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Abstract

Sigma metrics have become a useful tool for all parts of the quality control (QC) design process. Through the allowable total error model of labora-
tory testing, analytical assay performance can be judged on the Six Sigma scale. This not only allows benchmarking the performance of methods 
and instruments on a universal scale, it allows laboratories to easily visualize performance, optimize the QC rules and numbers of control measure-
ments they implement, and now even schedule the frequency of running those controls. 
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Review

The background behind the adoption of 
the Sigma metrics

We have emerged from a period of debate over 
the fundamental approach to analytical quality in 
laboratory testing. When the 2014 Strategic Con-
ference on Quality Specifications convened in Mi-
lan, one of the provocative assignments was to de-
termine whether total error should be improved, 
or even if it should continue to exist (1).

What followed was a prolonged discussion, heat-
ed at times, both in committee and in the litera-
ture, about the utility, practicality, and metrologi-
cal correctness of measurement uncertainty (MU) 
vs. total analytical error (TEa) (2-6). That these 
models were placed in opposition to one another 
was neither inevitable nor necessary – the two 
models each have their strengths and weaknesses 
and can be of use at different points in the devel-
opment, manufacturing and ultimate implemen-
tation and use of an analytical method (7).

After two years of back and forth, what emerged 
was neither a winner, nor a loser, but a détente. The 
published report of the Task and Finish Group on 
“Total error” (TFG-TE), published in 2017, repre-
sents an important compromise (8). The report 
notes the weaknesses of the current total error 
(TE) approach, as well as shortcomings of the bio-
logical variation database and the imperfect calcu-
lation of allowable total error based on biological 
variation data. It suggests that, in the future, meas-
urement uncertainty will emerge as the dominant 
model for laboratory testing, while conceding that 
in the near term, laboratories will continue to ap-
ply allowable analytical TE.

This compromise coincides with an equally impor-
tant moment: the rest of the world’s laboratories 
are voting with their feet, their wallets, and their 
routine operating protocols to continue to imple-
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ment and even expand the total error approach 
and the additional technique of calculating Sigma 
metrics based on those performance specifica-
tions (9).

The debate between TE and MU serves as the prel-
ude to the discussion of Six Sigma. Six Sigma, and 
Sigma metrics, continue to be applied by more 
and more laboratories, external quality assurance 
(EQA) programs, software vendors, and manufac-
turers, not because there is any regulatory or ac-
creditation mandate, but simply because it is use-
ful. When laboratories find a tool that helps them, 
they use it more. Therefore, it is with Sigma met-
rics.

Individual laboratories are not the only imple-
menters of Sigma metrics. Most significantly, the 
International Federation of Clinical Chemistry and 
Laboratory Medicine (IFCC) working group on 
HbA1c standardization recommends that labora-
tories selecting a new HbA1c method should use 
the Sigma metrics to assess and judge the quality 
of that method (10). That the official task force on 
one of the world’s most standardized and utilized 
methods found Sigma metrics to be a meaningful 
technique for assessment and method selection 
speaks volumes.

The shortest, most succinct summary of 
Six Sigma

Six Sigma is about defects, that is to say, errors, or, 
if we translate into International Organization for 
Standardization (ISO) terminology, non-conform-
ances (11). For the laboratory, we are more com-
fortable thinking about false positives, false nega-
tives, and outliers as the manifestations of our er-
rors. Six Sigma is a technique to quantify – and 
then minimize – those defects.

Six Sigma started decades ago in Motorola and 
General Electric and was adopted whole-hearted-
ly in many industries, particularly Japanese manu-
facturing (12). The terminology and amusing name 
conventions (green belt, black belt, master black 
belt, champion, etc.) all derive from extensive ex-
perience and success realized in other fields. In 
medical laboratories, the first paper to express our 

processes on the Sigma scale was only published 
in the year 2000 (13). Thus, the entire field of Six 
Sigma applications within the medical laboratory 
is less than two decades old.

The “Sigma” in Six Sigma refers to the benchmark-
ing scale upon which all process defects are 
judged. The “Six” in Six Sigma refers to the ideal 
ultimate goal of all processes that six standard de-
viations can fit within the defined tolerance limits 
of a process, and that anything beyond those tol-
erance specifications is considered a defect. De-
fects can be counted or estimated and then con-
verted to a defects-per-million (DPM) ratio (Table 
1). This DPM ratio then converts into a Sigma met-
rics. The eponymous Six Sigma represents, on a 
short-term scale, just 3.4 defects per million op-
portunities, that is, per million times of running a 
process. Thus, a Six Sigma analytical method is 
one that is expected to generate less than four er-
roneous results per million test reports. It is a laud-
able goal indeed, one that is at least an order of 
magnitude better than most common laboratory 

DPM Short term 
Sigma

Long term 
Sigma Yield

3.4 6 4.5 99.99966

32 5.5 4 99.9968

233 5 3.5 99.98

1350 4.5 3 99.87

6210 4 2.5 99.4

22,750 3.5 2 97.7

66,807 3 1.5 93.3

158,655 2.5 1 84.1

308,538 2 0.5 69.1

500,000 1.5 0 50.0

691,462 1 -0.5 30.9

841,345 0.5 -1 15.9

933,193 0 -1.5 6.7

Short-term Sigma is the most commonly-used and cited 
metric, and it assumes there is a 1.5 SD shift that occurs as the 
“natural” variation in a process over the long-term operation 
of a process. The long-term Sigma metrics does not assume 
any 1.5 SD shift.

Table 1. Defects-per-million and the corresponding Sigma 
metrics
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expectations of quality. However, as laboratories 
have become to resemble high volume automat-
ed factories, they are producing millions of results, 
and the same standards of manufacturing need to 
apply to the standards of medical laboratory test-
ing (14).

The unique challenge of laboratory 
testing for Six Sigma – why we calculate 
rather than count a Sigma metrics for 
analytical methods

When a laboratory test result is generated, there is 
a number (or a qualitative assessment) that feels 
concrete, precise, and may include many decimal 
places. However, how do we know that number is 
in fact the correct, true value? In the absence of 
any other information, a single test result can only 
be assumed to be correct; to verify its truth, repli-
cates and other comparisons against reference 
methods need to be done. If we do not perform 
this additional effort on each result, we must as-
sume that the test result is correct based on what 
we know about the state of the quality control 
(QC), calibration and instrument performance (15).

Contrast that challenge with the determination of 
turn-around-times (TAT), which is an indicator ob-
sessively tracked by most laboratories. It is quite 
simple to know whether a test result is beyond the 
acceptable TAT. You have the desired TAT, you have 
the actual TAT, and you simply count the number 
of times the actual TATs exceed that desired TAT. If 
you know what percent of your test results fail 
your TAT, you can convert that into a DPM, which 
in turn becomes a Sigma metric (14).

To understand the analytical method performance 
on the Sigma metrics scale, we do not have an 
easy comparative value against which we judge 
the test result. So instead, we leverage the data we 
are already collecting: imprecision (expressed as 
coefficient of variation, CV) and trueness (ex-
pressed as bias). This is data we routinely calculate 
through the use of internal quality controls, in the 
case of imprecision, and through either EQA or 
peer group programs or, rarely, through direct com-
parison to reference materials or methods (16). 

While we already possess the data we need to cal-
culate a Sigma metric, the missing piece for many 
laboratories is the clinical or analytical context. In 
order to know how well a method performs, we 
need to set, in industrial terms, tolerance limits: a 
process that exceeds its tolerance limits is generat-
ing a defect. In laboratory parlance, we need 
something more familiar, an allowable (analytical) 
total error (most commonly referred to as a TEa). 
When the difference between a result and its cor-
responding true value exceeds the TEa, that is an 
outlier, an erroneous result. It is a medically signifi-
cant difference from the true value of what is hap-
pening with that patient (17).

Once we have the TEa, we have our Sigma metric 
(SM) equation: SM = (TEa% – bias%) / CV. This form 
of the equation assumes all variables will be ex-
pressed in percentages, and the bias will be an ab-
solute percentage (the presence of any bias always 
shrinks the allowable error, never enlarges it). An 
equation can also be constructed that uses all vari-
ables in their actual units (SM = (TEa – bias) / SD) 
but the percentage version of the equation is most 
popular.

Figure 1. The Sigma metrics equation and a graphic descrip-
tion of the workings of the equation. TEa is the allowable to-
tal error (in industrial terms, tolerance limits), beyond which all 
results are considered defects. The bias observed shifts distri-
bution of test results away from the “true value” of the patient. 
The observed coefficient of variation (CV) shows the spread of 
the distribution of test results. The combination of bias and CV 
informs where the distribution of results will occur, allowing the 
laboratory to estimate how many defects are produced per mil-
lion results. As noted earlier, the “six” in Six Sigma comes from 
the designation that if six standard deviations of the process 
can be contained within the tolerance specifications, then less 
than four defects per million results will be generated.
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The graphic in Figure 1 is a simple representation 
of how the Sigma metric equation works. The 
“true value” that represents the patient’s real clini-
cal status is in the centre. As we run tests on this 
patient, we never get all of the results to be exact-
ly the same, they take on the form of a normalized 
distribution around that value instead. The TEa are 
the tolerance limits on either side. If we can 
squeeze six standard deviations of our analytical 
method distribution within that TEa, in the ab-
sence of any bias, we will achieve that “Six Sigma” 
goal and expect to generate fewer than four clini-
cal defective results. When bias exists, it shifts our 
distribution away from the patient’s true value. On 
the other hand, when we have a larger and larger 
imprecision, it spreads our distribution wider and 
wider. The combined impact of imprecision and 
bias may cause the thicker parts of the tails of our 
distribution to exceed the TEa, which means we 
are generating more defective test results (18).

What is the right goal for analytical 
methods?

One of the unresolved issues for Sigma metrics, total 
allowable error, and even measurement uncertainty, 
is identifying the most appropriate performance 
specifications, goals or tolerance limits. As the litera-
ture has long noted, the goals of different regulatory 
systems, countries, and EQA programs are not the 
same (19). If you observe Table 2, and examine chlo-
ride, for instance, the Clinical Laboratory Improve-
ment Amendments (CLIA) and College of American 
Pathologists (CAP) Survey goal is 5%. In Australia 

that goal (through the Royal College of Pathologists 
of Australasia, RCPA) is 3 mmol/L if the concentra-
tions is less than 100 mmol/L, and 3% if the concen-
tration is above 100 mmol/L; while the guidelines of 
the German medical association for the quality as-
surance of laboratory medical examinations (RiliBÄK) 
interlaboratory comparison goal is 8%. Does this 
mean clinical treatment is more than twice as good 
in Australia or nearly three times worse in Germany? 
Unfortunately, all these discrepancies mean right 
now is that there is no standardization nor harmoni-
zation of the existing resources for TEa goals. As Gra-
ham Jones and the European Federation of Labora-
tory Medicine (EFLM) Task and Finish Group on 
Specifications for External Quality Assurance 
Schemes (TFG-APSEQA) have noted, some EQA pro-
grams are “educational” without any penalty, so 
they tend to have tighter goals, while other regula-
tory programs have severe financial punishments 
for laboratories that fail to achieve these TEa goals, 
and thus their TEa’s are wider and more permissive 
(20,21). It should be noted that these differences 
have always existed, since the beginning of labora-
tory medicine and the founding of EQA surveys. In 
1999, a “Stockholm Consensus” emerged that 
ranked the different types of TEa goals into five dis-
tinct levels of desirability, as a way to nudge labora-
tories toward using better performance specifica-
tions (22). However, as more and more laboratories 
implement Sigma metrics, it has become clear that 
the differences between TEa goals have significant 
impact on laboratory operational routines.

This of course means there is a potential for chaos 
when a Sigma metric is calculated, since different 

Analyte RCPA-QAP “Ricos Goal”, desirable TEa RiliBÄK CLIA

Sodium 3 mmol/L ≤ 150 mmol/L; 2% > 150 mmol/L 0.9% 5% 4 mmol/L

Potassium ± 0.2 mmol/L ≤ 4.0 mmol/L; 5% > 4.0 mmol/L 6% 8% 0.5 mmol/L

Chloride 3 mmol/L ≤ 100 mmol/L; 3% > 100 mmol/L 1.5% 8% 5%

Calcium 0.1 mmol/L ≤ 2.5 mmol/L; 4% > 2.5 mmol/L 2.4% 10% 0.25 mmol/L

Cholesterol 0.3 ≤ 5.00 mmol/L; 6% > 5.00 mmol/L 8.5% 13% 10%

Triglycerides 0.20 ≤ 1.60 mmol/L; 12% > 1.60 mmol/L 28% 16% 25%

RCPA-QAP - The Royal College of Pathologists of Australasia quality assurance programs, Australia. TEa – total allowable error 
from biologic variation. RiliBÄK - guidelines of the German medical association for the quality assurance of laboratory medical 
examinations.  CLIA - Clinical Laboratory Improvement Amendments, USA. Adapted from (19). 

Table 2. Selected examples of variability in performance specifications from different sources
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laboratories and different countries may impose 
different goals for TEa (17). The Sigma metrics of a 
method judged in Australia may be far harsher 
than the judgment rendered by the use of CAP 
survey and US CLIA goals. Jones et al. noted that 
there is no short-term solution on the horizon to 
these discrepancies – the incentives for each coun-
try and EQA survey to have a distinct and proprie-
tary set of goals outweighs the common good of 
standardizing to a global set of goals (20). Not only 
would it be difficult to get so many organizations 
to agree on a common set of TEa goals, but also 
that consensus would likely contribute to the end 
of many small EQA programs and organizations. 
The Milan Consensus made its most distinct and 
well-recognized contribution to the discussion of 
performance specifications to supplant the 1999 
Stockholm Consensus with the 2015 Milan Con-
sensus. This did not select “one and only one” set 
of performance specifications – some analytes are 
better suited to one model over another; indeed it 
stated that there is unlikely ever to be a single 
model of TEa goals that will address all methods 
and clinical uses (23). They did condense the 5-lev-
el Stockholm hierarchy into three more compact 
levels or models:

1.	 Clinical use

2.	 Biological variation

3.	 State of the Art.

While the consensus stated that there was no 
ranking in this hierarchy, despite the numbering, it 
is clear the heads of the Milan committee felt that 
setting performance specifications based on the 
actual clinical use of the test results remains the 
gold standard. It is, however, the rarest type of per-
formance specification – often only available for a 
few analytes with very specific narrow clinical uses. 
Thus, HbA1c, with its decades-long standardization 
effort by National Glycohemoglobin Standardiza-
tion Program (NGSP) and CAP, enforced by tighten-
ing TEa goals, have really forced the diagnostic in-
dustry to improve methods to achieve a perfor-
mance specification that supports an accurate diag-
nostic of diabetes at 6.5% HbA1c. Nevertheless, 
there are not many other analytes where these 
goals have been so well-stated and supported.

That leaves the second model, performance speci-
fications based on the knowledge of within-sub-
ject biological variation. Starting in 1999, these TEa 
goals were continuously assessed, updated, and 
expanded by a group of EQA scientists in Spain 
lead by (now-retired) Dr. Carmen Ricos (for many 
laboratories around the world, these TEa goals are 
known as “Ricos goals”) (24). This burgeoning da-
tabase reached more than 350 analytes at its peak 
in 2014, but the Milan Consensus noted many 
structural and methodological weaknesses (25-
27). Committees are now in the process of restat-
ing these Ricos goals based on more rigorous, re-
cent research, with all results thus far generating 
smaller TEa goals than the original database 
(28,29). One of the dangers of these new goals is 
that they may generate TEa goals so small that no 
method on the market may be able to achieve the 
targets. Indeed, the Milan Consensus acknowl-
edged this and one of the ironic outcomes of the 
restating of these Ricos goals may be that they be-
come so small as to be practically irrelevant to lab-
oratory practice. If TEa goals are shrunk so minute 
such that no manufacturer can provide a method 
that achieves the desired performance, those 
goals are no longer practical tools, but instead are, 
at best, future guidelines for the next generation 
of research and design. Recently the EFLM task 
and finish group on biological variation published 
an appraisal checklist to enable standardized as-
sessment of existing and future publications of bi-
ological variation data. The checklist identifies key 
elements to be reported in studies to enable safe, 
accurate and effective transport of biological vari-
ation data sets across healthcare systems. The 
checklist is mapped to the domains of a minimum 
data set required to enable this process (30).

Which leads us to the State of the Art, a category 
the Milan Consensus now defines to include all 
current performance goals set by CLIA, CAP, 
RiliBÄK, RCPA and any other existing EQA surveys 
(31-34). While these are the least evidence-based 
goals in terms of clinical need, they still represent 
the vast majority of goals that are implemented 
and used throughout the world. Therefore, while 
the Milan Consensus condensed the hierarchy, it 
specifically granted laboratories the freedom to 
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select the most practical goals when necessary. 
This of course means the potential for chaos in 
performance specifications will continue (35). 
However, as new tests emerge, as new clinical uses 
for existing tests change and evolve, so too will 
our TEa goals. We should not expect that we will 
have a definitive answer in perpetuity for any test 
– we will always have something to discuss.

For Sigma metrics, this means that laboratories re-
viewing the results of these calculations must 
carefully consider the TEa goals applied. Many of 
the studies published tend to apply either CLIA or 
the “old Ricos” goals when calculating Sigma met-
rics. Our own most recent efforts through Sigma 
Verification of Performance is to impose a global 
set of TEa goals – derived from all performance 
specification resources - on the laboratories seek-
ing a third-party confirmation of their perfor-
mance. So even if our performance specifications 
will never be static over the long run, in the short 
term we can achieve a consensus of sorts, simply 
by stepping outside the silos of national regula-
tions and EQA programs, and through an ap-
proach pioneered by Ricos and several Spanish 
EQA programs working cooperatively, determine a 
minimum global consensus for TEa (36).

Beyond calculations: Visualizing world 
class quality

Calculating the Sigma metrics, while challenging, 
can be accomplished. Nevertheless, if you ask lab-
oratories whether they want one more statistic to 
calculate and add to their files, you will not be sur-
prised if the initial response is a pleading for sim-
plicity, not more numbers.

There is a visual tool that converts all the Sigma 
metrics into a simple intuitive dashboard. It is 
called the Method Decision Chart and it takes all 
the information in the equation and renders it into 
a graphic format (37). Often called a Sigma “Bull’s-
Eye” graph, this chart arranges the imprecision 
along the x-axis and bias along the y-axis, thus the 
performance data from an analytical method 
transforms into graph coordinates (Figure 2). Su-
perimposed on this graph are the Sigma metrics 
zones, with world class quality (Six Sigma), the 

zone closest to the graph’s origin, followed by a 
Five Sigma zone (Excellent), Four Sigma zone 
(Good), Three Sigma zone (Marginal), Two Sigma 
zone (Poor), and the rest of the graph, for Sigma 
metrics performance below Two Sigma, is labelled 
unacceptable. As methods get closer to the bull’s-
eye, that means their Sigma metrics are higher and 
fewer defects are being generated. As methods 
perform further away from the bull’s-eye, they are 
generating more defects, adding more noise to 
the patient’s signal, and ultimately could be con-
founding and confusing the clinicians, not helping 
to confirm a diagnosis.

These Sigma Method Decision Charts can be gen-
erated for any individual allowable total error, or a 
Normalized chart can be generated, which allows 
all tests to be adjusted to display on a single graph. 
This dashboard approach allows a laboratory to 
get a succinct comprehensive view of an entire in-

Figure 2. Example of a Sigma Method Decision Chart. Inaccu-
racy (bias, trueness) is the y-axis. Imprecision (CV) is the x-axis. 
This is a normalized Method Decision chart, which means mul-
tiple analytes with different TEa’s can be displayed on a single 
chart. This particular chart plots the performance of 32 bio-
chemistry methods from the laboratory of Bumrungrad Inter-
national Hospital in Bangkok, Thailand (38,39). The majority of 
plotted performance falls in the World Class or Six Sigma zone, 
with 3 assays in the Excellent or Five Sigma zone, and 2 assays 
in the Good or Four Sigma zone. There are no tests that perfor-
mance at 3, 2 or less than 2 Sigma on this chart.
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strument’s performance, if they’re willing to plot 
all the data.

Beyond the verdict of Six Sigma: 
Implications, implementation, and 
optimization

It is fine to know the Sigma metrics of your meth-
od. Perhaps it can identify that you have excellent 
methods, or even world class methods. Perhaps 
you can pre-emptively assess and dispense with 
the consideration of purchasing sup-par methods 
for your next instrument. However, can it change 
your life – and your laboratory life – right now?

If you are willing to bring to bear an additional set 
of tools, the answer is emphatically yes. Through 
the assessment of Sigma metrics, you can specify 
the number of control rules, the number of control 
materials and most recently, even the necessary 
frequency of running those controls. Sigma met-
rics are not just for ascertaining the quality of your 
method; they are the gateway to designing a cus-
tomized, optimized QC strategy for the method.

In order to understand the benefits of this bespoke 
QC design, we need to back up and review the cur-
rent common QC practices of laboratories world-
wide. A global survey from 2017 noted that the 
most common QC rules and practices remain root-
ed in the past: control limits set at two standard de-
viations, or the complete multirules applied on all 
tests throughout the laboratory; frequent repeating 
(and repeating and repeating) of controls, frequent 
recalibrations, disastrous self-delusions about where 
to set control limits (blindingly wide), and worse, 
sometimes the release of patient results even in the 
face of an out-of-control alert, a complete disregard 
for the quality control process itself (40).

Intuitively, laboratories realize that the best meth-
ods should be the most reliable, and therefore re-
quire less effort to monitor and control. Converse-
ly, the worse methods will need the most rules, 
more controls, and need to have that QC run more 
often. The Sigma metric QC design tools help 
specify just how much QC effort is required based 
on the performance of the method and the quality 
required to the needs of the patient (TEa).

The first graphic tool is called the OPSpecs chart, 
or chart of operating specifications (41). This tool 
details how many rules and controls are needed to 
provide the necessary error detection (with a mini-
mum of false rejection) for the method. It is a 
graph very similar to the Six Sigma Method Deci-
sion chart, in that the imprecision forms the x-axis, 
and the bias forms the y-axis (Figure 3). Again, per-
formance of a method through its CV and bias 
form the coordinates to plot on the chart. Where 
the OPSpecs chart differs is that the lines displayed 
on the chart are no longer Sigma metrics zones, 
they represent the performance of different QC 
procedures.

Each line in the OPSpecs chart is like one of the 
rings of the bull’s-eye. A method falling “within 
that ring of the target” can safely use the QC pro-
cedure and gain an appropriate level of analytical 

Figure 3. A Normalized OPSpecs chart. Inaccuracy (bias, true-
ness) is the y-axis. Imprecision (CV) is the x-axis. This is a normal-
ized chart which allows multiple tests to be displayed on one 
chart, in this case 23 assays from an anonymous US hospital 
core laboratory. The diagonal lines displayed in the chart rep-
resent (in order from right to left) different quality control (QC) 
procedures listed in the key at right (from top to bottom). In 
the key, Pfr stands for probability of false rejection, N stands for 
the number of control measurements made, and R stands for 
the number of runs over which the rules are applied. As perfor-
mance is closer to the “bull’s-eye”, the plotted point is “within 
the ring” of that QC procedure, which means that that particu-
lar rule combination will provide adequate error detection and 
appropriate analytical quality assurance. Note that for three of 
these analytes, performance is very poor and will require not 
only the full multirule QC procedure (all the “Westgard Rules”) 
but will require many more controls to be run. AQA (SE) - ana-
lytical quality assurance for systematic error. TEa - total analyti-
cal error.
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quality assurance. Conversely, if the operating 
point of method falls “outside that ring” of a QC 
procedure, then the use of that QC procedure will 
not provide adequate error detection or quality 
assurance. Thus, the principle of the Method Deci-
sion chart is the same for the OPSpecs chart. The 
closer the operating point of a method is to the 
graph’s origin, or bull’s-eye, the easier the QC ef-
fort is. A method that actually “hits the bull’s-eye” 
actually does not need to use any “Westgard 
Rules” at all – they can safely use wider control lim-
its set at 3 SD or perhaps even wider, and a bare 
minimum number of controls. As Sigma metrics 
performance decreases, however, more and more 
rules are needed, tighter and tighter limits, and 
more and more controls. For tests with very low 
Sigma metrics, even the full “Westgard Rules” and 
a tripling of controls may not be enough to ade-
quately monitor the method.

Beyond rules and controls: Sigma metrics 
can define run length and QC frequency

Up until about a decade ago, QC frequency was 
entirely determined by rule of thumb. Or, if you 
will, it was planet-based QC frequency: once a day. 
Sometimes it was labour-based QC frequency: 
once a shift. But it was certainly not patient-based 
QC frequency, driven by the performance of the 
method and the quality required for the appropri-
ate use and interpretation of the test results (42).

In 2008, Dr. Curt Parvin introduced a model that 
created the foundation necessary to create a pa-
tient-based QC frequency (43). It was not simple, 
nor was it well-understood when first published, 
and it remained obscure and mostly impractical 
for ten years. However, starting in 2016, additional 
scholarly work translated Parvin’s model into 
something practical for today’s busy laboratories. 
It began with Yago and Alcover, who translated 
the intricate equations of Parvin’s model into 
curves onto a nomogram (44). This meant that the 
decision on QC frequency no longer had to be cal-
culated and understood mathematically, but could 
instead be simply interpreted graphically.

Through a series of papers in 2017 and 2018, Bayat, 
Westgard and Westgard extended these graphic 

simplifications to create more practical QC fre-
quency nomograms (45-48). Now, instead of cal-
culating esoteric variables such as Max(ENuf), lab-
oratories can simply observe a graph that com-
pares their Sigma metrics on the x-axis with the 
number of patient samples that can be run be-
tween controls on the y-axis (Figure 4). The Sigma 
metric directly determines how often you run QC, 

Figure 4. Six Sigma QC Frequency Nomogram. The Sigma met-
ric of the method is the x-axis. The number of patient speci-
mens that can be run in between controls is along the y-axis. 
The different lines in the graph represent the QC procedures 
that may be chosen by the laboratory. MR6, for example, repre-
sents a full implementation of “Westgard Rules” using 6 control 
measurements (either 6 controls run at once, or 3 controls run 
with 2 measurements being made on each control). SRN2 rep-
resents a set of single wide control limits (3 SD) with 2 control 
measurements. MR2 represents a standard set of “Westgard 
Rules” (multirule QC procedure) with 4 control measurements. 
MR4 represents a standard set of “Westgard Rules” (multirule 
QC procedure) with 2 control measurements. SR4 represents a 
set of single wide control limits (3 SD) with 4 control measure-
ments. In order to determine QC frequency, a laboratory should 
first determine the method’s Sigma metric, and then find the 
appropriate QC design, then find the intersection of the Sig-
ma metric and that QC procedure line. If a laboratory is lucky 
enough to have a Six Sigma method, for instance, it is clear that 
any QC procedure will do and that at least 500 patients, and 
possibly many more, can be run in between QC events without 
raising the risk of reporting a single erroneous patient result.

Sigma metrics run size nomogram
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and for Six Sigma methods, potentially this QC fre-
quency can be reduced to 1 control per 1000, 
2000, or even higher numbers of patient samples, 
or they can use extended QC limits such as 4s or 
wider. For Three Sigma methods and lower, how-
ever, QC frequency must be greatly increased, to 
something closer to one control per 100 or per 50 
patient samples. Methods below 3 and 2 Sigma 
would theoretically require almost constant run-
ning of controls, a frequency so impractical as to 
guarantee the dismissal of any employee daring to 
implement it.

QC inaction vs. Six Sigma QC in action

As this review shows, Sigma metrics confirms what 
we intuitively understand: a poor method requires 
so many rules, so many controls, with controls that 
must be run so often, it is not practically possible 
to adequately monitor the method – it must be 
improved, redesigned, or replaced. It also confirms 
what we hoped was true: a world class method re-
quires far fewer rules, controls and running of 
those controls than we may currently be imple-
menting.

Laboratories have been implementing these tools 
for years now, and the results are encouraging. 
Laboratories with high Sigma metrics perfor-
mance have been able to reduce their use of con-
trols, reduce the sheer number and percentage of 
outliers, reduce their trouble-shooting, reduce 
their recalibrations, reduce even their consump-
tion of reagent and materials (49-52). In addition to 
proven cost reductions through the implementa-
tion of Six Sigma techniques, there are important 
reductions in the labour effort of staff: fewer hours 
spent chasing down false rejections, fewer hours 
spent in unnecessary trouble-shooting, fewer 
hours on the phone with technical support.

The soft cost reductions of saved hours and im-
proved morale are less easily observed on the 
budget ledger, but probably of more significant 
impact to the working culture and healthy morale 
of the laboratory.

Contrast these potential impacts with the possible 
impact of an implementation of MU. No common-

ly accepted goals for allowable uncertainty exist – 
most often when MU is calculated, it is compared 
against Ricos goals, which is a wholly unrelated 
quantity (39). No relationship between the use of 
QC rules, number of controls, or required frequen-
cy of QC and measurement uncertainty exist. If 
laboratories were to stop using Sigma metrics and 
TEa and confine themselves only to the calculation 
of MU, what would they do for QC, and numbers 
of control, and frequency of QC? That would be 
completely… uncertain.

A footnote on the missing utility of 
measurement uncertainty

As laboratories around the world make progress 
with Sigma metrics, at the same time they are pay-
ing the merest lip service to MU. Without doubt, 
when coerced by inspectors and ISO require-
ments, laboratories calculate MU, but most will 
only calculate the statistic, record it in a file, which 
is displayed upon request to an inspector, and 
then promptly ignored once the inspection is fin-
ished (9).

As stated earlier, there is ample room for coexist-
ence. Measurement uncertainty is particularly 
helpful at the manufacturing stage, where the di-
agnostic industry has the power and incentive to 
monitor, modify and minimize uncertainty. How-
ever, once the analytical method has been intro-
duced to the marketplace, the modern nature of 
laboratory operations mean that technicians have 
little recourse to fixing unacceptable uncertain-
ties. If they are “stuck” with a box that has too 
much MU, there are few ways to fix the problem 
other than replacing the box with something bet-
ter. Again, this shows how MU can be most useful 
at the manufacturing level – by preventing the di-
agnostic industry from producing instruments 
that will be clinically useless once they reach the 
market.

Conclusion: Don’t remain MUTE, move 
forward with MU and TE

The Milan Consensus supports the continued use 
and implementation of TEa and Sigma metrics. 
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Rather than mire ourselves in further debate, let us 
make progress. Using total error, laboratories can 
calculate their Sigma metrics, and use tools like 
the Method Decision Chart, OPSpecs chart, and 
QC Frequency Nomogram, to implement changes 
in their consumption of control materials, reagent, 
and calibrators, in the interpretation of control 

rules, and in the frequency of running controls. All 
of these actions, when world class quality meth-
ods are in place, drive lower costs and less effort in 
the laboratory. 
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