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Comprehensive urinary 
metabolomic profiling and 
identification of potential 
noninvasive marker for idiopathic 
Parkinson’s disease
Hemi Luan1, Liang-Feng Liu2,3, Zhi Tang1, Manwen Zhang1, Ka-Kit Chua2,3, Ju-Xian Song2,3, 
Vincent C.T. Mok4, Min Li2,3 & Zongwei Cai1

Urine metabolic phenotyping has been associated with the development of Parkinson’s disease 
(PD). However, few studies using a comprehensive metabolomics approach have investigated the 
correlation between changes in the urinary markers and the progression of clinical symptoms in PD. 
A comprehensive metabolomic study with robust quality control procedures was performed using gas 
chromatography - mass spectrometry (GC - MS) and liquid chromatography - mass spectrometry (LC - 
MS) to characterize the urinary metabolic phenotypes of idiopathic PD patients at three stages (early, 
middle and advanced) and normal control subjects, with the aim of discovering potential urinary 
metabolite markers for the diagnosis of idiopathic PD. Both GC-MS and LC-MS metabolic profiles of 
idiopathic PD patients differed significantly from those of normal control subjects. 18 differentially 
expressed metabolites were identified as constituting a unique metabolic marker associated with the 
progression of idiopathic PD. Related metabolic pathway variations were observed in branched chain 
amino acid metabolism, glycine derivation, steroid hormone biosynthesis, tryptophan metabolism, 
and phenylalanine metabolism. Comprehensive, successive metabolomic profiling revealed 
changes in the urinary markers associated with progression of idiopathic PD. This profiling relies on 
noninvasive sampling, and is complementary to existing clinical modalities.

Parkinson’s disease (PD) is a multisystem neurodegenerative disorder which afflicts nearly 1% of people 
above the age of 601. The loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc)2 
gives rise to the characteristic motor disturbances that include bradykinesia, resting tremor and rigidity. 
For pathological confirmation, autopsy-confirmed pathologic Lewy body has been considered as the 
diagnostic standard for PD3, but there are currently no blood or laboratory tests to clearly identify PD in 
clinical practice. Signs and symptoms are often used for evaluation and diagnosis of PD. However, early 
signs and symptoms of PD may be mild and considered as the consequence of normal aging. Growing 
evidence suggests that decline in physical and mental health begin several years before confirmed diag-
nosis4–6. Many risk factors of PD such as aging7 and environmental toxins8 are likely to contribute to 
the pathogenesis of PD by initiating chronic changes throughout the body. Subsequent alterations in 
energy metabolism, oxidative stress, inflammation, and corticosteroid signaling occur that could further 
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contribute to the development of PD9–11. Given the effective interventions for delaying or preventing the 
loss of dopaminergic neurons in PD patients12, early identification of individuals at risk is particularly 
crucial.

Metabolic profiling has been introduced into PD research and shows great potential value for the 
study of the pathophysiological changes associated with or resulting from the disease. Metabolomics 
is sensitive for detecting biochemical changes, including those caused by environmental and genetic 
factors, and therefore can characterize complex phenotypes and biomarkers of specific physiological 
responses13. Several studies have explored metabolic anomalies in PD. They have suggested that distur-
bances in the metabolic pathways related to oxidative stress, energy metabolism and neurotransmitters 
are associated with the progression of PD14–17. These observations raise the possibility that alterations 
in urine metabolite signatures could indicate the onset of PD in its earliest stage. Because urine con-
tains most of the body’s metabolic end products, and because it entails noninvasive sampling, urine has 
been a “favored” marker source for disease research18. Comprehensive and unbiased coverage of urinary 
metabolites may allow us to characterize the dynamic metabolic phenotypes of PD. In our previous study, 
LC-MS-based urinary metabolite profiling revealed profound abnormality in the metabolic processes of 
PD patients, and the extent of the abnormality correlated with the severity of PD19. Michell et al. also 
reported changes in urine composition of PD patients, and suggested that these changes may be more 
helpful for predicting PD than changes in serum15. Here, we report a comprehensive metabolomic pro-
filing using GC-MS and LC-MS technology, with the goal of identifying urinary metabolite markers that 
can be used for evaluate the development of PD.

Results
Clinical data and urine metabolic profiles. The clinical information of this study is given in Table 1. 
Of the 157 urine samples, 92 samples were collected from PD patients (aged 40–80 years) and 65 samples 
were collected from normal control subjects (aged 54–76 years). In the PD group, 14 (15.2%) patients 
had early-stage idiopathic PD; 59 (64.1%) patients had mid-stage idiopathic PD; and 19 (20.7%) patients 
had advanced-stage idiopathic PD according to the Hoehn and Yahr scale rating system. There were 
no significant variations of biochemical markers among the patients in different stages of PD (Table 1).

We obtained 2581 (95.8%) and 2790 (74.5%) retention time-exact mass pairs in each sample profile by 
GC-MS and LC-MS, respectively. As showed in Fig. 1A, most of the higher peak intensities in metabolic 
profiles exhibited larger variability. To reduce the variation in peak intensity, which increased with the 
rank of mean intensity during MS analysis, the GC-MS and LC-MS profiles were processed by applying 
gLog-transformation, which successfully stabilized the variance across the intensity range.

PCA score plot representation of QC samples showed no drift during the GC-MS and LC-MS anal-
ysis (See Supplemental Figures S1 and S2). Thus, reproducibility and stability of metabolic features were 
acceptable and subsequently used for statistical analysis. The well-established OPLS-DA model demon-
strated satisfactory modeling for GC-MS (R2X =  0.63, R2Ycum =  0.85, Q2cum =  0.60) and LC-MS 
(R2X =  0.43, R2Ycum =  0.99, Q2cum =  0.87). Both OPLS-DA score plots showed the normal controls 
are clearly separated from the PD group in the first component (P[1]). This separation clearly demon-
strates the difference in urinary metabolite levels that exists between PD and normal control subjects 
(Fig.  1B,C, left). Two permutation tests (n =  500) were also performed to validate the two OPLS-DA 
models (Fig. 1B,C, right). The R2 and Q2 values of the original OPLS-DA models were higher than the 
randomly classified permutation distribution; this shows that the two original OPLS-DA models are 
valid.

Differentially expressed metabolites for three stages of PD. Urinary metabolites passing the 
VIP threshold (VIP >  1) in the above-mentioned two OPLS-DA models and the Mann-Whitney U test 
(P <  0.05) after FDR correction were selected. Statistically, the differences are significant enough to dis-
criminate PD patients from normal controls. 19 metabolites and 27 metabolites identified by GC-MS 
and LC-MS, respectively, were significantly altered in PD patients (Table 2). These metabolites, annotated 
by the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, represent key metabolic pathways 
involving branched chain amino acid metabolism, glycine derivation, tryptophan metabolism, phenyla-
lanine metabolism, lysine metabolism, histidine metabolism, citrate cycle and steroid hormone biosyn-
thesis. Of the altered metabolites, 34 showing a significant difference in levels (P <  0.05) compared with 
normal control subjects were shared by all three types of PD patients. 10 metabolites, namely coumaric 
acid, tryptophan, tyrosine, succinic acid, pimelic acid, lysine, hypoxanthine, pyridoxic acid, glutaric 
acid and hexanoylglycine, were significantly altered in mid- and advanced- stages PD. Indoleacetic acid 
was significantly altered in early- and mid- stages PD. Aspartic acid was significantly disturbed only in 
mid-stages PD. Variations of these metabolites were expressed as -fold change (FC) in PD patients from 
early-stage to advanced-stage relative to normal controls (Table 2).

Evaluation of metabolic markers for PD. As shown in the Table 2, the combination of multivariate 
and univariate analysis was performed, and it identified 46 differential metabolites for discriminating PD 
patients from control subjects. The relative distribution of these 46 differential metabolites across PD 
groups and normal controls is presented in the z-score plots (Fig. 2). These 46 differential metabolites 
monitored in patients’ samples were normalized to the means of the normal control samples. The plots 
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Characteristics
Normal 

controls (n=65)

Idiopathic PD patients (n =  92)

Early-stage Mid-stage Advanced-stage

Male/female 27:38 6:8 41:18 8:11

Age 59.8 ±  3.7 62.9 ±  7.6 62.7 ±  7.8 62.3 ±  9.2

Hoehn and Yahr score — 1.0 ~ 1.5 2.0 ~ 2.5 3.0 ~ 4.0

Total bilirubin (μ mol/L) — 9.9 ±  3.6 9.9 ±  3.7 9.9 ±  3.7

Alkaline phosphatase (U/L) — 59.9 ±  14.6 59.6 ±  14.5 59.6 ±  15.0

AST/SGOT (U/L) — 18.3 ±  5.0 18.7 ±  5.7 18.5 ±  5.2

ALT/SGPT (U/L) — 16.2 ±  10.8 16.1 ±  10.5 15.9 ±  10.2

Gamma GT (U/L) — 20.9 ±  10.7 20.7 ±  10.6 20.7 ±  10.2

Total protein (g/L) — 73.4 ±  3.9 73.3 ±  3.9 73.4 ±  4.0

Albumin (g/L) — 43.2 ±  2.5 43.2 ±  2.5 43.4 ±  2.4

Urea (mmol/L) — 5.8 ±  1.4 5.8 ±  1.4 5.8 ±  1.4

Creatinine (μ mol/L) — 70.7 ±  13.3 70.9 ±  13.3 70.4 ±  13.3

Sodium (mmol/L) — 139.3 ±  2.3 139.3 ±  2.3 139.3 ±  2.1

Potassium (mmol/L) — 4.0 ±  0.3 4.00 ±  0.3 4.0 ±  0.3

Chloride (mmol/L) — 104.8 ±  2.5 104.7 ±  2.5 104.7 ±  2.4

HCO3 (mmol/L) — 25.4 ±  2.4 25.5 ±  2.4 25.5 ±  2.4

Table 1.  Clinical information and characteristics of study subjects. Means ±  standard deviation were 
given for each variable and each group; The classification of patients with different stages of PD was 
according to Hoehn and Yahr scale rating system.

Figure 1. Variance stabilization and OPLS-DA analysis of metabolite profiles. (A) Standard deviations 
vs rank of mean intensities for urine samples. Each dot represents one peaks. Peaks are sorted by increasing 
mean intensities calculated on XCMS output. (B) Scores plot of the OPLS-DA model (left) and the 
corresponding permutation test (n =  500, right) for urine metabolic profile analyzed by using GC-MS.  
(C) Scores plot of the OPLS-DA model (left) and the corresponding permutation test (n =  500, right) for 
urine metabolic profile analyzed by using LC-MS.
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Metabolites VIPa

Early-stage PD vs. Controls Mid-stage PD vs. Controls
Advanced-stage PD vs. 

Controls

P valueb FCc AUCd P valueb FCc AUCd P valueb FCc AUCd

Acetylphenylalanine*LC 3.00 3.06E-06 3.59 0.90 1.13E-16 6.51 0.93 4.57E-10 15.29 0.97

Aminobenzoic acid*GC 2.34 2.22E-04 6.63 0.82 9.67E-16 25.43 0.92 1.33E-09 16.74 0.96

Benzeneacetic acid*GC 2.01 5.94E-04 2.22 0.79 2.39E-09 5.50 0.81 1.75E-04 5.18 0.78

Hydroxytryptophan*LC 1.96 3.17E-04 2.35 0.81 6.22E-12 3.29 0.86 1.01E-05 3.33 0.83

Coumaric acidGC 1.94 2.17E-01 3.50 0.61 2.16E-11 10.59 0.85 9.35E-04 19.32 0.75

Kynurenine*LC 1.92 5.66E-04 3.44 0.80 4.08E-12 3.91 0.86 3.67E-06 5.71 0.85

Furoylglycine*LC 1.92 2.23E-04 2.77 0.82 3.42E-08 3.91 0.79 3.56E-04 9.26 0.77

Cortisol*LC 1.86 7.47E-05 2.43 0.84 7.55E-11 2.35 0.84 1.76E-06 2.85 0.86

Hydroxyphenylacetic acid*LC 1.85 4.28E-03 1.66 0.75 3.34E-09 2.78 0.81 2.68E-06 5.85 0.86

Glycine*GC 1.76 1.62E-03 4.48 0.77 5.23E-11 6.70 0.84 1.76E-06 8.54 0.86

Trimethylamine N-oxide*LC 1.73 1.25E-02 1.54 0.71 1.70E-11 3.09 0.85 1.04E-04 3.13 0.79

Indolelacetic acid*LC 1.66 3.64E-03 2.64 0.75 4.29E-08 3.49 0.79 5.56E-02 1.88 0.65

Tiglylglycine*LC 1.63 3.08E-03 2.13 0.75 1.78E-10 2.54 0.83 7.29E-05 2.20 0.80

Tryptophan*GC 1.62 1.63E-01 2.09 0.38 1.89E-06 3.18 0.75 4.42E-02 2.77 0.65

Tyrosine*GC 1.56 1.38E-01 2.18 0.63 9.09E-08 3.64 0.78 1.86E-03 3.76 0.74

Hydroxyanthranilic acid*LC 1.54 3.92E-06 2.60 0.90 6.25E-10 2.69 0.82 1.13E-02 1.54 0.69

Aminoadipic acid*GC 1.51 1.04E-02 2.35 0.72 2.46E-09 4.63 0.81 7.01E-04 4.14 0.76

Aminobutyric acid*GC 1.47 7.15E-03 2.08 0.73 1.07E-08 2.79 0.80 4.99E-06 3.57 0.85

Hydroxybenzoic acid*LC 1.47 3.08E-03 4.30 0.75 3.08E-05 4.26 0.72 3.41E-04 6.68 0.77

Phenylacetylglycine*LC 1.45 6.62E-03 1.74 0.73 3.05E-09 3.00 0.81 7.87E-04 2.26 0.75

Xanthurenic acid*LC 1.44 3.49E-03 2.01 0.75 5.37E-08 2.25 0.78 5.09E-03 2.75 0.71

HydroxyprogesteroneLC 1.43 1.08E-04 1.83 0.83 1.10E-09 2.04 0.82 8.34E-05 2.07 0.80

Isoleucine*GC 1.4 3.25E-02 1.94 0.68 4.95E-09 2.77 0.80 5.07E-05 3.29 0.81

Pyroglutamic acid*LC 1.4 5.89E-03 1.45 0.74 8.57E-10 2.41 0.82 4.72E-04 1.96 0.77

Proline*GC 1.37 3.93E-02 1.54 0.68 8.16E-08 3.61 0.78 9.52E-05 3.21 0.80

Succinic acid*GC 1.36 6.00E-02 1.71 0.66 1.32E-08 3.04 0.80 8.01E-03 2.10 0.70

Urocanic acid*LC 1.36 8.33E-03 1.45 0.73 1.93E-09 2.37 0.81 1.14E-04 1.82 0.79

Alanine*GC 1.34 1.39E-02 1.94 0.71 6.35E-08 2.68 0.78 2.25E-04 3.22 0.78

Aminohippuric acid*LC 1.31 9.46E-04 1.60 0.78 7.80E-10 2.22 0.82 4.61E-03 1.56 0.71

Pimelic acid*GC 1.29 7.95E-02 1.62 0.65 2.21E-08 3.05 0.79 7.72E-03 2.54 0.70

Lysine*GC 1.27 2.66E-01 2.19 0.60 4.71E-05 2.62 0.71 4.30E-02 3.42 0.65

Leucine*GC 1.27 4.19E-02 1.39 0.67 3.34E-07 2.46 0.77 8.50E-04 2.82 0.75

Phenylacetylglutamine*LC 1.25 4.46E-04 1.79 0.80 2.30E-07 2.06 0.77 1.14E-04 1.88 0.79

Dihydrocortisol*LC 1.24 2.72E-03 1.55 0.76 5.84E-08 1.72 0.78 3.14E-04 1.84 0.77

Nicotinic acid*LC 1.22 1.45E-02 1.63 0.71 3.86E-11 2.34 0.84 5.09E-03 1.65 0.71

Malonylcarnitine*LC 1.18 1.78E-02 1.51 0.70 1.34E-05 2.35 0.73 1.67E-03 1.70 0.74

Phenylalanine*GC 1.16 3.36E-02 1.71 0.68 4.82E-07 2.25 0.76 6.48E-04 2.40 0.76

Imidazoleacetic acid*LC 1.15 4.33E-05 1.86 0.85 3.09E-10 1.64 0.83 5.32E-04 1.29 0.76

Hypoxanthine*LC 1.13 6.73E-02 5.44 0.66 2.56E-06 2.96 0.75 2.76E-03 1.70 0.73

21-deoxycortisol*LC 1.1 1.34E-04 1.84 0.83 3.62E-08 2.60 0.79 2.25E-04 1.54 0.78

Pyridoxic acid*LC 1.1 1.77E-03 4.30 0.77 9.43E-07 1.92 0.76 2.54E-02 2.68 0.67

Pyruvic acid*GC 1.09 1.35E-01 1.02 0.63 7.18E-06 1.95 0.73 2.09E-02 1.61 0.68

Aspartic acid*GC 1.08 9.38E-02 1.50 0.64 1.73E-06 2.59 0.75 6.75E-02 1.82 0.64

MethylindoleLC 1.06 1.27E-04 1.74 0.83 9.55E-15 1.76 0.90 1.53E-09 1.61 0.96

Continued
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Metabolites VIPa

Early-stage PD vs. Controls Mid-stage PD vs. Controls
Advanced-stage PD vs. 

Controls

P valueb FCc AUCd P valueb FCc AUCd P valueb FCc AUCd

Glutaric acid*GC 1.03 5.66E-02 1.36 0.66 4.01E-07 2.09 0.76 7.87E-04 2.33 0.75

Hexanoylglycine*LC 1.02 8.65E-02 1.78 0.65 4.27E-06 1.60 0.74 7.28E-03 1.64 0.70

Table 2.  List of altered metabolites between three stages of PD patients and normal control subjects. 
Asteriks (*) denotes metabolites are verified by reference standards. Superscript letter GC or LC indicated 
metabolites were detected with GC-MS or LC-MS platforms, respectively. aVariable importance in the 
projection (VIP) was obtained from OPLS-DA model with a threshold of 1.0. bP-value were calculated from 
Wilcoxon −  Mann U test. cFold change (FC) was obtained by comparing those metabolites in PD group to 
control group. dAUC: area under the ROC curve.

Figure 2. Z-score plot of 46 metabolites altered in PD patients relative to the mean in normal controls. 
Each point represents one metabolite in one sample, colored according to disease stage (red, normal 
controls (CON); green, early-stage PD (EPD); blue, mid-stage PD (MPD); purple, advanced-stage PD 
(APD)). The horizontal axis has been truncated at 50 standard deviations. Red asterisks (*) denote the 
statistical significances between the early-stage PD subjects and controls.

showed metabolic alterations in PD patients (z-score range: − 1.53 to 183.65) compared to normal con-
trol subjects (z-score range: − 1.53 to 7.75).

In order to clearly visualize the stage-dependent variations, mean intensities of differential metabolites 
in the control group, early-stage PD group, mid-stage PD group and advanced-stage PD groups were  
used to generate a heat map (Fig. 3A). Three major clusters were constructed based on the differential 
metabolites. The cluster I consisted of five metabolites that had the increased level in early stage PD. 18 
metabolites included in the cluster II had the increased level in middle stage PD. The heat map indicates 
that the progressive increase of mean intensity in the cluster III at the bottom (red color) should be asso-
ciated with disease stages of PD. 18 metabolites in cluster III of the heat map had statistical significance 
in the early-stage PD group compared to controls (Fig. 3). Z-score plot (Fig. 2) showed fewer alterations 
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in 18 metabolites in early-stage PD patients (z-score range: − 0.16 to 14.43) compared to mid- and 
advanced- stage PD patients (z-score range: − 0.38 to 45.07, mid-stage; − 0.05 to 87.38), but higher meta-
bolic alterations compared to normal control subjects (z-score range: − 1.53 to 7.75). These 18 metabolites 
were: acetylphenylalanine, hydroxytryptophan, kynurenine, furoylglycine, cortisol, hydroxyphenylacetic 
acid, glycine, tiglylglycine, aminobutyric acid, hydroxybenzoic acid, xanthurenic acid, hydroxyprogester-
one, isoleucine, alanine, leucine, phenylacetylglutamine, dihydrocortisol and phenylalanine. ROC curves 
of a logistic regression model were constructed by using the above-mentioned 18 metabolites. The area 
under-ROC curves (AUC) values of 0.87 indicated high predictive ability for early-stage PD patients and 
control subjects (Fig. 3B). The higher AUC values of 0.99 and 1.00 were obtained from the curves created 
from the data from mid- and advanced stage PD, respectively (Fig. 3C,D).

Discussion
This study employed GC-MS and LC-MS for comprehensive metabolomic profiling of metabolites in 
urine of 92 idiopathic PD patients and 65 normal control subjects. OPLS-DA models based on metabolic 
profiles were constructed and able to discriminate all of the PD patients from the control subjects; Levels 
of 46 metabolites were found disturbed in PD patients (Fig. 1 and Table 2). 22 differential metabolites 
were reported both in our previous LC-MS-based study and present study19, and 24 differential metab-
olites was newly identified in present study (See Supplemental Table S1). In this study, we were able to 
enlarge the metabolite profiles detected from GC-MS and LC-MS based platforms and further evaluate 
the discrimination ability of urinary metabolites in the different disease stages of PD. We identified 18 
metabolites out of the above-mentioned 46 differential metabolites that showed progressive increases of 
mean concentration correlating with the different disease stages of PD. The combination of 18 metab-
olites not only had high discrimination ability for the early-stage PD (AUC =  0.87, Fig.  3B), but also 
accurately distinguished the mid- and advanced- stages PD patients from control subjects (AUC =  0.99, 
Fig. 3C; AUC =  1.00, Fig. 3D).

These findings indicate that 18 metabolites show great promise as metabolite markers for evaluating 
PD, with related metabolic pathway variations observed in branched chain amino acid metabolism, glycine 
derivation, steroid hormone biosynthesis, tryptophan metabolism, phenylalanine metabolism. As showed 
in Table 2, increased excretion of branched-chain amino acids (leucine and isoleucine) was observed in 
the urine of idiopathic PD patients compared with that of controls (Fig.  4 and Table  2). The levels of 
leucine and isoleucine in the urine were positively correlated with the stage of PD. Branched-chain amino 
acids (BCAAs) play important roles in protein synthesis, energy production and synthesis of neurotrans-
mitter glutamate in skeletal muscles, adipose tissue and brain20,21. Several early studies have showed that 
PD patients have slightly decreased concentrations of leucine and isoleucine in their CSF and plasma. 
Deficiency of leucine and isoleucine may contribute to muscle wasting, twitching and tremors22,23.

A group of glycine and glycine derivatives was significantly altered in the urine of PD patients, includ-
ing glycine, furoylglycine, tiglylglycine and hexanoylglycine. It was reported that glycine could stimulate 
the release of dopamine and acetylcholine from tissue24,25. An increased level of glycine was also observed 
in the plasma and CSF from PD patients, which was consistent with the changes of glycine levels in urine 
of PD patients (Fig. 4 and Table 2)22. Urinary furoylglycine and tiglylglycine were significantly increased 
in patients with early-stage PD (Table 2). Furoylglycine, tiglylglycine and hexanoylglycine are products 
of the catabolism of fatty acids, which are associated with mitochondrial fatty acid beta-oxidation26.

Urinary excretion of cortisol is regarded as an indicator of increased oxidative stress, which contrib-
utes to dopamine cell degeneration in PD27. The significantly increased levels of serum cortisol were 
found in patients with advanced PD. Our data shows elevated levels of urinary cortisol, dihydrocorti-
sol, hydroxyprogesterone and 21-deoxycortisol, indicating altered steroid hormone biosynthesis (Fig. 4 
and Table  2). The increased levels of urinary cortisol, dihydrocortisol and hydroxyprogesterone were 
observed in the all stages of PD while urinary 21-deoxycortisol was only significantly altered in the mid- 
and advanced- stages PD (P <  0.05, Wilcoxon −  Mann U test, Table 2).

Differentially expressed metabolites involved in tryptophan metabolism and phenylalanine metab-
olism were observed in the current study and our previous study. The level of urinary tryptophan 
catabolites involving kynurenine, hydroxytryptophan and xanthurenic acid were significantly elevated 
in patients with early-stage PD (Fig.  4 and Table  2). Changes in levels of tryptophan catabolites were 
related to mitochondrial disturbances and impairment of brain energy metabolism involved in the devel-
opment of neurodegenerative disease28. Furthermore, an increased ratio of kynurenine to tryptophan 
was observed in PD patients. The enhanced degradation of tryptophan may be associated with the acti-
vated cell-mediated immune response typical of PD29. Altered phenylalanine, hydroxyphenylacetic acid, 
acetylphenylalanine, and phenylacetyglutamine levels indicate disturbed phenylalanine metabolism in 
early-stage PD (Fig. 4 and Table 2). Phenylalanine not only participates in protein sequence in all tissues, 
but is also a precursor for dopamine30. In the previous study, the levels of plasma phenylalanine were 
slightly increased without statistical significance22. Molina et al.31 reported cerebrospinal fluid tyrosine 
and phenylalanine levels in PD patients treated with levodopa were higher than those not treated with 
levodopa and also than controls, whereas other amino acids levels were unchanged. There were also 
previous studies showed tyrosine and phenylalanine levels in cerebrospinal fluid of patients with PD 
were unchanged32. More general and comprehensive studies of how PD drugs modify urinary amino 
acids are still need to be investigated. The increased excretion of hydroxyphenylacetic acid in the urine 
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of PD patients was consistent with the former reports of Sandler et al.33, and may be associated with 
neurological disorders in general34.

Although the existence of distinct population in PD patients with differences in signs and symptoms 
that are related to different metabolic signatures could be constructed, one limitation of this study is the 
population size of the early-stage PD samples. However, the sufficient statistical power in this study was 
achieved, because all stages of PD samples were used for statistical significance analysis. The small size of 
the early-stage PD sample is due to the fact that early warning signs and symptoms of PD patients may 
be ignored as part of normal aging in the clinical practice. Furthermore, the comprehensive evaluation 
of some factors’ effects on potential markers, such as secondary PD, drug treatment, gender, BMI, diet, 
and other CNS disorders still needs to be further investigated.

Conclusion
In summary, this study combined GC-MS and LC-MS technology to profile urinary metabolites in 
patients with early-, mid- and advanced-stage PD. From a panel of 46 differential metabolites compared 
between PD patients and control subjects, 18 metabolites emerged as a metabolic marker with diagnostic 
potential. Furthermore, investigation is warranted to explore whether genes and enzymes related to these 
metabolites could help to elucidate the biological mechanisms of how PD develops at the systems level.

Materials and Methods
Clinical samples. A total of 157 subjects, namely 92 idiopathic PD patients and 65 normal controls, 
were recruited at the Hong Kong Baptist University Chinese Medicine Specialty Centre. The study was 
approved by the Ethics Committee of the Hong Kong Baptist University’s Institutional Review Board. The 

Figure 3. Evaluation of metabolic marker for PD. (A) Heatmap shows mean intensity of differential 
metabolites in normal controls (CON), early-stage PD (EPD), mid-stage PD (MPD) and advanced-stage PD 
(APD). Shades of green to red represent increasing mean value of a metabolite. Red asterisks (*) denote the 
statistical significances between the early-stage PD and controls. (B–D) ROC curves of a logistic regression 
model for distinguishing early-stage PD (B), mid-stage PD (C), and advanced-stage PD (D) from normal 
controls using the above mentioned 18 metabolites.
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methods were carried out in accordance with the approved guidelines. Written information was provided 
and informed consent was obtained from all subjects. Patients were clinically diagnosed with idiopathic 
Parkinson’s disease according to the United Kingdom Parkinson’ s Disease Brain Bank (UKPDBB) cri-
teria35. The inclusion criteria were UKPDBB clinical diagnostic criteria, stable treatment with levodopa, 
Hoehn and Yahr scale rating from 1 to 4, and normal liver and renal function. Subjects in any one or 
more of the following categories were excluded from our analysis: atypical or secondary Parkinsonism, 
use of antidepressants, Mini-Mental State Examination (MMSE) < 24, history of psychosis, or severe 
suicidal tendency. Volunteers without neurological or psychiatric problems were recruited as normal 
controls. The clinical diagnosis and blood examination reports of all patients are provided in Table  1. 
Samples were collected from all subjects using the same protocol as follows: After overnight fasting, 
morning midstream urine was collected in a polypropylene container, then aliquoted into an Eppendorf 
tube and stored at − 80 °C for GC-MS and LC-MS analysis.

Biochemistry tests. Blood biochemical assay was performed with an automatic biochemistry ana-
lyzer (Hitachi Ltd., Tokyo, Japan). Routine blood, liver and renal function markers were assessed.

Urine sample preparation and analysis by GC-MS. Urine samples were preprocessed, extracted, 
and derivatized as previously reported36,37. Briefly, each urine sample was thawed at room temperature 
and centrifuged 5 min at 3000 g speed in an Eppendorf centrifuge. Twenty microliter of water containing 
4-chlorophenylalanine (0.5 mg/mL, internal standard) was added into 100 μ l of each sample. The solution 
was mixed with 100 μ l of sodium hydroxide (1 mol/L), 160 μ l of methanol and 40 μ l of pyridine in a 10 ml 
glass centrifuge tube. The derivative reaction was started by adding 50 μ l of methyl chloroformate (MCF) 

Figure 4. Box plot showing levels of representative metabolites in normal controls (CON), early-stage 
PD (EPD), mid-stage PD (MPD) and advanced-stage PD (APD). (A) leucine, (B) isoleucine, (C) glycine, 
(D) cortisol, (E) dihydrocortisol, (F) kynurenine, (G) phenylalanine; (H) acetylphenylalanine. Asterisk(*) 
denotes P <  0.05. A cross (+ ) denotes the mean value of the data.
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and the pooled mixture was then shaken for 30 s using a vortex. The derivative procedure was repeated 
with the addition of another 50 μ l MCF. After the two successive derivatization steps, 300 μ l of dichlo-
romethane was added and shaken for 10 s for separating the MCF derivatives. After adjusting the pH 
value with 200 μ l of sodium bicarbonate (50 mmol/L), the dichloromethane layer containing derivatives 
was isolated and dried with anhydrous sodium sulfate and subsequently subjected to GC/MS analysis.

GC-MS analysis was performed with an Agilent 6890N gas chromatograph coupled with a 5975B 
mass spectrometric detector. The column used for all analysis was a DB-5MS capillary column coated 
with 5% diphenyl cross-linked 95% dimethylpolysiloxane (30 m ×  250 um i.d., 0.25 um film thickness; 
Agilent J&W Scientific, Folsom, CA). Solvent delay was set for 5 min. The measurements were made 
with electron impact ionization (70 eV) in the full scan mode (m/z 50–650). The oven temperature was 
initially held at 50 °C for 2 min. Thereafter the temperature was raised with a gradient of 6 °C/min until 
180 °C was reached. Afterward, the temperature was raised with a gradient of 6 °C/min up to 260 °C and 
then increased to 300 °C at a rate of 20 °C/min. This temperature was held for 2 min. The injection tem-
perature and the interface temperature were both set to 280 °C. The flow through the column was held 
constant at 1 ml He/min. The temperature of quadrupole and the ion source temperature were adjusted 
to 150 °C and 230 °C, respectively. The peak abundances of MCF derivatives were used to quantify the 
concentrations of the amino and nonamino organic acids in the samples. The majority of the metabolites 
detected were identified by commercially available compound libraries: National Institute of Standards 
and Technology (NIST) and reference compounds available.

Urine sample preparation and analysis by LC-MS. Urine sample preparation for LC-MS analysis 
was performed as we previously reported19. Briefly, the urine samples were thawed at room temperature. 
100 μ l of each thawed urine sample was precipitated by 100 μ l of methanol. The mixture was then cen-
trifuged under 14000 g for 10 minutes at 4 °C, and the supernatant was used for LC-MS analysis.

Each 10 μ L aliquot of extract was injected into a Shimadzu Prominence LC system (Shimadzu) cou-
pled online to an LTQ Orbitrap Velos instrument (Thermo Fisher Scientific, MA, USA) set at 30000 
resolution (at m/z 400). Both positive and negative ion modes were used for sample analysis. The mass 
scanning range was 50–1000 m/z and the capillary temperature was 350 °C. Nitrogen sheath gas was set 
at a flow rate of 30 L/min. Nitrogen auxiliary gas was set at a flow rate of 10 L/min. Spray voltage was 
set to 4.5 kV and 3.0 kV for positive or negative ion mode, respectively. The LC-MS system was run in 
binary gradient mode. Solvent A was 0.1% (v/v) formic acid/water and solvent B was 0.1% (v/v) formic 
acid/methanol. The flow rate was 0.2 ml/min. A C-18 column (150 ×  2.1 mm, 3.5 μ m, Agilent, USA) was 
used for all analysis. The linear gradient was as follows: 5% B at 0 min, 5% B at 5 min, 100% B at 8 min, 
100% B at 9 min, 5% B at 18 min and 5% B at 20 min.

Quality control approach for metabolomic profiling. To obtain high quality data comparable to 
the metabolomic profiling (GC-MS and LC-MS), a quality assessment strategy based on the periodic 
analysis of quality control (QC) samples together with the real samples was employed in this study38. 
The QC samples consisted of mixing equal volumes of urine obtained from 20 PD patients and 20 con-
trol subjects before sample preparation as they were aliquoted for analysis. This pooled QC sample was 
prepared as described for real samples and used to estimate a “mean” profile representing all the peaks 
detected during the MS analysis. At the beginning of run, five QC samples were advisable to equilibrate 
the analytical platform and then injected at regular intervals (e.g., every ten real samples) throughout the 
analytical run in order to provide data39. The repeatability of data can be assessed and the intra-variation 
also can be corrected using QC spectra as described below.

Data analysis. MS data was analyzed following a previously published method19,40. GC-MS data was 
initially preprocessed using MetAlign software for noise filtering and baseline correction. The output 
files were further processed by using XCMS software implemented with the freely available R statistical 
language (v 2.13.1). For LC-MS data preprocessing, data pre-treatment including peak picking, peak 
grouping, retention time correction, second peak grouping and annotation of isotopes and adducts was 
performed using XCMS and CAMERA software. The XCMS output was a list of the ion intensities of 
each peak; this output was generated using retention time (RT) and the m/z data pairs as identifiers for 
each ion. To obtain consistent variables, the resulting matrix was further reduced by the 80% rule, i.e., 
by removing peaks with more than 80% missing values (those with ion intensity =  0). The analytical 
variation was corrected with the quality control-based robust LOESS signal correction (QC-RLSC) algo-
rithm39. A threshold of 30% was set for the relative standard deviation (RSD) values of metabolites in 
the QC samples. This threshold was used for the assessment of repeatability in metabolomics data sets19. 
Generalized logarithm- (gLog-) transformation was performed to stabilize the variance in datasets before 
multivariate statistical analysis41. Principle component analysis (PCA) was performed on UV-scaled data 
to visualize general clustering of QC samples together with all samples on the scores plot.

The nonparametric univariate method, Mann–Whitney–Wilcoxon test, was applied to measure the 
significance of each peak in the different groups, with results adjusted for multiple testing using false 
discovery rates (FDR) correction. On the basis of a variable importance in the projection (VIP) from the 
cross-validated orthogonal partial least squares discriminant analysis (OPLS-DA) model, peaks respon-
sible for the difference in the metabolic profile scan of groups can be selected40. The peaks identified by 
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two latent variables of OPLS-DA model were validated at a univariate level using the FDR test from the R 
statistical toolbox with the critical p-value set to not higher than 0.05. The heat map was performed using 
the “pheatmap” package for R. These clusters can be generated by using Pearson correlation as distance 
measure and complete linkage as clustering method. Z-score plots and heat maps were used for visualiz-
ing class-specific patterns of differential metabolites. Coupling the receiver operating characteristic curve 
(ROC) with its area under the curve (AUC), a widely used method to estimate the diagnostic potential 
of a classifier in clinical applications, was performed using the “pROC” package for R42.

Compound annotation for LC-MS data was performed by comparing the MS/MS spectra and reten-
tion times of commercially available standard compounds or the accurate masses of compounds obtained 
from the Human Metabolome Database (www.hmdb.ca). Compound identification from GC-MS data 
was performed by comparing the mass spectral data with NIST database with a similarity of more than 
70%. The commercially available standards were used to verify these metabolites.
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