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Abstract: Protein modifications are often required to study structure and function relationships. Instead of the random labeling of
lysine residues, methods have been developed to (sequence) specific label proteins. Next to chemical modifications, tools to

integrate new chemical groups for bioorthogonal reactions have been applied. Alternatively, proteins can also be selectively

modified by enzymes. Herein we review the methods available for site-specific modification of proteins and their applications for

therapeutic antibodies.
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Introduction

Proteins are the working horses of a living cell. Within and
around cells they perform a magnificently diverse set of functions.
Besides providing structure and stability, proteins are involved in cell
signaling, catalyzing reactions, storage and transport, and are therefore
extensively studied. Over the years, tools have become available for
researchers to reveal structure and function relationships, as well as
localization and their interactions with other proteins.

A relatively new tool is based on novel and specific Chemistry. By
modifying existing amino acids or introducing unnatural amino acids,
proteins can be manipulated at the single amino acid level. Several
methods involving the site-specific modification of proteins have been
reported in the last decade. This allows the spatial and temporal
control of proteins m vivo, as well as single molecule tracking.
Modifications are introduced during protein translation, as post
translational modification or chemically, after protein isolation.

Besides their usefulness for i vitro/vivo research, site-specific
modifications are also interesting for therapeutic applications.
Pharmaceutical companies have been refocusing their pipeline towards
biological medicines (mainly monoclonal antibodies) because of the
high specificity and safety. The ‘naked” monoclonal antibodies have
shown to be very effective in blocking receptors. A next generation of
biological medicines are the antibody drug conjugates (ADCs), which
efficiently deliver the payload to the target limiting the off target
effects. Interestingly, site-specific modifications have also been applied
to improve the properties of these therapeutic proteins.

Here, we review the tools for site—specific modification of
proteins, followed by their applications in the development of
therapeutic antibodies.
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Chemical modifications of proteins

The oldest and most straightforward method for labeling proteins
is via the primary amino groups on Iysine residues and at the N-
terminus. In general, multiple accessible lysines and thus reactive
amines are present on the protein surface, resulting in efficient
labeling but inevitably leading to heterogeneous mixtures. Whether
this method is applicable depends on the properties of the protein and
the application. In the case of monoclonal antibodies, random labeling
with fluorescent molecules hardly affects the antigen binding since
many primary amines are present and only a small fraction may be
important for this interaction. Smaller proteins such as antibody
fragments are more likely to suffer from random conjugation due to a
reduced number of lysines and the lack of an Fec region. There have
been attempts to make this modification more specific by using
preferential N-terminal labeling [1] or kinetically controlled lysine
labeling [2]. Generally those methods suffer from low yields or
require complex steps including the recycling of the original protein.
Besides labeling the amino groups, similar obstacles exist for
conjugation via carboxyl groups [3] and will therefore not be
discussed in detail.

More selective is the labeling of proteins via sulthydryl groups
(also known as thiols). In proteins, most of the thiols are present in
covalently linked pairs as disulfide bonds. The introduction of a
cysteine by site-directed mutagenesis can be used for selective
conjugation. Coupling reactions of maleimide groups with thiols have
a high specificity over amines due to the lower pKa of the SH group
(>1000 fold selectivity at pH 7.0) [4]. Therefore, cysteines are most
commonly used for the site-selective modifications of proteins,
though in some situations it is not feasible. One major drawback of
introducing an extra cysteine is protein misfolding due to non-native
disulfide bridge formation. In addition, thiol maleimide adducts have
been reported to have limited stability in vivo [S]. Reactive thiols in
albumin, free cysteine or glutathione can exchange with the existing
thiol maleimide complex. Interestingly, hydrolysis of the succinimide
ring prevented this exchange reaction [S]. Whether other alkylation
reactions (with iodo/bromoacetamide analogs) also suffer from
limited stability i vivo needs to be determined. Alternatively, an
elegant double alkylation method by reducing disulfide bridges on the
protein surface and subsequent conjugation with a PEG monosulfone-
enone reagent was stable in human serum for over 30 hours and did

not affect the protein stability (scheme 1) [6].
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Scheme 1. Double alkylation of proteins by PEG monosulfone-enone.

Next to direct protein modification via alkylation, a reduced
cysteine can be first converted to dehydroalanine. Subsequent
nucleophilic addition by thiol modified biomolecules label the target
protein via a thioether bond. This method is a straightforward route
to natural occuring cysteine modifications including phosphor [7],
farnesyl [8] and N-acetylhexosamine cysteine [9], and to structural
mimics of post-translational modifications, but generates epimeric
products due to loss of the stereocenter in the first step. Recently,
several strategies for the conversion of cysteine to dehydroalanine have
been evaluated [10].

Over the vyears, several site-specific chemical modifications
methods have been reported for the N-terminal amino acids. N-
terminal serine and threonine residues can selectively be oxidized by
sodium periodate to form an aldehyde [11], followed by oxime
ligation [12]. Besides oxime Iigation, the oxidized serine was recendy
also used for the one step N-terminal dual protein functionalization
using strain promoted alkyne—nitrone cycloaddition [13].

Proteins with N-terminal cysteines have been successfully used for
reactions with thioesters [14] and applied for fusion proteins through
native chemical ligation [15], which will be described in more detail
later on.

More elegant methods are independent of the N-terminal amino
acid. These approaches exploit the unique chemical properties of the
N-terminus including the low pKa of the o-amino group of the N-
terminus (8.9) compared to the pKa of the lysine €-amino group
(10.5). Kinetically controlled lysine labeling is performed in small
steps, using multiple additions of the label and allowing the most
reactive amino group to be preferentially labeled [2].

Other methods are based on the introduction of unique reactive
groups. The diazotransfer reagent imidazole-1-sulfonyl azide was
shown to specifically convert the N-terminal amino group into an
azide group [16]. The N-terminus can also be converted into a ketone
or aldehyde group by a transamination reaction [17]. Peptide library
screening identified residues with high yields (A, G, D, E, N,), other
amino acids were either not/less reactive or were prone to side
reactions [18]. In more recent work the transamination reaction was
[19].

demonstrated for labeling of a monoclonal

antibody
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Alternatively, N-terminal modification based on ketenes was applied
to introduce an alkyne in peptides and proteins [20]. This reaction is
highly specific for most N-terminal amino acids but yields range from
9 to 94%.

Although these methods are generally straightforward for
peptides, applications for proteins predominantly depend on the
solvent accessibility of the N-terminus. Moreover, small modifications
limit the usefulness of reactions with low yields due to difficulties in
separating the modified from the unmodified proteins.

Metabolic modifications

Metabolic labeling of proteins involves the replacement of one or
more canonical amino acids by non-canonical analogs. The first
observations by Munier and Cohem showed the incorporation of
phenylalanine and methionine analogs in bacterial proteins (red
scheme in figure 1) [21]. Since then, many analogs have been
hosts  for
incorporation at the expense of canonical amino acids [22]. The strict

synthesized and tested in auxotrophic bacterial

biological machinery accepts only minor modifications such as alkenes
[23], alkynes [24] and azides [24] as amino acid side chains. The
latter being of particular interest due to their compatibility with the
Staudinger ligation and (copper-free) click chemistry [25].

The occurrence of multiple phenylalanine or methionine residues
in proteins results in protein mixtures upon conjugation. Recently
though, only one out of five azidohomoalanines of native CalB was
shown to be surface accessible and reactive for functionalization [26].

Instead of designing amino acid analogs to be accepted by the
biological machinery, advances have been made to manipulate the
biosynthetic apparatus itself. Mutations in phenylalanyl-tRNA
synthetase (PheRS) caused either an increase or decrease of the
binding pocket size, and thus a change in the specificity towards
phenylalanine analogs (blue scheme in figure 1) [27]. The unnatural
could be incorporated
into Photinus pyralis luciferase by expression of the mutant PheRS
(A294QG) in E. coli, replacing all phenylalanines [28]. More recently,
the same has been demonstrated for non-canonical analogs using

mutations in LeuRS [29], PheRS [30] and ValRS [31].

amino  acid

p-chlorophenylalanine
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Figure 1. Metabolic labeling of proteins. The global replacement of natural
amino acids by non-canonical analogs (red). Increased specificity for
unnatural amino acids by manipulating the biosynthetic machinery (blue).
Site-specific incorporation of unnatural amino acids by an orthogonal
aminoacyl-tRNA synthetase/tRNA pair (yellow).

Both previous methods relied on the global replacement of
canonical amino acid in proteins. The first site-specific modification
of a single amino acid (based on editing the biological machinery) has
been reported by Schultz [32] and Chamberlin [33] (yellow scheme
in figure 1). Non-canonical amino acids were incorporated upon
suppression of the amber nonsense codon (TAG) by chemically
acylated suppressor transfer RNA. In theory, also the two other stop
codons could be targeted. However, the least used codon
(TAG/amber codon) was selected to minimize the effect of
translation read through on other proteins by suppression of the stop
codon. This approach was first limited to in witro production of
proteins, or 1n vivo by microinjection into oocytes [34]. Later on, next
to the gene of interest also the synthetase/ tRINA pair was expressed
m wvivo. Efforts by Schultz and coworkers have improved this
approach by applying selection schemes to reduce the interaction with
the biological machinery [35,36]. These include the selection with
toxic genes bearing several amber codons to reduce the incorporation
of canonical amino acids, as well as GFP expression in the presence of
the unnatural amino acid to screen for the highest incorporation. In
another example the whole biological machinery for the synthesis and
incorporation of the 21* amino acid was introduced in E. coli [37].
Moreover, the methodology has also been transferred to yeast and to
mammalian cell lines by stable transfection.

Next to the suppression of non-sense codons, frame shift
suppression has been used for the site-specific introduction of non-
canonical amino acids [38]. This allows for not the triplet-base codon
but codons containing 4 or S bases to be recognized. The usage of
frameshift codons is complicated by competition by the endogenous
triplet recognizing tRINA, resulting in a -1 frameshift and a premature
termination. Alternatively, the frameshift suppressor tRINA could also
recognize endogenous codons (3+1), causing a +1 frameshift and a
premature termination as well. The selection of four-base codons
based on genetic occurrence frequency allowed the incorporation of
multiple unnatural amino acids 12 vivo [39].

Efforts over the years have allowed over 70 novel amino acids to
be genetically incorporated via  this

approach,

including

photocrosslinkers, photocaged groups and fluorescent labels [37].

Post translational modifications

After translation, almost all proteins require post-translational
modifications (PTMs) before becoming mature. The oxidation of
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cysteines is a common PTM and is important for protein folding and
stability. Other PTMs increase the functional diversity of proteins by
the modification of amino acids including phosphorylation,
glycosylation, ubiquitination, nitrosylation, methylation, acetylation
and proline cis-trans isomerization [40]. Site-specific enzymatic
PTMs are of particular interest since they can be used to manipulate

and/or study proteins.

Membrane associated modifications

Lipid modifications change the subcellular localization of proteins
affect [41]. and N-

myristoyltransferases recognize a consensus motif (CAAX and

and can protein  function Farnesyl-
GXXXS/T) on proteins and subsequently conjugate farnesyl and
myristoyl groups, respectively [42,43]. Azide functionalized analogs
of those groups have been used to label and study proteins [44,45].
Although these transferases are sequence specific, the subcellular
localization limits the applications for other proteins.

Another
transglutaminases (TGs), which cross-link proteins with isopeptide

bonds between Lys and Gln residues [46]. TGs are involved in cell

adhesion, stabilization of the extracellular matrix, apoptosis and

random modification is introduced by

more

wound healing. Importantly, multilayered epithelium, stabilized by
these cross-links, protects the organism from the environment. The
random crosslinking activity limits the possible applications of TGs.
Cell surface proteins bearing a Q-tag (PNPQLPF, PKPQQFM,
GQQQLG, and the recently identified RLQQP [47]) have been
successfully labeled with biotin and fluorescein, though background
labeling was observed [48].

Formylglycine generating engyme

In another approach the native formylglycine generating enzyme
(FGE) is used to introduce formylglycine in both prokaryotes[49]
and eukaryotes [50]. The aldehyde tagged protein can be readily
with
biomolecules [50]. A drawback is the hydration of formyglycine in

functionalized aminooxy- or  hydrazide-functionalized
water to the diol-formylglycine, lowering the yield to around 85%

[51].

Self-modifications

Besides the modification of other proteins, some enzymes can be
used for self-modification such as human O6-alkylguanine-DNA
alkyl transferase (hAGT) [52], cutinase [53] and halo alkane
dehalogenase [54]. Structural analogs of the natural substrates temper
the biological function of hAGT and cultinase. A single mutation in
halo alkane dehalogenase (His272Phe) traps the protein at an
intermediate state and allows covalent attachment of chemical
probes[54]. Fusion proteins bearing these domains can be selectively
modified 1nn vitro or in vivo [S5-57]. Compared to other approaches,
the large size of these domains (21-33 kDa) is considered as the
major drawback. This can influence the function and/or localization
of the protein of interest by the interaction with other biomolecules.
Nevertheless, hAGT is commonly used for cell imaging studies
because of the high labeling efficiency and of cell permeable probes
[55,58].

Ligases

A straightforward class of enzymes for modifying proteins after
translation are the ligases (figure 2). Ting and coworkers have been
involved in exploiting several enzymes for site-specific modifications.
First, biotin ligase (BirA) was shown to accept also a ketone isostere
of biotin as a cofactor [59]. Ligation of this biotin analog to proteins
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bearing the 15-amino-acid acceptor peptide (AP) was demonstrated
i vitro and in vivo, followed by subsequent ketone-hydrazine
conjugation. Second, the microbial lipoic acid ligase (LplA) was used
to specifically attach an alkyl azide onto proteins with an engineered
LplA acceptor peptide (LAP) [60]. Although only 33% could be
converted [61], cell surface labeling with cyclo-octyne probes was
demonstrated [60]. Mutants of LplA were shown to be more
efticient[61] (up to 89%) and also transfer fluorinated aryl azide [62]
and 7-hydroxycoumarin [63] to LAP proteins for photocrosslinking
and life cell imaging, respectively. More recently the portfolio of
lipoic acid ligase was extended to ligate a trans-cyclooctene [64]. The
Diels-Alder cycloaddition allows rapid labeling of inner and outer
cellular proteins, though the yield is unknown.

N-terminus

Figure 2. Protein modification by ligases at the N/C-terminus and in
flexible loops.

Transferases

Another set of post-translational modifications is performed by
phosphopantetheinyl transferases (PPTases) [65]. PPTases are
categorized into Sfp-like (B. subtilis) [65], AcpS-like (E. coli) [66]
and FAS2-like (S. cerevisiae) [67] subfamilies and transfer a
phosphopantetheinyl (P-pant) group through a phosphodiester bond
onto peptidyl/ acyl carrier protein (PCP/ACP) domains. These
typically 80120 residues long domains are present on nonribosomal
peptide synthetases (NRPSs), polyketide synthases (PKSs), and fatty
acid synthases (FASs)[65].

Broad substrate specificity [68] and rapid conversion (>80% after
30 min) [69] was reported for Sfp-based labeling of proteins with
phosphopantetheinylated analogs. In order to overcome possible size
limitations, phage display screening identified several 11/12-residue
peptide tags as replacement for the carrier domain, each allowing the
labeling of N- or C-termini as well as flexible loops on target proteins
[69,70]. Interestingly, orthogonal fluorescent labeling of cell surface
receptors was demonstrated by using Sfp and AcpS selective peptide
tags [70].

Transpeptidase

Instead of exploring the chemical space in which biomolecules can
be modified by functional groups and subsequently incorporated in
proteins of interest, some general applicable enzymatic modifications
preexist in nature. Sortases function as transpeptidase anchoring
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proteins to the bacterial cell wall [71]. Upon recognition of the
sorting motif LPXTG (or LPXTA) a catalytic cysteine cleaves the
peptide bond between residue T and G, yielding a thioacyl
intermediate [72]. Instead of hydrolysing a peptide bond (as in the
case of cysteine proteases), sortases accept a N-terminal (oligo)glycine
as a nucleophile, creating a new peptide bond between the two

7]
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Figure 3. N- and C-terminal protein modification by sortases. Although
sortase recognition sites have been engineered in flexible loops of
proteins, the subsequent cleavage of the peptide backbone limits its
therapeutic applications.

molecules (figure 3).

LPXTG

C-terminus

N-terminus

Sortases function at physiological conditions and have been used
for protein labeling with various functionalities such as biotin,
fluorophores, cross-linkers and multifunctional probes [73]. Target
proteins are commonly labeled C-terminally with the LPXTG sorting
motif, followed by a puriﬁcation tag. Subsequent transpeptidation
removes the purification tag and generates the labeled proteins in high
yields. Interestingly, this approach has also been used to study the
structure and function of a solvent-exposed loop within the ubiquitin
C-terminal hydrolase 3 protein [74].

Besides introducing the sorting motif, proteins can also be
equipped with a  N-terminal (oligo)glycine for N-terminal
conjugation. In this case, the sortase recognition element should be
introduced onto the biomolecule. This approach has mosdy been used
for bacterial cell wall labeling with biotin, azide and fluorescent
groups [73].

Alternatively, also both N- and C-terminal ligation has been
demonstrated [75]. Selective labeling is achieved by using two sortases
with different specificity (LPXTG & LPXTA), preventing the
oligomerisation of proteins. Protein cyclisation occurs in cases where
the N- and C-termini are in close proximity [76,77]. This is of
particular interest in therapeutic drug design due to the enhanced
conformational stability and increased resistance to proteolytic
cleavage [78].

The fusion of two proteins can be achieved in a similar fashion,
with each protein bearing one of the tags. Although genetic fusion of
proteins is much more straightforward, in some cases this is not
feasible. For instance when protein folding is affected, protein yields
drop or proteins come from different hosts. In a recent study, 10
pairs of protein domains were generated with yields between 40-85%
[79].

The labeling of proteins by sortases has been optimized and well
described. One of the major drawbacks is the high concentration of
sortase required. The poor reaction kinetics have been improved 140-
fold using directed evolution by increasing the affinities for the
sorting motif LPXTG as well as the (oligo)glycine peptide [80].
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Protein splicing

Inteins, also known as protein introns, are protein domains
expressed in frame of another protein [81]. Removal of the intein
domain by self—excising, rejoins the two external host protein
segments by formation of a native peptide bond, and restores the
function of the host protein.

This process can be exploited for the N/C-terminal ligation of
biomolecules (figure 4) [82]. The C-terminal labeling requires the
formation of a thioester by nucleophilic attack of the intein N-
terminal cysteine. The thiol can be exchanged in the presence of thiol
reagents, resulting in cleavage of the intein. In a subsequent native
chemical ligation reaction with a cysteine functionalized molecule, the
thiol exchanges again followed by the generation of a peptide both by
the S-N shift. The C-terminal intein mediated conjugation has been
demonstrated for labeling with biotin [83], fluorophores [84] and
lipids [85,86]. Moreover, semi synthetic proteins were produced by
the ligation of cysteine bearing peptides, known as expressed protein
ligation [87].

The N-terminal labeling also requires the exchange of thiols for
cleaving off the intein. Now the intein C-terminal asparagine breaks
the peptide bond, freeing an N-terminal cysteine on the protein of
interest. Labeling of N-terminal cysteine is performed in the same
NCL reaction with a thioester modified biomolecule and has been
used to immobilize proteins on microarrays [88] as well as for inn vivo
labeling [89].

Inteins can, similarly to sortases, also facilitate the cyclisation of
proteins[82].  The IMPACT kit
straightforward production and purification of proteins with an N-

commercialized allows

and/or C-terminal modification for site-specific functionalization
[1590]. As the intein domain is coexpressed, no other proteins are
required. However, reactions in complex mixtures are challenging
since thioesters can be inactivated by reactions with amines and by

hydrolysis [91].
HS
_> _*
\&;\SR ~
HS 0E “SR
—_— j\ —_—
C-terminus

Figure 4. Intein-mediated conjugation of biomolecules.
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Glycosylation

The covalent attachment of carbohydrate chains (glycans) to
proteins is the most prevalent and complex PTM, also known as
glycosylation [92]. Glycans can be N-linked to proteins via the
asparagine or arginine side-chain, or O-linked via the hydroxyl group
mostly on serine, threonine and tyrosine, and also hydroxylysine, or
hydroxyproline side-chains [93]. Although the majority of the
glycoproteins are present on the exterior surface of cells, the O-
GleNAc modification has also been reported for proteins in the
cytosol and nucleus [94].

Glycosylation is important for protein folding and stability,
thereby affecting the circulation lifetime in blood (discussed later on)
[95]. Interestingly, the PTM itself can be used for subsequent

modification of glycoproteins via bioorthogonal chemistry. For
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instance, the metabolic labeling of glycans is achieved by feeding cells
or organisms with modified glycan precursors [96]. Several azido
including  N-azidoacetylmannosamine (ManNAz), N-
azidoacetylgalactosamine (GalNAz), N-azidoacetylglucosamine
(GleNAz) and 6-azidofucose (6AzFuc) have been incorporated into
glycoproteins by the glycan biosynthetic machinery in both in vitro

sugars

and m wivo [97]. In addition, attempts have been made to
enzymatically label glycoproteins. For example the permissive mutant
B-1,4-galactosyltransferase (Gal-T1 (Y289L)) introduces azido
galactosamine (GalNAz) onto O-GleNAc—modified glycoproteins
[98,99]. The introduced azido group allows subsequent glycan-
profiling and visualization of proteins of interest [98].

Although the glycan modification of glycoproteins expands the
researcher’s toolbox, the great structural complexity limits its
applications today. Especially the glycan recognition by the immune
system affects the usefulness for therapeutic proteins [100]. Attempts
to overcome these problems involve exploring the production of
therapeutic glycoproteins in different hosts and addressing (chemo)
enzymatic methods to derive homogeneous glycosylation patterns.

Applications for therapeutic antibodies

Traditionally, drugs have been small chemical entities based on
natural and (semi)synthetic products [101]. Analogs of natural active
compounds have been optimized for physicochemical and
pharmacological ~properties allowing oral administration while
maintaining therapeutic efficacy. The lack of specificity and/or the
inability to block protein-protein interactions by these small chemical
entities stimulated the development of protein based drugs [102].
Certain type of proteins such as hormones and antibodies naturally
bear very high specificity for their target. Moreover, their natural
appearance in the human body makes them reasonably safe as
therapeutic compounds. Protein drugs, however, often suffer from
other issues such as low stability, poor pharmacokinetics, limited
efficacy and require a complex route of administration [103,104].
Opver the years, research groups and pharmaceutical companies have
made various attempts to improve these parameters by modifying
therapeutic proteins using some of the above mentioned methods

[105]. The second part will review these modifications.

Pharmacokinetics

In vivo responses of (protein) therapeutics are influenced by drug
absorption, distribution, metabolism and excretion (ADME). Small
sized proteins are predominantly cleared via glomerular filtration by
the kidneys [106]. This results in a half-life of 2 hours for single-
domain antibodies (15 kDa) [107] and 12-20 hours for Fab
fragments (50 kDa) [108]. Proteins above the glomerular filtration
cutoff (molecular weight >50 kDa and hydrodynamic radius >60 A)
are cleared by other pathways including proteolytic degradation,
hepatic uptake and immune clearance[109]. Monoclonal antibodies,
for instance, are 150 kDa and have long half-lives (7-23 days) by
default [110].

The elimination of small proteins by the kidneys can thus be
influenced by modifications affecting the size. The covalent
attachment of water soluble polymers to proteins (such as
polyethylene glycol; PEG) increases the hydrodynamic size and
interestingly also reduces the immunogenicity by masking the protein
from the immune system [111]. Several branched and non-branched
PEG structures have been evaluated for the effect on renal clearance.

Enhanced PK profiles for branched PEG conjugates have consistently
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been described for therapeutic proteins in the literature [112—-114].
Recently for instance, single domain antibodies labeled with 2x20
kDa PEG were shown to be superior over 1x40 kDa and 4x10 kDa
[114].

Biodistribution studies showed higher serum exposure of the

labeling  without  affecting the biological  activity
antibody, though this was not the case for some tissues.

Although PEG is considered as the golden standard in drug
delivery, antibody formation against PEG conjugates was reported in
1983 already [115]. Interestingly, preexisting antibodies against PEG
were found in healthy donors of the PEG-asparaginase clinical trial
[116]. And even, a more rapid blood clearance of PEG conjugates was
observed in patients with existing anti-PEG antibodies [116,117].
This may seriously affect the applications of PEG for drug delivery
due to an expected reduced therapeutic efficacy in patients with
antibodies against PEG.

These issues stimulated researchers to find alternative polymers
including non-biodegradable poly(glycerol)s, poly(vinylpyrrolidone),
poly(2-oxazoline)s, poly(N-(2-hydroxypropyl)methacrylamide), and
biodegradable poly(amino acid)s. Promising results were reported for
some alternatives, however the current understanding is very limited
and requires additional (clinical) studies. A recent review by Knop et
al. discusses PEG and potential alternatives in more detail [118].

Monoclonal antibodies on the other hand have already a long
half-life. For therapeutic purposes, the IgG class has predominantly
been used. Within the IgG class, the IgG subclasses 1-4 differ in the
Fc region which affects effector functions such as phagocytic cell
recruitment and complement activation through cellular IgG-Fe
receptors, and in half-life by recycling via neonatal Fc receptor (FcRn)
[119]. The strong effector effects and long half-life of subclass IgG1
are ideal for antibody based therapy in oncology [120]. Other
treatments such as in Crohn’s disease mainly depend on antigen
neutralization. Here, the effector functions by the Fc region can give
rise to side effects. This led to the development of a pegylated IgG1-
Fab (Certolizumab pegol) next to the existing IgG1’s infliximab and
adalimumab, which misses the Fc region [121]. An additional benefit
is the lack of active transport by FcRn across the human placenta and
thus the antibody should be safe in pregnancy. Alternatively strategies
to reduce/remove effector functions are IgG isotype switching to
IgGZ/4 and removal of glycosylation sites [122]. The latter can be
achieved either by mutation of asparagine 297 in the CH2 domain
(and additional glycosylation sites) or by expression of antibody
(fragments) in prokaryotic hosts.

Distribution

Biodistribution is another factor determining the efticacy of
antibody therapy, and varies per Ig class due to differences in the Fc
region. The distribution of IgG class monoclonal antibodies is mainly
confined to blood and extracellular fluid. Pegylation of antibody
fragments was reported to influence the biodistribution [123]. Since
the therapeutic response of antibody therapy depends on the drug
concentration at the target site, many studies have analyzed impaired
distribution in tumors [124—126]. Compared to normal tissue, the
interstitial hydrostatic pressure and missing lymphatic draining
restricts movement of antibodies [126]. Consequently, invasion of
monoclonal antibodies occurs predominantly via diffusion across
pores in the capillary and is limited by the molecular size. In addition,
the ‘binding site barrier’ limits deep penetration of antibodies into
tumors[127,128]. Diffusion and convection are restricted to the outer
layer of cancer cells due to high affinity, rapid internalization and
subsequent metabolism of antibodies [129].
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Taken together, tumor penetration can be improved by targeting
smaller sized antibodies including single-domain antibodies and Fab
fragments. These antibody fragments lack an Fec region and therefore
have a reduced half-live. Whether the improved tumor penetration is
sufficient to compensate for the shorter circulation time needs to be
evaluated.

Clearance

The molecular weight of monoclonal antibodies is beyond the
filtration cutoff of the kidneys. Still, the half-life between IgG
subclasses ranges from 7 to 23 days [110]. The interaction between
the Fe region and the FcRn receptor, has been suggested as one of the
determining factors. Where normally the uptake of proteins by
vascular endothelial cells would result in degradation in lysosomes,
antibodies are recycled back into the circulation as a consequence of
their interaction with the FcRn receptor [130]. Validation in FcRn
knockout mice showed a 10-15x higher IgG elimination while other
classes were not affected [131-133]. In addition, engineered tighter
binding to the FcRn resulted in a 2-fold increase in the half-life in
monkeys [134]. Other factors determining the clearance rate of
antibodies are immunogenicity, proteolysis and glycosylation [135].
Interestingly, the production of hyperglycosylated antibodies
fragments in engineered cell lines demonstrated longer half-lives as
well as reduced proteolysis [109]. Alternatively, Fab fragments
conjugated to PEG benefits, beside from the increased size, also from
the reduced intracellular uptake and proteolytic degradation by

masking sensitive sites [114].

Antibody drug conjugates (ADCs)

The next generation of biological medicines are the antibody drug
conjugates (ADCs) [136]. Where ‘naked’ monoclonal antibodies rely
on the recruitment of immune cells by the Fc region for its toxicity,
ADC:s bear a stable (or selective cleavable) linkage with a cytotoxic
[137].  The

absorption/internalization by the target cell minimizes exposure of

payload release  of  the payload  after
healthy tissues [137]. More importantly, because of the cytotoxic
payload, ADCs are more effective in the killing of cancer cells [138].
An interesting example is the monoclonal antibody trastuzumab
(Herceptin), which targets Her2 over-expression on certain types of
breast cancer [139]. Trastuzumab has been marketed since 1998 and
inhibits ADC

trastuzumab emtansine (Kadcyla) was approved by the FDA. The

predominantly tumor  proliferation. Recently,
delivery of cytotoxic emtansine induces microtubule disruption,
thereby making this construct more effective (54% longer median
progression-free survival compared to trastuzumab plus docetaxel)
[140,141]. Between O and 8 emtansine molecules are randomly
conjugated via the SMCC crosslinker onto lysine residues on
trastuzumab (3.5 on average)[140]. Because of the on average 100
lysines per antibody, this results in a heterogeneous mixture. A 2/3-
fold faster clearance of trastuzumab emtansine compared to the naked
antibody has been attributed to deconjugation and proteolytic
degradation of the ADC [142].

Better defined is the monoclonal antibody brentuximab vedotin
(Adctris) for treating Hodgkin's lymphoma. Mild reduction by
dithiothreitol (DTT) generates 8 thiol groups from four interchain
disulfide bridges [143]. Monomethyl auristatin E (MMAE) is
conjugated to 3-5 thiol groups (4 on average). Although labeling of
brentuximab with 8 MMAE molecules has also been reported, the
higher degree of labeling generally results in faster clearance/shorter
half-life. Interestingly, the in vivo antitumor activity was comparable
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for ADCs bearing 4 or 8 MMAE molecules (at equal mg/kg/dose)
[144].

Off target/side effects by ADCs can generally be explained by 3
situations: 1) The antibody is not specific enough causing
accumulation in healthy tissue; 2) The cytotoxic agent is lost before it
reaches the target cell; or 3) The heterogeneous population has altered
specificities or pharmacokinetics. The drawbacks of producing
monoclonal antibodies as heterogeneous product led to the site-
specific incorporation of unnatural amino acids in monoclonal

[145-147). A defined

stoichiometry and stable linkage is expected to reduce the side effects

antibodies and antibody fragments
of ADCs. In addition, optimal sites for conjugation can be selected to
reduce the effect on the circulation time.

In order to demonstrate this, a noncleavable auristatin analog was
conjugated to trastuzumab bearing the unnatural amino acid p-
acetylphenylalanine (pAcF) [146]. The functionalized ADC was
obtained in an overall yield of >95% and showed a similar clearance
rate as the naked antibody.

Currently, the companies Allozyne, Ambrx and Sutro explore the
amino acids for its

incorporation of unnatural therapeutic

applications, An overview of FDA approved ADCs is given in table 1.

Bispecific antibodies

Next to ADCs, also the recruitment of T-cells by bispecific
antibodies is effective for the treatment of cancer. Bispecific
antibodies recognize tumor speciﬁc antigens and T-cells at the same
time [149]. In one strategy, random crosslinking has been applied to
conjugate two antibodies together via hetero-bifunctional crosslinkers
such as SPDP (succinimidyl-3(2-pyridylthiol)propionate) [150-152]
and SMCC (Succinimidyl-4-(N-maleimidomethyl)cyclohexane-1-
carboxylate) [153]. Monoclonal antibodies however bear two
fragment antigen-binding sites (Fab fragment) both recognizing the
same antigen. Selective reduction of disulfide bonds and subsequent
oxidation was used to acquire monovalent bispecific antibody
fragments (one Fab for each antigen) [154].

More recently, uniform bispecific antibodies were generated by
first expressing two sets of half-antibodies which were unable to
dimerize [155]. The bispecific antibodies were spontaneously formed
by mixing the reduced half-antibodies under oxidizing conditions. In
contrast, the only FDA approved bispecific antibody therapy
(Catumaxomab) is directly produced in hybrid mouse/rat quadroma
cell lines [156]. Due to the homology in the hinge region between
mouse and rat antibodies, the 30-49% yield almost reached the
statistical limit of 50% (m/m, m/r, t/m and r/r) [157]. Besides
binding tumor cells via the EpCAM antigen and T-cells via the CD3
receptor, the intact Fe region of Catumaxomab recruits accessory cells
to enhance the immune response against the tumor [158].

Table 1. Overview of FDA approved ADCs.

Site-specific functionalization of proteins

Next to the generation of full monoclonal antibodies, two Fab
fragments bearing genetically encoded unnatural amino acids were
conjugated to  form an  anti-HER2 /anti-CD3 bispecific
antibody[145]. The confined sites and defined chemistry allowed
homogeneous products in a two-step process. Although effective
tumor killing was observed 1 vitro, the efficacy in vivo still needs to
be determined.

Nanoparticles

Based on antibody Complexes in nature, immune Complexes have
emerged for the neutralization of antigens. Binding to tumor specific
antigens blocks signaling cascades as well as causes down-regulation of
the receptor [159]. Diverse set of scaffolds including avidin [160],
gold [161], liposomes [162] and polymersomes [163—166] have been
decorated with antibodies or antibody fragments. Recently, DNA
scaffolds decorated with single-domain antibodies were demonstrated
to allow various structures such as dimers and tetramers [147].

Besides immune complexes binding to antigens, the subsequent
internalization has drawn attention for the delivery of drugs.
Compared to current ADCs, nanocapsules facilitate the delivery of
high drug concentrations by active (antibody binding) and passive
targeting (EPR effect; beyond the scope of this review, see ref [167]).
In order to remain in the blood circulation, nanoparticles need to
meet several criteria including confined size, shape and chemical
properties [168]. Antibody fragments are often used for the targeting
of nanocapsules because no Fc region and subsequent signaling
cascade is required. Since none of these nanomedicines have been
FDA approved, an overview of decorated nanoparticles in clinical
trials is given in table 2.

Summary and Outlook

Site-specific modification of proteins has emerged as powerful
tool to study proteins at the single amino acid level. Currently, the
field is expanding towards applications for therapeutic proteins.
Several studies have demonstrated the usefulness of unnatural amino
acids in antibody drug conjugates. The time-consuming drug
development and approval process has delayed the integration of these
methods for therapeutic antibodies, but this can be expected in the
near future.

In contrast to therapy, the approval process for diagnostic
antibodies is shorter. The functionalization methods described in this
review would be ideal to label antibodies with diagnostic tracers
(radioactive, fluorescent or contrast agents), but will be even more
important for the successful development of theranostics, a one-
molecule combination of diagnosis and therapy.

A
mAb Drug D Chemistry Reducable Trigger Status (US) Ref
(average)
approved (2000)
Gemtuzumab ozogamicin  Calicheamicin 4-6 (5%) Lysine yes pH & withdrawn [148]
(2010)
. . Monomethyl auristatin E .
Brentuximab vedotin (MMAE) 3-5 (4) Cysteine no protease approved (2011) [143]
Trastuzumab emtansine Mertansine (DM1) 0-8 (3.5) Lysine no none approved (2013) [140]

* For only 50% of the antibodies.
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Table 2. Antibody decorated nanoparticles in clinical trials.

Site-specific functionalization of proteins

Name Particle Drug Chemistry ~ Target Antibody Phase Ref
Erbitux®EDVsPAC  Bacterially-derived minicell ~ Paclitaxel - EGFR mAb I [169]
SGT-53 Liposome p53 gene NA Transferrin scFv Ib/I1 [170]
MM-302 Liposome Doxorubicin NA HER2 Fab I [171]
Lipovaxin-MM Liposome Melanoma antigens and IFNy - DC-SIGN sdAb 1 NA
SGT-94 Liposome RB94 gene NA Transferrin scFc I NA
C225-ILS-DOX Liposome Doxorubicin Cysteine EGFR Fab (cetuximab) I [172]
MCC-465 Liposome Doxorubicin Lysine Unknown Fab: I* [173]

* Clinical trial is performed in 2004, current status is not available.
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