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Abstract: The prevalence of many chronic diseases which have been associated with poor nutrition
may be reduced by the positive modulation of colonic microbiota. In this study, we assess the effects
of purple sweet potato polyphenols (PSP) in a mixed culture of swine fecal bacteria during in vitro
colonic fermentation using pig colonic digest. Jar fermenters were used to conduct a small scale
in vitro colonic fermentation experiments under the anaerobic condition for 48 h. Jar fermenters
were assigned to one of the following groups: Cellulose, cellulose + PSP, inulin, and inulin + PSP.
The present study revealed that the polyphenolic content of purple sweet potato could modulate the
colonic microbiota by differentially increasing the population of beneficial bacteria and decreasing
the pathogenic bacteria depending on cellulose and inulin. Accordingly, PSP might be a material
conducive for improving the conditions for the fermentation of partly-fermentable dietary fiber.
Besides, PSP was also responsible for the drastic reduction of putrefactive products, especially p-cresol
to a significant level. Our results suggest that PSP could alter the microbial composition depending
upon the fermentability of dietary fiber and has the potential to maintain a stable and healthy colonic
environment that will ultimately alleviate chronic diseases development and confer health benefits to
the host.
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1. Introduction

The prevalence of chronic diseases (cardiovascular diseases, heart disease, stroke, cancer, chronic
respiratory diseases, and type 2 diabetes) afflicting populations from both developed and developing
countries is particularly associated with poor nutrition and physical inactivity [1,2]. Apart from
non-dietary attributes, the dietary pattern is an important factor in the development and subsequent
deleterious effects of chronic diseases [3,4]. Although high intake of energy-dense food and physical
inactivity appear to be the primary causes associated with the development of chronic diseases, it is
now confirmed that gut microbiota plays a critical role in relation to chronic diseases development [5].

Gut microbiota contains more than 30,000 different species of bacteria and considered an organ
of its own, although dominated by Bacteroidetes and Firmicutes phyla [6,7]. Although diverse and
complex, it can be easily influenced by the diet [8]. For these reasons, an imbalance in the composition
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of a diet has been linked to inflammation and inflammatory bowel disease [9,10]. Hence, modulation
of colonic microbiota might be an ideal solution to alleviate chronic diseases development.

Inulin, for instance, is a fermentable dietary fiber and regarded as a prebiotic compound due
to its prebiotic efficacy [11]. It is indigestible in the small intestine, but fermented in the colon and
modulates the colonic microbiota by selectively increasing the population of beneficial bacteria while
inhibiting the pathogenic ones [12]. Conversely, cellulose is generally poorly fermented by the gut
microbiota, but their presence is of importance in that it reduces the time available for colonic bacterial
fermentation of non-digested materials. That is, its physicochemical characteristics and water-holding
capacity increases bulking and forces the material through the gut faster and consequently reduces the
time for bacterial fermentation [13].

Besides, polyphenols are groups of compounds found in various plants, fruits and vegetables [14],
and has come under intense instigation recently for their ameliorative attributes towards cancer,
cardiovascular diseases and antimicrobial activity [15–17]. Depending upon the chemical structure of
phenolic moiety and any attached chemical groups, polyphenols can either absorb in the small intestine
or reaches the colon for microbial attack and consequently reduces the risk of chronic diseases caused
by oxidative stress. Thus, a thorough examination of the effect of polyphenol on various diseases has
been carried out.

Purple sweet potato is one of the nutritional vegetables consumed worldwide. It has a high
total phenolics and antioxidant capacity [18,19]. Besides, it has high anthocyanin content because
of its color attributes. The predominant anthocyanins in purple sweet potato are peonidin- and
cyanidin-glucoside and they are highly acylated with caffeic, ferulic, and/or hydroxybenzoic acids [18].
Purple sweet potato polyphenols from different varieties have been studied previously for their effects
in relation to absorption, antioxidant, anti-inflammatory, anti-tumor and hypoglycemic effect [19–21].
Although these studies focused on health implications associated with polyphenols, however, there
are remarkably very few studies addressing the effects on colonic microbiota. Therefore, the aim of the
current study is to assess the effects of PSP in combination with cellulose (partly fermentable dietary
fiber) or inulin (fermentable dietary fiber) in a mixed culture of swine fecal bacteria during in vitro
colonic fermentation.

2. Materials and Methods

2.1. Preparation and Determination of Sweet Potato Polyphenols

Preparations of purple sweet potato polyphenols [PSP] extract were done according to Han et al. [22]
with slight modifications. Briefly, 50 g of the powder of purple sweet potato (Ipomoea batatas cv.
Ayamurasaki) was subjected to 70% acetone and sonicate for 20 min three times until almost all colored
pigments were extracted. The suspensions were filtered and centrifuged at 14,600 × g and 4 ◦C for
30 min. The acetone was removed by using rotary evaporator at 35 ◦C, and the pigment extract was
dissolved with distilled water and applied directly to pretreated Diaion HP-20 resin (Nippon Rensui Co.,
Tokyo, Japan) column. Three types of solutions were consecutively added to the elution column, namely,
water, 20% ethanol, and 80% acetone. The eluate contains 1.54%, 5.06%, and 93.4% PSP respectively.
Water and ethanol fractions of PSP were not used for the current study as it contained impurities like
free sugars, proteins, salts, and lower molecular weight polyphenol fractions. The pooled eluate from
80% acetone was evaporated using rotary evaporator to remove acetone at 35 ◦C, and the concentrate
was dissolved in distilled water and vacuum filtered to remove bacteria using 0.22 µm sterile disposable
filter (Nalgene rapid-flow disposable filter units with PES membrane, Thermo Fisher Scientific, Tokyo,
Japan) and stored for in vitro studies. The total polyphenol content of purple sweet potato extract was
determined according to the Folin�Ciocalteu method [23]. Briefly, 0.5 mL of the diluted sample was
mixed with 5 mL of NaCO3 and then shaken. After 5 min, 0.5 mL of Folin-Ciocalteu reagent was added
to the mixture and vigorously shaken. After 30 min, the absorbance was measured at 750 nm using
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Shimadzu 1600-UV spectrophotometer. The total phenolic content of the extract was approximately
79% as gallic acid equivalents.

2.2. Feces and In Vitro Fermentation

In vitro fermentation was conducted under an anaerobic condition with a mixture of fresh pig
feces collected from Tokachi Hills farm in Obihiro. The pig’s feces were collected directly from the anus
of three pigs and inserted into an anaerobic double zipper plastic bag containing AnaeroPack-Anaero
(Mitsubishi Gas Chemical, Tokyo, Japan) without exposure to air. The pig feces were collected on
site on the day of the experiment. Fecal slurry (10× dilution) was prepared by homogenizing equal
amounts from three pigs in a stomacher (Exnizer 400, Organo Co., Tokyo, Japan) and filtered through a
stomacher bag (Eiken Chemical Co., Ltd., Tokyo, Japan) filled with 0.85% NaCl solution and used as
inocula. The pH-controlled jar fermenters (220 mL working volume, Able & Biott, Tokyo, Japan) were
inoculated with the fecal slurry to give a final concentration of 2.0% (v/v). Prior to samples treatment,
a pre-incubation period of 12 h was scheduled to stabilize the growth of microbes in the fermenters.
After pre-incubation, one of the following samples was added to each fermenter, 3% cellulose (CEL),
3% cellulose + 0.16% PSP (CELP), 3% inulin (INU), and 3% inulin + 0.16% PSP (INUP). We used
PSP equivalent per jar based on a study by Nagata et al. [24]. A final concentration of 0.8% (w/v)
of the autoclaved basal nutrient broth (Difco, Sparks, MD, USA) was added to each fermenter. The
fermentation design was anaerobically maintained under CO2 gas at 37 ◦C for 48 h at a lower pH limit
of 5.50. At 0, 6, 12, 24 and 48 h time points, pH was recorded and aliquots were collected in 2 mL
tubes and stored at −80 ◦C for further analysis. This experimental design was reviewed and approved
by the Animal Experiment Committee of Obihiro University of Agriculture and Veterinary Medicine
(no. 18–32).

2.3. Bacterial Analysis

Bacterial populations were analyzed using selective media by plate count method and were
incubated at 37 ◦C using AnaeroPack-Anaero (Mitsubishi Gas Chemical) in a sealed anaerobic container.

2.4. DNA Extraction and 16S Ribosomal RNA (16S rRNA) Gene Sequences

Bacterial DNA was extracted from 48 h samples (non-diluted) using a modified phenol-free
repeated bead beating plus column (RBB + C) method described by Yu & Morrison [25]. After extraction,
the genomic DNA was purified via sequential digestions with RNase and proteinase K using QIAamp
columns from the QIAamp DNA tool Mini kit (QIAGEN, Valencia, CA, USA). The concentration of the
extracted DNA community was measured by Nanodrop 2000c spectrophotometer (Thermo Fisher
Scientific) and was adjusted to 5 ng/µL with Tris-EDTA buffer. V3-V4 variable regions of the 16S rRNA
gene were amplified using the following bacterial overhang adapters and universal primers in the first
stage of polymerase chain reaction (PCR), forward primer (5’-TCG TCG GCA GCG TCA GAT GTG
TAT AAG AGA CAG CCT ACG GGN GGC WGC AG-3’) and the reverse primer (5’-GTC TCG TGG
GCT CGG AGA TGT GTA TAA GAG ACA GGA TTA CHV GGG TAT CTA ATC C-3’). In the second
stage PCR, Illumina sequencing adapters and dual index barcodes were added to the amplicons using
Nextera® XT Index Kit (Illumina Inc., San Diego, CA, USA). After quantification of PCR products using
QuantusTM fluorometer (Quantifluor® dsDNA System, Promega, Madison, WI, USA), the successful
PCR products were pooled in one tube with equal volumes and subjected to paired-end sequencing by
Illumina MiSeq System (Illumina Inc.). The analysis of retrieved raw 16S rRNA gene sequences was
conducted according to Warren et al. [26] and the generated biome table was normalized using an
equal subsampling size of 6727 sequences. Calculation of distances between bacterial communities in
different samples by the weighted UniFrac distance metric and preparation of principal coordinate
analysis (PCoA) plot were conducted in QIIME [27]. Calypso version 8.84 [28] was used to visualize
α-diversity (observed species and Shannon index) and hierarchical clustering plots at the phylum level.
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2.5. Short-Chain Fatty Acid (SCFA) Analysis

Aliquots from fermenters were centrifuged (9,200 × g and 4 ◦C for 15 min) and the supernatants
were filtered with a 1 mL syringe after 0.5 N HClO4 was added to deproteinize the filtrates. The filtrates
were subjected to HPLC in a Shimadzu LC-10AD (Kyoto, Japan) equipped with an ST3-R post-column.
The analytical conditions were as follows: Column, RSpak KC-811 (8.0 mm × 300 mm, Shodex, Tokyo,
Japan), eluent and flow rate, 2 mM perchloric acid at 1.0 mL/min, column temperature, 47 ◦C, reaction
reagent and flow rate, ST3-R (10× diluted, Shodex) at 0.5 mL/min, UV detector wavelength, 430 nm.

2.6. Measurement of Putrefactive Products

The concentration of ammonium nitrogen was measured using a commercially available kit
(Wako Pure Chemical Industry, Ltd., Tokyo, Japan) according to the manufacturer’s instructions.
The concentration of p-cresol at 48 h was measured according to Ikeda et al. [29] as follows: In a tube
of a 0.1 mL sample, was added acetonitrile, anhydrous sodium sulfate, and acetonitrile-saturated
hexane. The mixture was then shaken vigorously using a mixer for 2 min and centrifuged (1500 × g,
5 min). Acetonitrile-saturated hexane was added to the middle of acetonitrile phase in a new tube,
and the mixture was shaken vigorously for 1 min and centrifuged (1500 × g, 5 min). The lower
acetonitrile phase was used for analysis after filtration with a syringe filter. A CTO-10A Shimadzu
column (150 × 4.6 mm, Shimadzu Co, Tokyo, Japan) was used in a column oven at 40 ◦C. The mobile
phase, consisting of acetonitrile/water (30:70, v/v), was flowed at a constant flow rate of 1.0 mL/min.
The UV detector wavelength was set at 280 nm.

2.7. Statistical Analysis

All data are presented as a mean and standard error (SE). The in vitro fermentation was conducted
in a block design with replicates of five. Two-way ANOVA was performed to assess the effect of fiber
(cellulose and inulin), PSP, and their interaction. Differences of p < 0.05 was taken to be statistically
significant. If the variance was observed in the main effect of interaction, Tukey’s test was used for this
comparison (p < 0.05). Analyses were performed using PASW Statistics 17.0 software (SPSS Institute,
Armonk, NY, USA).

3. Results

3.1. Gut Microbial Taxonomic Analysis

After 48 h of in vitro fermentation, we assessed the treatments on microbial composition by
analyzing the 48 h samples using 16S rRNA amplicon. The α-diversity (observed species (Figure 1a)
and Shannon index (Figure 1b)) showed significant (p < 0.05) difference for the CEL and CELP groups
compared with the INU and INUP groups. This highlights the differences in the fermentability
between the CEL and INU groups. That is low and high fermentability, respectively. In order to
evaluate the similarities and differences between groups, PCoA (β-diversity) was performed (Figure 1c).
Four groups were separated into two distinct clusters along PC1 (75.7%), highlighting the dominant
microbiota amongst the groups. Interestingly, the CELP group was distinctively separated along
the PC2 axis. Accordingly, the clustered bar-chart at phyla level (Figure 1d) shows that the INU
and INUP groups were clustered together while the CEL and CELP groups formed two distinctively
separate clusters.
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Kruskal–Wallis rank sum test. Different letters are significant at p < 0.05. 

We then determined which phyla were predominant, and found that the microbiota was 

dominated by Firmicutes and Bacteroidetes followed by Actinobacteria. Further, it was also observed 

that phylum enrichment was associated with the type of diet (Figure 2). Interestingly, we noticed that 

when PSP was combined with cellulose (CELP), it increases the relative abundance of Actinobacteria. 

Besides, the PSP depressed the abundance of phylum, Proteobacteria, and this effect was stronger in 

the CELP than in INUP group. 

Figure 1. α-diversity (observed species (a) and Shannon diversity index (b)), β-diversity (c) and
clustered bar-chart (d) comparisons of microbiota during in vitro colonic fermentation of 3% cellulose
(CEL), 3% cellulose + 0.16% PSP (CELP), 3% inulin (INU), and 3% inulin + 0.16% PSP (INUP). Observed
species (a) and Shannon diversity index (b) were compared by using the non-parametric Kruskal�Wallis
rank sum test. Different letters are significant at p < 0.05.

We then determined which phyla were predominant, and found that the microbiota was dominated
by Firmicutes and Bacteroidetes followed by Actinobacteria. Further, it was also observed that phylum
enrichment was associated with the type of diet (Figure 2). Interestingly, we noticed that when PSP
was combined with cellulose (CELP), it increases the relative abundance of Actinobacteria. Besides,
the PSP depressed the abundance of phylum, Proteobacteria, and this effect was stronger in the CELP
than in INUP group.

At the genus level, we observed that PSP partly modulated the microbial composition depending
on the fermentability of dietary fiber (Table 1). For example, the relative abundance of Prevotella
was increased when PSP was combined with inulin, but no effect was seen for the CELP group.
PSP supplementation also increases the relative abundance of Bifidobacterium in the CELP group but
decreased in the INUP groups. Likewise, some bacterial genera belonging to Firmicutes were also
modulated by PSP supplementation depending on the fermentability of dietary fiber. For instance, the
relative abundance of Clostridium in the CELP group was less compared with the CEL group, although
no significant effect can be seen between the INU and INUP groups. This effect was attributed to
the interactive effect of cellulose and PSP. Interestingly, the relative abundance of Lactobacillus was
enhanced in both CELP and INUP groups respectively due to the effect of PSP supplementation.
Similarly, PSP supplementation also increased the population of Lactobacillus in the CELP and INUP
groups (Table 1). In the relative abundance of Sharpea, PSP supplementation suppressed the abundance
in the CELP group, while the INUP group was kept at a lower level with the positive control group
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(INU). The relative abundance of Coprococcus was increased in the INUP group, and Bulleidia was
increased in both CELP and INUP groups compared with their single supplement of the CEL and INU
groups due to the attribution of PSP and the interaction effect respectively. Interestingly, the interaction
between cellulose and PSP decreased the relative abundance of Acidaminococcus in the CELP group,
without any effect, or the same as the positive control for the INUP group.Nutrients 2019, 11, x FOR PEER REVIEW 6 of 15 
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Figure 2. Relative abundances (a) and heat map (b) showing the predominant bacterial phyla of
Firmicutes, Bacteroidetes and Actinobacteria during in vitro colonic fermentation of 3% cellulose (CEL),
3% cellulose + 0.16% PSP (CELP), 3% inulin (INU), and 3% inulin + 0.16% PSP (INUP).

Table 1. Changes in bacteria populations and relative abundance of genus during in vitro
colonic fermentation.

Groups Two-Way ANOVA (p-Value)

CEL INU CELP INUP Fiber PSP Interaction

Anaerobes (log10 CFU mL−1) 8.20 ± 0.10 8.75 ± 0.10 8.70 ± 0.10 8.90 ± 0.10 0.001 0.003 0.080
Lactobacillus (log10 CFU mL−1) 6.57 ± 0.30 b 7.25 ± 0.20 ab 7.17 ± 0.10 ab 7.86 ± 0.10 a 0.002 0.005 0.048
Genus (Relative abundance, %)

Bacteroides 1.74 ± 0.30 20.2 ± 1.6 3.79 ± 1.20 16.9 ± 6.5 <0.001 0.409 0.302
Prevotella 20.0 ± 2.4 3.64 ± 2.90 20.0 ± 2.4 6.39 ± 4.70 <0.001 0.008 0.367
Bifidobacterium 0.01 ± 0.01 7.03 ± 2.90 0.71 ± 0.50 3.78 ± 1.60 0.002 0.072 0.071
Clostridium 2.18 ± 1.20 a 0.29 ± 0.10 b 1.61 ± 0.70 a 0.33 ± 0.20 b <0.001 0.108 0.018
Lactobacillus 1.27 ± 0.90 23.1 ± 2.1 6.76 ± 0.80 33.5 ± 11.0 <0.001 0.039 0.334
Sharpea 2.01 ± 1.50 0.02 ± 0.01 0.62 ± 0.60 0.02 ± 0.03 <0.001 0.354 0.356
Coprococcus 0.01 ± 0.01 0.02 ± 0.01 0.01 ± 0.01 0.04 ± 0.03 0.021 0.035 0.219
Bulleidia 0.82 ± 0.50 b 0.33 ± 0.10 b 3.42 ± 1.30 a 1.06 ± 0.10 a <0.001 <0.001 0.010
Acidaminococcus 19.8 ± 4.3 a 11.3 ± 1.8 b 14.6 ± 0.9 b 11.1 ± 2.1 b <0.001 0.034 0.044

Values are reported as mean and standard error (n = 5). Two-way ANOVA was performed to assess the effect of
fiber (cellulose and inulin), PSP, and their interaction. Differences of p < 0.05 was taken to be statistically significant.
If the variance was observed in the main effect of the interaction, Tukey’s test was used for this comparison. Mean
values designated by different letters (a–b) amongst the groups are significantly different (p < 0.05).
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At the species level, bacterial species belonging to Actinobacteria were modulated by PSP
supplementation such as Collinsella stercoris and Bifidobacterium sp. (Figure 3). When PSP was combined
with cellulose (CELP), it increases the relative abundance of Collinsella stercoris to the level of the INU
and INUP groups. It is interesting to note that Bifidobacterium sp. was more abundant when PSP was
combined with cellulose (CELP) but decreases when supplemented with inulin (INUP), the attribution
due to the interaction and the effect of PSP respectively. With regards to species belonging to Firmicutes,
Bulleidia p1630c5 and Lactobacillus sp. increases in both CELP and INUP groups, particularly due to the
interaction effect and the effect attributed to PSP. Interestingly, when PSP was combined with cellulose
(CELP), the increase in Acidaminococcus sp. was thwarted. However, when combined with inulin
(INUP), no significant changes to that of INU group but improves its effect in reducing Acidaminococcus
sp. This is particularly associated with PSP and its interaction with inulin.Nutrients 2019, 11, x FOR PEER REVIEW 8 of 15 
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Figure 3. Relative abundances at species level: Collinsella stercoris (a), Bifidobacterium sp. (b), Bulleidia
p1630c5 (c), Lactobacillus sp. (d), and Acidaminococcus sp. (e) after 48 h of treatment during in vitro
colonic fermentation of 3% cellulose (CEL), 3% cellulose + 0.16% PSP (CELP), 3% inulin (INU), and 3%
inulin + 0.16% PSP (INUP). Statistical significance amongst the groups was determined by two-way
ANOVA analysis to assess the effect of fiber (CEL and INU), PSP and their interaction. P < 0.05
was considered to be statistically significant. If the variance was observed in the main effect of the
interaction, Tukey’s test was used for this comparison (p < 0.05).
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3.2. SCFA Concentration in Fermenters

Table 2 shows the cumulative concentrations of SCFA in the fermenters during in vitro colonic
fermentation. In our study, although the INU and INUP groups were significantly higher than the CEL
and CELP groups, we observed that PSP had neither a negative nor positive impact on SCFA production.
The differences in the cumulative productions of SCFA was associated with the fermentability of
dietary fiber (CEL and INU).

Table 2. Changes in short chain fatty acid (SCFA) during in vitro fecal fermentation.

Incubation
Time (h)

CEL INU CELP INUP Two-Way ANOVA (p-Value)

µmol mL−1 Fiber PSP Interaction

Acetate

0 1.92 ± 2.00 2.00 ± 2.00 1.94 ± 0.22 1.94 ± 0.19 0.840 0.935 0.865
6 4.54 ± 0.70 9.00 ± 1.50 5.68 ± 0.60 9.36 ± 1.50 0.003 0.529 0.744

12 8.30 ± 0.70 34.2 ± 10.9 10.7 ± 0.4 31.6 ± 10.5 0.007 0.992 0.748
24 12.0 ± 1.6 126 ± 20 16.6 ± 1.0 107 ± 25 <0.001 0.672 0.482
48 32.8 ± 9.6 200 ± 18 32.9 ± 4.4 182 ± 27 <0.001 0.591 0.588

Propionate

0 0.57 ± 0.06 0.63 ± 0.07 0.54 ± 0.11 0.68 ± 0.11 0.255 0.935 0.664
6 1.97 ± 0.92 2.55 ± 1.86 1.90 ± 1.01 2.60 ± 1.77 0.660 0.992 0.967

12 3.97 ± 0.76 21.2 ± 12.5 5.10 ± 0.30 20.0 ± 13.3 0.097 0.995 0.898
24 5.56 ± 0.85 83.8 ± 26.2 6.50 ± 0.60 65.5 ± 29.1 0.003 0.663 0.629
48 13.5 ± 4.1 178 ± 12 12.6 ± 1.4 150 ± 23 <0.001 0.290 0.319

n-Butyrate

0 0.11 ± 0.05 0.08 ± 0.03 0.11 ± 0.05 0.07 ± 0.04 0.396 0.902 0.975
6 0.57 ± 0.13 1.06 ± 0.19 0.70 ± 0.13 1.00 ± 0.20 0.017 0.846 0.789

12 1.68 ± 0.27 2.25 ± 0.22 2.00 ± 0.18 1.88 ± 0.09 0.276 0.903 0.111
24 3.07 ± 0.30 3.81 ± 0.34 3.29 ± 0.11 3.43 ± 0.28 0.127 0.754 0.288
48 5.33 ± 0.92 10.2 ± 1.3 5.16 ± 0.33 9.55 ± 2.39 0.005 0.770 0.861

Total SCFA

0 2.60 ± 0.22 2.71 ± 0.30 2.58 ± 0.36 2.70 ± 0.31 0.722 0.960 0.994
6 7.10 ± 1.70 12.6 ± 3.2 8.30 ± 1.70 13.0 ± 3.2 0.062 0.760 0.887

12 14.0 ± 1.7 57.6 ± 22.8 17.8 ± 0.8 53.5 ± 24.1 0.030 0.992 0.812
24 20.7 ± 2.5 213 ± 46 26.4 ± 1.4 176 ± 53 <0.001 0.661 0.549
48 51.6 ± 14.6 388 ± 31 50.6 ± 6.1 341 ± 52 <0.001 0.447 0.465

Values of short chain fatty acids for each sample treatments during in vitro colonic fermentation of 3% cellulose
(CEL), 3% cellulose + 0.16% PSP (CELP), 3% inulin (INU) and 3% inulin + 0.16% PSP (INUP). Values are reported as
mean and standard error (n = 5). Two-way ANOVA was performed to assess the effect of fiber (cellulose and inulin),
PSP, and their interaction.

3.3. pH in Fermenters

Figure 4 shows the pH value at different time points for each treatment during fermentation.
Throughout the study, the INU and INUP groups were significantly (p < 0.05) lower than the CEL and
CELP groups, although the CELP group was significantly lower than the CEL group. The effect due to
fiber was observed throughout the study. In addition, we also observed at 12 to 48 h time points that
the reduction in the pH value was attributed to PSP. Besides, the interaction effect was also noticed at
the 24 h time point.

3.4. Putrefactive Products in Fermenters

Figure 5 shows the concentrations of p-cresol (a) and ammonia (b) amongst the groups during
in vitro colonic fermentation. At the end of 48 h, we observed that the effect associated with PSP caused
a drastic decrease in the concentration of p-cresol (p < 0.05), which was reflected in PSP combination
groups (INUP and CELP). Although the ammonia concentrations of both INU and INUP groups were
significantly (p < 0.05) lower than the CEL and CELP groups, respectively, throughout the study, PSP
did not have any significant effect. The effect was associated with dietary fiber.
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Figure 4. The pH values for each sample treatments during in vitro colonic fermentation of 3% cellulose
(CEL), 3% cellulose + 0.16% PSP (CELP), 3% inulin (INU), and 3% inulin + 0.16% PSP (INUP). Values
are reported as mean and standard error (n = 5). Two-way ANOVA was performed to assess the effect
of fiber (cellulose and inulin), PSP, and their interaction. If the variance was observed in the main effect
of the interaction, Tukey’s test was used for this comparison. Mean values at the same time point
designated by different letters (a–c) are significantly different (p < 0.05).Nutrients 2019, 11, x FOR PEER REVIEW 10 of 15 
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PSP 0.256 0.936 0.376 0.330 0.548 

Interaction 0.100 0.979 0.315 0.306 0.591 

Figure 5. p-Cresol concentration (a) and ammonia production (b) for each treatment during in vitro
colonic fermentation of 3% cellulose (CEL), 3% cellulose + 0.16% PSP (CELP), 3% inulin (INU) and 3%
inulin + 0.16% (INUP). Values are reported as mean and standard error (n = 5). Two-way ANOVA was
performed to assess the effect of fiber (cellulose and inulin), PSP, and their interaction. Differences of
p < 0.05 was taken to be statistically significant.
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4. Discussion

There are remarkably very few studies on PSP addressing its health implications on colonic
microbiota. Previously, studies have been conducted on PSP to substantiate its beneficial effects in
relation to chronic disease prevention, with an approach different from the current study [20,21]. In the
present study, we are particularly applied an in vitro approach to assess the effects of PSP in association
with a poorly fermentable dietary fiber (cellulose) and fermentable dietary fiber (inulin) in a mixed
culture of swine fecal bacteria. We applied an in vitro approach in an attempt to address that PSP
has the potential to alter gut microbiota, and by affecting the total number of beneficial bacteria, may
confer positive health benefits. We used swine feces because of the similarities in the digestive systems
and the intestinal ecology between pigs and humans [30].

In the present study, we observed that the microbial composition was affected by the treatment
types, particularly in response to the type of dietary fiber (cellulose or inulin) in terms of their
fermentability. Our genomic analysis based on 48 h samples revealed an altered microbial community.
Schloss et al. [31] stated that an estimate of community’s richness is based on observed species index,
while Shannon index is an estimate of species diversity. In our study, we observed that although
the fermentability of cellulose and inulin were responsible for the community’s richness and species
diversity, PSP supplementation also distorted the community’s richness and diversity. For example,
the increase in species richness and diversity in the CELP group was attributed to PSP. Frolinger
et al. [32] reported that preparations from grape polyphenols demonstrated a distinct alteration in
microbial diversity. Besides, our study also revealed that the CELP group was separated along the
PC2 axis, which in fact, reflects that microbial composition was affected by PSP supplementation.
This was confirmed by the fact that the CEL and CELP groups formed two distinctively separated
clusters. Consistently, Espley et al. [33] highlighted that supplementation with apple anthocyanin
affects species richness and diversity. Obviously, the fermentability of cellulose and inulin were
responsible for the distinct differences in the microbial community. Besides, we noticed that PSP
improved the fermentability condition for cellulose. This phenomenon could be associated with the
upregulation of certain bacterial enzymes by PSP, as a result of the combination effect.

Besides, the microbial composition of the phylum was also modulated by PSP depending on which
dietary fiber PSP was associated with. For instance, in the phylum of Actinobacteria, when cellulose
was combined with PSP (CELP), it increased the relative abundance but reduced when combined with
inulin (INUP). This shows that bacterial proliferation can differentially be enhanced or thwarted by PSP
depended on dietary fiber. In the genus level, our result indicated that supplementing PSP with inulin
increased the relative abundance of Prevotella. Kovatcheva-Datchary et al. [34] highlighted that the
proliferation of Prevotella is associated with a diet specific, species and/or strains of Prevotella present
and other microbe-microbe interactions. In our study, it could be related to PSP supplemented diet.
In addition, while the relative abundance of Bifidobacterium decreased in the INUP group, it increased in
the CELP group, an attribution that PSP can upregulate certain beneficial bacterial enzymes that were
suppressed in less fermentable dietary fiber. Further, most of the bacterial genus belonging to Firmicutes
were affected by PSP supplementation. Clostridium, for instance, was reduced in the CELP group due
to the interaction effect, and the reduction of Clostridium is a positive response because Clostridium is a
pathogen responsible for many gastrointestinal illnesses [35]. One of the beneficial butyrate-producing
bacteria associated with colonic health is Eubacterium. In the current study, it increased in both CELP
and INUP groups because of the interaction between dietary fiber and PSP. This could possibly due
to the use of ammonia as a nitrogen source, which was also reflected in the decrease in ammonia
production in both groups. Besides, Coprococcus can efficiently ferment dietary fiber and other complex
carbohydrates to butyrate, the metabolite responsible for the inhibition of colonic inflammation and
carcinogenesis [36]. In our study, we observed that the relative abundance increased in the INUP
group and this increase was associated with PSP. This explains that PSP can differentially increase
or decrease certain bacterial enzymes depending upon the fermentability of dietary fiber. In this
case, bacterial enzymes responsible for butyrate production might be enhanced in the INUP group.
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Interestingly, the relative abundance of Acidaminococcus was suppressed when cellulose combined
with PSP (CELP), while PSP enhanced the positive effect of inulin. The reduction in Acidaminococcus
was correlated with a higher fiber diet during fermentation. When PSP was added, it positively
affected both the combination groups. According to an in vitro study by Zhang et al. [37], anthocyanin
from purple sweet potato can increase the growth of beneficial bacteria such as Bifidobacterium and
Lactobacillus by the metabolism of polyphenols and their corresponding monomers. Consistently,
the increase in Lactobacillus population in our study was attributed to PSP and the effect due to the
interaction of fiber and PSP. Thus, the increments of the beneficial bacterial genus in our study might be
associated with the metabolism of PSP, including their corresponding monomers. We also noticed that
effect due to PSP was responsible for the proliferation and suppression of beneficial and potentially
pathogenic bacterial species respectively. For instance, the increase in Collinsella stercoris, Bulleidia
p1630c5, Bifidobacterium sp., and Lactobacillus sp., and the decrease in Acidaminococcus sp. in our study
were attributed to both PSP and the interaction effect. Molan et al. [38] stated that the blackcurrant
extract increases the counts of beneficial bacterial species while decreasing the counts of potentially
harmful species. Besides, β-glucosidase and β-glucuronidase increases and decreases respectively. This
could be at play in the current study. That is, the enzyme responsible for pathogenic bacterial growth
was suppressed by anthocyanin contained in PSP.

Epidemiological studies have shown that SCFA (acetate, propionate, and butyrate) formation
during colonic fermentation confers beneficial health properties to the host [39]. Acetate, being one
of the most common and abundant SCFA in the human colon, is associated with the suppression of
adipocyte lipolysis, and consequently mitigating against fatty liver induced deterioration in glucose
homeostasis [40]. Likewise, propionate inhibits the expression of lipopolysaccharide (LPS)-induced
cytokines, IL-6, and IL12 p40 in human mature dendritic cells [41]. Butyrate, on the other hand, is
an important colonocytes energy source, and thus, inhibits histone deacetylation in acute myeloid
leukemia [42]. In our study, PSP did not either have any positive or negative effects on SCFA production,
although the INU and INUP groups were significantly higher than the CEL and CELP groups, the
attribution due to the differences in the fermentability of cellulose and inulin. Colonic pH can be a
marker of colonic health as well. That is, the reduction in pH suppressed the proliferation of pathogenic
bacteria while increasing the number of beneficial bacterial counts [43]. In our study, we observed that
PSP was also responsible for the reduction of colonic pH from 12 to 48 h time points. One reason could
be due to the utilization of sugar moiety present in PSP by the microbiota and subsequently acidify
the colonic environment. The other possibility could be the microbial conversion of dietary fiber and
PSP might influence the production of organic acid, and consequently reduces the level of pH. Zhu et
al. [44] reported that microbial conversion of polyphenols affects other colonic pathways and processes,
such as the production of formic or lactic acid. Accordingly, Gibson and Roberfroid [45] stated that the
acidic colonic environment promotes the growth of Lactobacillus and Bifidobacterium. In this study, one
of the main reasons for the acidic colonic environment is the high fermentability of dietary fiber, inulin,
that consequently increased the production of SCFA and subsequently acidify the colonic environment.

Although pH may reduce pathogenic bacteria and promote beneficial bacteria, an increase in the
putrefactive product like ammonia or p-cresol may pose some risk factors to the host. Any studies
have indicated that high ammonia concentration in the colon may be potentially harmful to the
host. Davila et al. [46] highlighted that an increase in ammonia concentration can affect the energy
metabolism of colonic epithelial cells. In our study, PSP neither has any positive or negative effects on
ammonia production, although the INU and INUP groups were significantly lower than the CEL and
CELP groups. Conversely, the p-cresol level was suppressed by PSP. p-Cresol is an aromatic compound
produced by gut microbiota during fermentation of L-tyrosine [47]. The higher concentration is
associated with chronic diseases and liver failure [48,49]. In our study, PSP was associated with the
drastic reduction of the p-cresol level. This could be due to the molecular structure in PSP that might
suppress the production of p-cresol, or, the enzyme activation responsible for p-cresol production was
inhibited by PSP.
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5. Conclusions

The present study demonstrates that the polyphenolic content of purple sweet potato can modulate
the microbial composition by differentially proliferating and inhibiting the beneficial and pathogenic
bacterial composition respectively depending on its association with fermentable and non-fermentable
dietary fiber. Accordingly, PSP might be a material conducive for improving the conditions for the
fermentation of non-fermentable dietary fiber. Besides, the drastic reduction of putrefactive products,
especially p-cresol to a significant level was attributed to PSP. Further in vivo studies are needed
to elucidate on polyphenolic compounds responsible for alleviating the risk of developing chronic
diseases and enzymes responsible for the suppression and proliferation of bacteria. Although our study
highlighted the positive impact PSP have on colonic microbiota, however, it is difficult to conclude
with human settings because of the use of pig feces of which further research is warranted.
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