 patients had acute kidney injury (AKI) without hepato-renal syn-

drome, 3 had hyponatremia, 1 had hypernatremia and 2 had hepato-renal syndrome. None of

the patients developed HCC or variceal bleeding during the follow-up.

Metabolomics ChemRICH analysis (S1, S2, S3 and S4 Tables)

Hospitalizations (Fig 1). Serum metabolite clusters increased in patients who were hospi-

talized were pyridines and pyrimidines, sugar acids, sugar alcohols, amino acids and sulfur

amino acids, phenylacetates, disaccharides, monosaccharides, hexoses, uronic acid and gluta-

rates. The following were decreased in those who were hospitalized; basic amino acids, satu-

rated fatty acids, dicarboxylic acids, purinones and adipates. In the urine, clusters related to

pentoses, purines, disaccharides, phenylacetates, sugar alcohols, amino acids (cyclic, basic,

Fig 1. 90-day hospitalizations. A: Serum PCA/PLSDA and permutation plots PCA showing visual separation between those who

were hospitalized (blue) vs the rest (yellow dots), PLS-DA showing visual separation between those who were hospitalized (blue) vs

those who were not (yellow dots) and Permutation test plots indicating the validation of the PLS-DA models with visual separation

between hospitalized (green) versus not hospitalized (blue). B: Urine PCA/PLSDA and permutation plots PCA showing visual

separation between those who were hospitalized (blue) vs the rest (yellow dots), PLS-DA showing visual separation between those

who were hospitalized (blue) vs those who were not (yellow dots) and Permutation test plots indicating the validation of the PLS-DA

models with visual separation between hospitalized (green) versus not hospitalized (blue). C: ChemRICH analysis of serum. Red

clusters associated with higher and blue one associated with lower outcomes. D. ChemRICH analysis of urine. Red clusters

associated with higher outcomes.

https://doi.org/10.1371/journal.pone.0223061.g001
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acidic, sulfur and aromatic), glutarates, hexuronates, malates, hexoses, sugar acids, citrates,

indoles, saturated FA, dicarboxylates, purinones were associated with hospitalizations.

HE (Fig 2). Patients who developed HE demonstrated higher serum clusters related to

pyridines and pyrimidines, sugar acids, sugar alcohols, amino acids, phenylacetates, disaccha-

rides, monosaccharides, hexoses, uronic acid and glutarates while basic amino acids, saturated

fatty acids, dicarboxylic acids, purinones and adipates were lower. In the urine, higher clusters

related to pentoses, purines, disaccharides, phenylacetates, sugar alcohols, amino acids (Cyclic,

basic, acidic, sulfur and aromatic), glutarates, hexuronates, malates, hexoses, sugar acids, cit-

rates, indoles, saturated FA, dicarboxylates, purinones were associated with HE.

Death (Fig 3). In the serum, pyridines, sugar acids, sugar alcohols, acidic amino acids,

phenylacetates, disaccharides, monosaccharides, hexoses, and glutarates were higher in those

Fig 2. 90-day hepatic encephalopathy (HE) development. A: Serum PCA/PLSDA and permutation plots PCA showing visual

separation between those who developed HE (blue) vs the rest (yellow dots), PLS-DA showing visual separation between those who

developed HE (blue) vs those who did not (yellow dots) and Permutation test plots indicating the validation of the PLS-DA models

with visual separation between HE (green) versus no HE (blue). B: Urine PCA/PLSDA and permutation plots PCA showing visual

separation between those who developed HE (blue) vs the rest (yellow dots), PLS-DA showing visual separation between those who

developed HE (blue) vs those who did not (yellow dots) and Permutation test plots indicating the validation of the PLS-DA models

with visual separation between HE (green) versus no HE (blue). C: ChemRICH analysis of serum. Red clusters associated with higher

and blue one associated with lower outcomes D. ChemRICH analysis of urine. Red clusters associated with higher outcomes.

https://doi.org/10.1371/journal.pone.0223061.g002
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who died while saturated and unsaturated fatty acids, purine nucleosides, basic and sulfur

amino acids, dicarboxylic acids, and adipates were lower. In the urine, metabolites related to

saturated FAs, pentoses, Indoles, amino acids (basic, cyclic, acidic and basic), purines malates,

disaccharides, dicarboxylic acids, hexuronic acids, hexoses, phenylacetate and citrates were

associated with higher death.

Transplant (Fig 4). Patient who received a transplant demonstrated again a similar pat-

tern to those who died with higher serum pyridines, sugar acids, sugar alcohols, phenylace-

tates, disaccharides, monosaccharides, hexoses, and glutarates and lower serum saturated fatty

acids, purine nucleosides, basic, acidic and sulfur amino acids, dicarboxylic acids, and adipates

in those who were not transplanted. In the urine again, there were higher metabolites related

Fig 3. 90-day death. A: Serum PCA/PLSDA and permutation plots PCA showing visual separation between those who died (blue) vs

the rest (yellow dots), PLS-DA showing visual separation between those who died (blue) vs those who did not (yellow dots) and

Permutation test plots indicating the validation of the PLS-DA models with visual separation between those who died (green) versus

not (blue). B: Urine PCA/PLSDA and permutation plots PCA showing visual separation between those who died (blue) vs the rest

(yellow dots), PLS-DA showing visual separation between those who died (blue) vs those who did not (yellow dots) and Permutation

test plots indicating the validation of the PLS-DA models with visual separation between those who died (green) versus not (blue). C:

ChemRICH analysis of serum. Red clusters associated with higher and blue one associated with lower outcomes. D. ChemRICH

analysis of urine. Red clusters associated with higher outcomes.

https://doi.org/10.1371/journal.pone.0223061.g003
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to saturated FAs, pentoses, indoles, amino acids, purines, malates, disaccharides, dicarboxylic

acids, hexuronic acids, hexoses, phenylacetate and citrates in those who got transplanted.

Metabolomics. On logistic regression after adjustment for age, gender, diabetes, prior

HE, medication use and controlling for FDR we found that for 90-day hospitalization there

were 290 urinary and 232 serum metabolites that were significant, for HE there were 284 uri-

nary and 228 serum metabolites while 284 serum and 227 urine metabolites were significant

for death. 285 urine and 229 serum metabolites were significant for transplant. The specific

metabolites are shown in S5 to S12 Tables.

PCA and PLS-DA. Using the variables significant on logistic regression, the PCA and

PLS-DA and permutation analyses showed visual separation between patients who developed

HE, needed transplant, required hospitalization or died (Figs 1A/1B, 2A/2B, 3A/3B and 4A/

4B) for urine and serum metabolites. MetaMaPP changes are shown in S1–S8 Figs for each

fluid and specific outcomes.

Fig 4. 90-day transplant. A: Serum PCA/PLSDA and permutation plots PCA showing visual separation between those who received

a transplant (blue) vs the rest (yellow dots), PLS-DA showing visual separation between those who died (blue) vs those who did not

(yellow dots) and Permutation test plots indicating the validation of the PLS-DA models with visual separation between those who

received a transplant (green) versus not (blue). B: Urine PCA/PLSDA and permutation plots PCA showing visual separation between

those who received a transplant (blue) vs the rest (yellow dots), PLS-DA showing visual separation between those who received a

transplant (blue) vs those who did not (yellow dots) and Permutation test plots indicating the validation of the PLS-DA models with

visual separation between those who received a transplant (green) versus not (blue). C: ChemRICH analysis of serum. Red clusters

associated with higher and blue one associated with lower outcomes. D. ChemRICH analysis of urine. Red clusters associated with

higher outcomes.

https://doi.org/10.1371/journal.pone.0223061.g004
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VIP results. Tables 2 and 3 show top 20 metabolites that was associated for each outcome

in serum and urine. The entire dataset is in S13 and S14 Tables.

Serum ROC results (Fig 5). AUC for metabolites was 0.99 compared to 0.88 MELD score

for death. Serum metabolites for overt HE had an AUC of 0.85 compared to MELD with an

AUC of 0.75. AUC for transplants were higher in serum metabolites 0.97 vs 0.94 for MELD

score. 90-day hospitalization AUCs were similarly higher with serum metabolites 0.84 vs 0.83

on MELD alone. Of these comparisons, prediction of death and overt HE was statistically

higher for metabolites compared to MELD (p = 0.03 and p = 0.05 respectively).

Urine ROC results (Fig 5). 90-day death AUC for metabolites was 0.92 compared to 0.86

for MELD score. For overt HE episodes also the urine metabolites AUC was higher 0.87 vs

MELD at 0.72. Urine metabolite prediction for transplants was 0.99 compared to 0.90 for

MELD score. An AUC of 0.89 vs 0.84 for hospitalizations was seen with metabolites compared

to MELD alone. Of these comparisons, prediction of transplant was statistically significant

with metabolites (p = 0.001) with a trend towards better hospitalization prediction (p = 0.058).

Therefore, serum and urine metabolites had higher AUC compared to MELD on all outcomes.

In addition, serum metabolites were better predictors than urine for 90-day overt HE and

death while the reverse was true for transplant and hospitalizations.

Discussion

The current exploratory study found that specific patterns of changes in serum and urine

metabolites were associated with prediction of clinically relevant outcomes centered on hepatic

encephalopathy, hospitalizations, death and transplant. Metabolites linked with changes in

Table 2. Top 20 individual serum metabolites with the highest VIP scores for all outcomes.

Death VIP Overt HE VIP Transplant VIP Hospitalization VIP

hypoxanthine mix spec with

ornithine

1.691674911 sophorose 1.761664709 N-acetyl-D-tryptophan

minor2

2.077881 2-deoxyerythritol NIST 1.743146383

oxoproline 1.6136051 leucine 1.632356319 oxoproline 1.811711 conduritol betat epoxide

minor

1.735224901

2-hydroxybutanoic acid 1.547067628 oxoproline 1.600209198 caprylic acid 1.571073 arabitol 1.735079543

aconitic acid 1.532266306 isoleucine 1.582285313 xylulose NIST 1.525188 3-phenyllactic acid 1.582691715

1-deoxyerythritol 1.479701386 stearic acid 1.543379415 stearic acid 1.506294 valine 1.564061841

urea 1.467688896 glycine 1.533397167 ornithine 1.436212 tocopherol alpha 1.558857206

heptadecanoic acid NIST 1.467584884 valine 1.474016441 malic acid 1.428341 threitol 2 1.536478704

palmitic acid 1.465626513 icosenoic acid 1.45732143 asparagine 2TMS minor 1.41985 alpha ketoglutaric acid 1.507600006

linoleic acid 1.439986096 heptadecanoic acid NIST 1.44794942 2-deoxyerythritol NIST 1.415952 pseudo uridine 1.490157196

oleic acid 1.419174514 3-hydroxybutanoic acid

mix spec

1.439422872 dodecanol 1.40343 2-deoxyerythritol 1.415289639

3-hydroxybutanoic acid mix

spec

1.416205224 palmitic acid 1.439262932 trans-4-hydroxyproline 1.394916 phenylethylamine 1.406504891

galacturonic acid 2 1.415715043 linolenic acid 1.415766801 tyrosine minor 1.394313 ethanolamine 1.404227462

glucose 2 1.409341965 linoleic acid 1.414421309 2-hydroxybutanoic acid 1.392622 leucine 1.40017147

1-methyladenosine 1.39527319 xylitol 1.401049684 isolinoleic acid NIST 1.351142 2-ketoadipic acid 1.378520717

isoleucine 1.388507228 oleic acid 1.389973739 N-acetylglutamate 1.336039 N-acetyl-D-hexosamine 1.376185515

leucine 1.3862066 2-hydroxybutanoic acid 1.386819203 glycine TMS1x 1.332613 inulobiose 2 1.351429174

phthalic acid 1.381706001 glutamine 1.381953827 adipic acid 1.332586 maltose 1 1.341200867

valine 1.367678245 1-deoxyerythritol 1.356001613 succinic acid 1.326415 isoleucine 1.331328379

1,5-anhydroglucitol 1.360892224 methylhexadecanoic acid 1.344876304 threitol 2 1.323956 aspartic acid 1.330337414

glucuronic acid mix spec 1.360625469 tocopherol alpha 1.338038687 glutamine 1.296891 3-methoxytyrosine NIST 1.328860561

https://doi.org/10.1371/journal.pone.0223061.t002
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lipid, amino-acid and bioenergetics metabolism were associated with the development of these

complications. The adjusted metabolites also suggested an improved predictability compared

to MELD score.

Changes in metabolomics in cirrhosis are important to analyze due to the major role of the

liver in several important metabolic processes[11]. These span amino acid, lipid and energy

metabolism that have the potential to create serum and urine biomarkers and provide patho-

physiological insight into the disease process. Development of HE is clinically relevant and was

the leading cause of hospitalization in our population[2]. HE has emerged as the leading rea-

son for readmissions and the potential pathophysiology and clinical prediction of this outcome

is very important[17, 18]. Saturated serum FAs (caprylic, arachidic, lauric, stearic etc.) were

associated with lower while FAs belonging to the eicosanoid pathway (iso-linoleic and icose-

noic acids) were associated with greater HE. This is interesting because rifaximin therapy,

which is usually protective against overt HE, is associated with higher serum saturated medium

and long chain fatty acids[19]. Saturated fatty acids have also been associated with a lower liver

injury due to alcohol, which may a role in this relative protection[20]. On the other hand,

branched chain amino acids typically associated with lower ammonia production, and gluta-

mine, that represents ammonia capture with glutamate were protective[21, 22]. Benzoic acid

was associated with lower HE development and is likely related to gut microbial changes asso-

ciated with cirrhosis, which can influence hippurate formation[23]. Also supporting the HE-

related systemic milieu, there was higher inositol which is extruded from astrocytes after

Table 3. Top 20 individual urine metabolites with the highest VIP scores for all outcomes.

Death VIP Overt HE VIP Transplant VIP Hospitalizations VIP

3-aminoisobutyric acid 1.643070115 xylitol 1.872164501 phosphoric acid.1 1.725698799 glycolic acid 1.827212618

2,3-dihydroxybutanoic

acid NIST

1.614889928 5-methoxytryptamine 1.867140102 2-hydroxyvaleric acid 1.701237906 3-hydroxypropionic acid 1.7560861

2-hydroxy-

2-methylbutanoic acid

1.610992622 citric acid 1.805605851 2-deoxytetronic acid

NIST

1.692077564 2-hydroxyvaleric acid 1.584754621

3-ureidopropionate 1.605150109 creatinine 1.741549209 butane-2,3-diol (NIST) 1.650237473 butane-2,3-diol (NIST) 1.573148827

creatinine 1.596144716 2-hydroxy-

2-methylbutanoic acid

1.738767214 serine minor 1.630710133 creatinine 1.55118776

2-hydroxyvaleric acid 1.54878599 2-hydroxyvaleric acid 1.52753461 leucine 1.625056096 2,3-dihydroxybutanoic

acid NIST

1.545142682

5-methoxytryptamine 1.528630586 glutamine 1.505993268 adipic acid 1.624222805 fructose 2 1.542568903

uracil 1.482652188 glycolic acid 1.45153304 creatinine 1.61593923 glycine 1.530902016

glycine TMS1x 1.478569024 dodecane 1.414469964 oxalic acid 1.560206429 glycine TMS1x 1.491975324

proline 1.451424687 azelaic acid 1.414292736 2-hydroxy-

2-methylbutanoic acid

1.498640399 azelaic acid 1.411987043

glycolic acid 1.443983922 histidine 1.403092474 glycine TMS1x 1.46031286 fructose 1 1.409805348

xylitol 1.399886017 threitol 2 1.40223294 indole-3-lactate 1.460261311 2-hydroxy-

2-methylbutanoic acid

1.397753125

3-hydroxypropionic acid 1.397233101 UDP-glucuronic acid 1.398986905 3-hydroxybutanoic

acid

1.443439445 xylulose NIST 1.391645123

butane-2,3-diol (NIST) 1.391963441 N-methylalanine 1.386943204 isorhamnose 1.420245818 benzoic acid mix spec 1.38144168

pelargonic acid 1.370941662 glycine TMS1x 1.382226302 benzoic acid mix spec 1.408113448 cyclohexylamine NIST 1.342356615

benzoic acid mix spec 1.352670887 2,3-dihydroxybutanoic

acid NIST

1.380952853 3-ureidopropionate 1.407285453 threitol 2 1.32700058

2-deoxyerythritol NIST 1.342240486 butane-2,3-diol (NIST) 1.367090966 galacturonic acid 1.386165728 dodecane 1.304573934

citric acid 1.340997281 shikimic acid 1.349692331 glycolic acid 1.381902268 uracil 1.285124236

shikimic acid 1.332763509 inulotriose 1 1.34653941 dodecane 1.315481375 stearic acid 1.281632065

https://doi.org/10.1371/journal.pone.0223061.t003
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ammonia influx, and aromatic amino acid metabolites such as phenylacetates, phenyl-lactates,

indoles, and urea cycle intermediates that were higher in those who developed overt HE[24,

25]. Lactic acid and high free sugars and sugar alcohols were also associated with minimal HE

in prior serum studies using nuclear magnetic resonance (NMR)[26]. Our findings extend

Fig 5. Receiver operating characteristic curve analysis of serum and urine metabolites compared to MELD score. Solid red:

adjusted serum metabolites, dashed red: MELD score for patients who gave serum, solid blue: adjusted urine metabolites, dashed

blue: MELD score for those who gave urine. Areas under the curve are noted underneath the specific figures A: 90-day

hospitalizations, B: 90-day overt HE episodes, C: 90-day death, D: 90-day transplant.

https://doi.org/10.1371/journal.pone.0223061.g005
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these using GC/MS spectroscopy and link these to outcome development in this exploratory

experience. Since HE was the major cause of hospitalization, the majority of the metabolomic

findings were similar in pattern and predictive capability for that outcome as well.

Using individual VIP analyses, similar changes were noted above using CHEMRICH. Uri-

nary and serum metabolites that were consistently in the top twenty by VIP were related to

hippurate metabolism (benzoic acid and glycine). Glycine is associated with several important

metabolites that were also highly represented in urine and serum, which are creatinine, and

metabolites required for glutathione formation. These were glycine, glutamic acid and

2-Hydroxybutyric acid, which are involved in glutathione formation, an important hepato-

protective metabolite[27]. There was also a contribution of urea cycle intermediates (ornithine,

urea, aspartate) and products of ammonia metabolism such as glutamine and aspartate in the

serum. In addition, butanoate or butyric acid metabolites and propionate metabolites, which

are major short-chain fatty acids, were also found to be predictive of outcomes[28]. Lastly,

again long-to medium-chain fatty acids and branched chain amino acids, valine, leucine and

isoleucine, were consistently represented among the serum metabolites.

The prediction of outcomes in cirrhosis is challenging given the multiple competing factors

related to prior complications, cirrhosis severity, etiology, demographics and medications[3].

We demonstrated in this initial experience that serum and urine metabolomics were comple-

mentary and tended to be better than the MELD score alone in predicting transplant, hospital-

izations, death and HE. This is important because these could be prevented or anticipated if

their occurrence can be more reliably predicted[29]. We found that the relative predictive

capability of the urine was greater than serum for transplant and hospitalizations while serum

was better than urine for HE and prediction of death. Prior studies have been performed in

decompensated cirrhosis and plasma metabolomics by McPhail et al and Mindikoglu et al[30,

31]. They demonstrated excellent predictive capability for death using multiple metabolomic

platforms in decompensated cirrhosis and focused in those with kidney dysfunction and hepa-

torenal syndrome. Our experience extends this by including compensated and decompensated

cirrhosis, patients with and without pre-existing kidney disease, analyzing both serum and

urine, and analyzing the pattern of change of metabolomics associated with other outcomes as

well. Most of the complications showed a statistically significant or a trend towards better pre-

diction with metabolites compared to MELD. These may expand the generalizability of these

findings in a more general outpatient cirrhosis population once validated in other cohorts.

It is interesting that similar groups of serum and urinary metabolites could predict the

major complications regardless of the specific outcome and remained better than MELD

despite adjusting for clinical indices and several medications. The 90-day interval was chosen

because this is the validity period of the MELD score and also to reflect prior studies on read-

missions in this population[32]. The importance of this additive component to the MELD

score using metabolomics reflects other potential biomarkers of disease severity such as mini-

mal/covert HE, sarcopenia or microbiota that are not captured by MELD[7, 33–37]. Samples

were collected from cirrhotic outpatients, who already have a skewed metabolic baseline.

Therefore, despite controlling for clinically relevant variables and in this skewed background,

we were able to define added value of these metabolites in both fluids with trends or with sta-

tistical significance. However, the need to develop better biomarkers is even greater in the

more complex hospitalized cirrhotic patients[38], where better predictors for acute-on-chronic

liver failure are needed. There is a call for hybrid clinical and biological markers for improving

prognostication in this population[39].

We recognize that although it may improve prognostication, it is not viable to routinely

perform metabolomics in the clinic. Therefore, these results are the initial experience and need

to be further validated. However, the demonstration of these alterations, we believe may help
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focus on specific metabolite patterns that could be narrowed down in the future to potentially

add to our current clinical biomarkers. Our study is also limited using only the GC/MS plat-

form and it is likely that use of NMR and lipidomics could have further improved the prognos-

tication. Since many outcomes follow one another, we found similar groups of metabolites

that were associated with these predictions. Therefore, our analysis also focused on HE and

hospitalizations, which precede transplant and death. This could also reflect the altered meta-

bolomic milieu in advancing stages of liver disease, rather than be focused on specific compli-

cations. Due to the relatively lower number of non-OHE hospitalizations, we did not perform

a subgroup analysis of hospitalizations that were related to hepato-renal syndrome, hyponatre-

mia, infections and liver-unrelated reasons. Not all patients provided urine, the majority due

to dialysis, which skewed the potential prediction towards transplant in the serum providers

since serum was collected from every patient. This may also be the reason for better differenti-

ation between MELD score and transplant prediction in those who gave urine since this only

included patients not on dialysis. Due to the relatively short follow-up, we did not perform a

time-to-event and associated competing-risks analysis.

We conclude in this exploratory study, that there are major alterations in serum and uri-

nary metabolomics focused on lipid, amino-acid and bioenergetic metabolism that are associ-

ated with development of overt HE, hospitalization, transplant and death over 90 days.

Glycine metabolism intermediates, urea cycle intermediates, branched chain amino acids and

long to medium chain fatty acids should form the focus of future directed metabolomic strate-

gies. Further validation of these results is needed in larger multi-center studies to determine

the utility of hybrid scores combining biomarkers with clinical variables for predicting out-

comes in cirrhosis.
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