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Decoding spatiotemporal features 
of emotional body language 
in social interactions
Johannes Keck  1,2*, Adam Zabicki  1, Julia Bachmann  1, Jörn Munzert1,2 & Britta Krüger1

How are emotions perceived through human body language in social interactions? This study used 
point-light displays of human interactions portraying emotional scenes (1) to examine quantitative 
intrapersonal kinematic and postural body configurations, (2) to calculate interaction-specific 
parameters of these interactions, and (3) to analyze how far both contribute to the perception of an 
emotion category (i.e. anger, sadness, happiness or affection) as well as to the perception of emotional 
valence. By using ANOVA and classification trees, we investigated emotion-specific differences in 
the calculated parameters. We further applied representational similarity analyses to determine how 
perceptual ratings relate to intra- and interpersonal features of the observed scene. Results showed 
that within an interaction, intrapersonal kinematic cues corresponded to emotion category ratings, 
whereas postural cues reflected valence ratings. Perception of emotion category was also driven 
by interpersonal orientation, proxemics, the time spent in the personal space of the counterpart, 
and the motion–energy balance between interacting people. Furthermore, motion–energy balance 
and orientation relate to valence ratings. Thus, features of emotional body language are connected 
with the emotional content of an observed scene and people make use of the observed emotionally 
expressive body language and interpersonal coordination to infer emotional content of interactions.

In everyday life, the expression of emotions is an essential part of human social interaction1–3. It is linked 
inseparably to the ability to observe, recognize, and evaluate the emotions of our conspecifics4–8.

Affect expression occurs through combinations of verbal and nonverbal communication channels9. To judge 
other people’s emotional states reliably, information can be decoded through nonverbal communication channels 
such as facial expressions or body movements and posture10–17. Up to now, most research in the field has focused 
on facial expressions. It has shown not only that people can express at least six different emotional states through 
their faces—anger, happiness, sadness, fear, surprise, and disgust—but also that these expressions demonstrate 
a high level of intercultural stability18. In recent decades, however, the focus of research has also shifted towards 
bodies. It has been suggested that recognition performance for bodily expressions is very similar to that for faces, 
and evidence has been provided that movements of the body or its segments also contain significant aspects of 
nonverbal communication1,2,9,11,13,19. For example, Michalak et al. have shown that gait patterns associated with 
sadness are characterized by reduced velocity, arm swing, and vertical motion of the head2. More recently, Poyo 
Solanas et al. demonstrated that fear is expressed through configurations of limb angles9.

These studies indicate that postural and kinematic features vary depending on the emotional state, and that 
they influence the perception of emotion categories2,3,9,20–24. Postural and kinematic features can be summarized 
under the heading emotional body language (EBL). EBL is described as behaviour used to express emotions via 
the whole body coordinated in its movements across multiple joints and often accompanied by a meaningful 
action11,25. Thus, the use of space or the arrangement of body posture, gestures, and trunk and arm movements 
are tools through which the body can express an emotion2,9,17,20,21,24. In contrast to facial expressions, EBL is often 
more action-oriented, and it can be identified even when the face is not clearly visible15,16,26. It further enables the 
observer to recognize a situation and simultaneously acknowledge the action undertaken by an individual11,26.

Consequently, EBL carries important information about not only the emotional state but also interindividual 
signalling15,16. Therefore, in this context, emotions can preferably be described as a dynamic relational process 
occurring between the individual and the environment10. In this vein, it has been demonstrated that contextual 
social information provided by interacting persons enhances the recognition of the emotional content of a scene 
and increases the observer’s confidence in their perceptual judgement7,10. Important contextual cues in social 
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interactions might be embodied synchronization or proxemic measures such as distance and orientation27–29. 
Taken together, the aforementioned studies suggest that interaction-specific parameters also contribute to the 
perception and identification of emotions. However, up to now, it remains largely unknown which features drive 
emotion perception in social interactions on the intra- and interpersonal level.

Here, we investigate for the first time both levels of body features in social interactions and their influence 
on the perception of emotions from body language. We provide a quantitative description and computational 
framework of movement features in social interactions using univariate and multivariate analysis. In detail, 
we investigated intrapersonal EBL by computing several kinematic and postural features and relating them to 
emotion perception. Moreover, we focused on interaction-specific characteristics that contribute to emotion 
perception. We used 48 point-light displays (PLDs) of human interactions portraying four emotions (happiness, 
affection, sadness, and anger). Participants observed these stimuli and were asked to categorize both the 
depicted emotional content and the valence of the perceived stimulus. We quantified different intra- as well as 
interpersonal movement features and analysed differences between emotional categories. To evaluate the relative 
importance of each calculated feature in the classification of emotional content, we trained different decision tree 
classifiers. Finally, we explored the correspondence of both the perceived emotional content and the perceived 
valence of a scene to the computational features on intra- and interpersonal levels via representational similarity 
analysis (RSA).

Materials and methods
Participants.  A total of 31 participants (16 women) with a mean age 23.58 ± 3.54 years participated in the 
experiment. None reported any history of psychiatric or neurological disorders and they had no history or 
current use of psychoactive medication. All procedures were approved by the local ethics committee of the 
Department of Psychology and Sports Science of the Justus Liebig University Giessen and adhered to the 
declaration of Helsinki. All participants provided written informed consent prior to participating.

Stimuli.  Stimuli were selected from a larger motion-capture data set17. Eight pairs of non-professional 
actors were instructed to perform an interaction portraying one out of four emotional scenes depicting either 
happiness, affection, sadness, or anger. To ensure a congruent behavioural pattern, actors were given a script of 
emotional situations and directed specifically to perform the same emotion. They were instructed to express 
their emotions intuitively within the context of the given situation, thereby allowing freedom and enhancing 
the variability of expression17. Interactions were recorded with an optical motion capture system (Vicon Motion 
Systems, Oxford, England) operating at 100 Hz. MATLAB software (Mathworks, Natick, MA) was used to create 
video files of 4-s sequences from the original coordinate 3D (C3D). In each video, 15 markers per person were 
plotted as white spheres on a black background to present a standard PLD model30.

The final stimulus selection was based on prior validation of emotion category and perceived valence from 24 
participants who did not take part in the present experiment. Valence was judged on an 11-point scale ranging 
from − 5 (extremely negative) to + 5 (extremely positive). There were two validation criteria: first, at least 50% of 
the participants had to recognize the displayed emotion (e.g., anger); second, the second-highest emotion rating 
should not exceed 25%. This allowed us to identify and exclude ambiguous scenes in which a specific emotion 
could not be recognized reliably. After validation, 12 stimuli that met both criteria were selected randomly for 
each emotion category. This resulted in a set of 48 (4 emotions × 12 scenes) stimuli. For more information on 
stimulus creation and validation, see Supplementary Figs. S1, S11 and 17.

Experimental procedure.  Prior to the present experiment, participants were given instructions and 
acquainted with the task. They subsequently performed a test run containing 12 trials that were not included in 
the main experiment.

In the experiment, each sequence was presented once, resulting in a series of 48 sequences. Sequences were 
displayed in a pseudo-randomized order on a 12-in. screen (refresh rate 60 Hz). The distance between each test 
person’s eyes and the screen was approximately 40 cm. Each trial started with a fixation phase (1 s) followed by 
a stimulus sequence (4 s) and two behavioural ratings. After observing this sequence, participants were asked 
to assess the emotional valence of the videos on the same scale that had been used for stimulus validation (7 s). 
The second step was to sort emotions into one of the following categories: happiness, affection, sadness, or anger 
(4 s) (Fig. 1A).

Feature definition.  To investigate EBL characteristics that drive the perceptual judgement on an intra- and 
interpersonal level, we calculated several features using MATLAB software. From the 15 markers displayed, we 
chose 13 anatomical points (excluding sternum and sacrum) that presented anatomical landmarks on the upper 
body (including shoulders, elbows, wrists, and head) and the lower body (including hips, knees, and ankles). 
Features were calculated from the x, y, and z coordinates.

On an intrapersonal level, the three kinematic features (calculated for each anatomical point) addressed 
velocity, acceleration, and vertical movement. We implemented symmetry, limb angles (shoulder, elbows, hips, 
knees), limb contraction (distance from head to wrist and ankles), volume, as well as its standard deviation 
(volume STD) as postural features9,24. Each feature was calculated within each of the 400 frames and averaged 
across time and actors.

In a next step, we computed 12 interpersonal parameters. Proximity measures included interpersonal distance 
(IPD) and its variance over time (IPD STD), the percentage of time spent in the personal space of the other 
agent (personal space), as well as interpersonal orientation (IPO) and the ratio of orientation from one person 
to another to detect imbalances (IPO balance) in which the persons are turned towards each other9,28,31,32. To 
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investigate how the spatial distance between two people affects velocity, acceleration, limb angles, and limb 
contraction (with included time information), we correlated these measures with the distance profile (distance 
correlations). We also examined the synchronization of the velocity and acceleration profiles (synchronization 
velocity & acceleration)29,33. Finally, we calculated the proportion of the displayed motion energy (motion–energy 
balance) of each person9,20,34. For more detailed information on feature definitions and calculations, see Table 1, 
supplementary information, and35.

Data analysis and statistics.  As a first step, we calculated the recognition rates (accuracy) of stimuli for 
each emotional category by comparing the target emotion with the behavioural response. To ensure a sufficient 
degree of stimuli recognizability, we tested each emotional category against chance (25%) using Bonferroni-
corrected one-sample t tests.

Influence of emotional categories.  We tested for the emotion specificity of EBL features with a one-way 
ANOVA. The intrapersonal and interaction-specific features calculated from each stimulus were averaged across 
anatomical points and used as input. The ANOVA contained a four-level factor of emotion (happiness, affection, 
sadness, anger). Alpha was set at 0.05 for all statistical tests and post hoc pairwise comparisons were Bonferroni-
corrected. Due to violations of the normal distribution in the values of interaction-specific features (distance 
correlation, synchronization), we normalized our data with a Fisher Z transformation37,38.

Figure 1.   Experimental timeline and RDM creation. (A) Temporal structure of one trial. (B) Three different 
RDM types were created: first, model RDMs assuming categorical differences between emotions and valences 
by using binary variables (0 if identical, 1 otherwise); second, feature RDMs representing each parameter on the 
intra- and interpersonal level using Euclidean distance as similarity measure; third, behavioural RDMs using 
binary variables for emotion (1 if correct, 0 otherwise) and Euclidean distance for valence ratings.
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Emotion classification with decision trees.  To evaluate the relative importance of each calculated 
feature in the classification of emotional interactions, we trained decision tree classifiers using Matlab Statistics 
and Machine Learning Toolbox (Version 11.6). Classification of stimuli was based on the weighted majority of 
multiple decision trees (bootstrap-aggregating approach) to avoid overfitting and enhance generalization24,39,40.

Three different classifiers were trained for classification of emotions using averaged time information and 
averaged anatomical landmarks with different predictors: (1) M1 = intrapersonal features, (2) M2 = interpersonal 
features, and (3) M3 = combination of the two feature sets (M1 + M2).

To minimize the influence of randomly splitting the displayed 48 stimuli into the training and the validation 
dataset, we used leave-one-out-cross validation to estimate the performance of the different classifiers. To avoid 
imbalanced datasets and hence bias, each category was presented equally in training and test data (leave one 
stimulus out per category). For more information, see Supplementary Fig. S2.

Representational similarity analysis.  We used representational similarity analysis (RSA)41,42 to 
characterize the relationship between the perceptual ratings and computed EBL feature sets for each of the 48 
stimuli. By relating the stimuli to each other and arranging the values horizontally and vertically in the same 
order, we created a symmetrical representational dissimilarity matrix (RDM) (48 × 48). Each entry describes the 
relation between two stimuli. In the main diagonal, the stimuli values are compared with themselves, resulting 
in a diagonal defined as zeros.

In a first step, we created two different model RDMs by assuming a categorical distinction between the 
emotion and the valence category of the stimuli. Therefore, the dissimilarities between identical categories were 
0 and those between different categories were 1 (Fig. 1B).

Second, we calculated 31 individual single-subject RDMs for emotion categorization by also using binary 
variables (0 if identical emotional rating, 1 otherwise). Furthermore, we used individual valence ratings to create 
RDMs in which each cell corresponded to the pairwise absolute difference. Here and in the following step, we 
used the Euclidean distance measure (Fig. 1B)24,35.

To test which of the features related to the geometry of the model RDMs and the behavioural rating RDMs, 
we built feature RDMs representing the intrapersonal and interpersonal level (Fig. 1B). This step resulted in eight 
intrapersonal RDMs and 12 interpersonal RDMs.

To describe and test the relationship between all RDMs, we calculated a matrix of pairwise correlations 
(Kendall’s τA) between model and feature RDMs separately on the intrapersonal and interpersonal level. To 

Table 1.   Summary of interaction-specific intrapersonal and interpersonal features calculated with the SAMI 
toolbox35. For a detailed explanation, see supplementary information.

Abbr Short description

Intrapersonal Features

Acceleration ACC​ Derived from the calculated velocity

Velocity VEL Marker from the 3-dimensional motion trajectories divided by the according time interval 
(1/100 Hz = 10 ms)

Vertical Movement VM Absolute amount of displacement of each marker along the z-axis of subsequent frames

Volume VOL Multiplication of the distances between the minimum and maximum anatomical point of a agent along 
the x-, y-, and z-axes for each frame,

Volume Standard Deviation VOL STD respectively the standard deviation

Symmetry SM Symmetry contains height difference in z direction, the distance as well as circular segment to a 
predefined line of symmetry for each agent from corresponding left and right anatomical points

Limb Angles LA Shoulder (shoulder to elbow and hip), elbow (elbow to shoulder and wrist), hip (hip to shoulder and 
knee), and knee joint angles (knee to hip and ankle).

Limb Contraction LC Distances from the left and right ankle and the left and right wrist to the head

Interpersonal Features

Average of Interpersonal Distance IPD Spatial distance between both agents. Calculated as the mean over time

Variance in Interpersonal Distance IPD STD respectively the standard deviation.

Average of Interpersonal Orientation IPO Time spent facing each other + time spent by one agent facing the other and vice versa.

Balance of Interpersonal Orientation IPO BAL Absolute value of the difference between orientation times of each agent divided by the sum of 
orientation times; higher value indicating greater balance level

Correlation between Spatial Distance and Velocity DC VEL Relationship of spatial distance between both agents and mean velocity of whole-body movements

Correlation between Spatial Distance and Acceleration DC ACC​ Relationship of spatial distance between both agents and mean acceleration of whole-body movements

Correlation between Spatial Distance and Volume DC VOL Relationship of spatial distance between both agents and volume

Correlation between Spatial Distance and Limb Contraction DC LC Relationship of spatial distance between both agents and limb contraction

Synchronization of Velocity SYNC VEL Correlation between agent’s velocity profiles over time

Synchronization of Acceleration SYNC ACC​ Correlation between agent’s acceleration profiles over time

Motion Energy Balance ME BAL
Difference between amount of body movement (sum of averaged inter-frame Euclidean displacements of 
each marker) from each agent divided by the total amount of body movement in the scene; higher value 
indicating greater balance level

Personal Space PS Time spent in the personal space (within one arm length) of the interactive partner
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account for multiple testing, we applied Bonferroni corrections based on the number of features in each set. We 
used multidimensional scaling (MDS) to gain a graphical impression of representational distances (computed 
as 1 − Kendall’s τA).

Furthermore, each feature RDM was tested against the behavioural RDMs using Kendall’s τA for emotion 
categorization and Pearson correlation coefficients for valence ratings. Multiple testing was Holm–Bonferroni 
corrected, and the false-discovery rate was set at 0.05. The variance within the emotions and valence ratings across 
participants was represented by the noise ceiling and determined the amount of variance a model could explain.

In the last step, we aimed to explore perceptual judgements by merging the intra- and interpersonal level, 
analogous to M3. Therefore, we focused on the feature that best explained the behavioural rating on both levels 
and additionally outperformed the remaining features in pairwise comparisons. We normalized the representa-
tional geometry and created a common feature space by averaging the corresponding RDMs (Fig. S3). Next, we 
investigated the relationship between the produced feature combination RDM and single-participant behavioural 
RDMs and tested the resulting model against all other feature RDMs in the same manner as described above.

To calculate features and perform data analysis we used the SAMI toolbox, which is available on Github and 
archived in Zenodo35.

Results
Emotion recognition of full body stimuli interactions.  The present data revealed that overall emotion 
recognition was high. Anger sequences were categorized with the highest accuracy (M = 91.9%, SEM = 1.75), 
followed by happiness (M = 90.6%, SEM = 1.59), sadness (M = 87.63%, SEM = 1.77), and affection (M = 80.38%, 
SEM = 2.72). All four emotions were classified above chance level (happiness: t(30) = 41.48, p < 0.001; affection: 
t(30) = 20.36, p < 0.001; sadness: t(30) = 35.48, p < 0.001; anger: t(30) = 38.27, p < 0.001). For more information, 
see Supplementary Fig. S4.

Feature‑based discrimination between emotion categories.  On the intrapersonal level, the 
kinematic feature velocity revealed a significant main effect of emotion category. Bonferroni-corrected post hoc 
pairwise comparisons showed significantly faster movements for happiness compared to affection and sadness 
as well as for anger compared to sadness. Vertical movement also presented a significant main effect of emotion 
category: happiness was associated with more vertical displacement than anger, affection, and sadness. Volume 
average was significantly higher for happiness and anger than for sadness. The same was found for volume STD 
in which happiness and anger interactions were depicted through higher variance in volume than sadness.

For the interpersonal features, we found a significant main effect for IPD showing that the distance between 
two people was smaller when affection was expressed compared to happiness and anger. Likewise, IPD STD 
revealed smaller variability while expressing sadness compared to affection.

Examining distance correlation features (relation between IPD and intrapersonal features) revealed that IPD 
was associated more strongly with limb contraction when expressing affection compared to anger. The distance 
between interacting people affected volume to a higher degree when showing affection compared to anger.

A further main effect of emotion category was revealed for personal space. Personal space differed significantly 
between affection and happiness and between sadness and anger, showing that interacting people spent 
significantly more time in the personal space of their counterpart while expressing affection. Additionally, IPO 
revealed a significant main effect of emotion category showing that actors turned more towards each other while 
expressing affection compared to happiness, sadness, or anger. Regarding the motion–energy balance, we found 
a significant main effect of emotion revealing a lower motion–energy balance for sadness and anger compared to 
happiness and affection. Finally, balance in the time facing each other showed a main effect of emotion category 
with the highest IPO balance being for interacting agents portraying affection compared to sadness and anger. All 
results of the conducted ANOVAs can be found in Table 2. For more information, see Supplementary Figs. S5, 
S6, and Supplementary Table S1.

Feature importance for emotion classification.  To examine the relative importance of specific 
features for emotion classification, we trained and tested three decision tree classifiers. The models differed in 
terms of the features used as predictors. Model M1 (intrapersonal features) provided an overall classification 
accuracy of M = 62.50% (happiness: M = 50.00%, affection: M = 50.00%; sadness: M = 75.00%; anger: M = 75.00%) 
compared to M = 68.75% for Model M2 (interpersonal features; happiness: M = 58.33%, affection: M = 83.33%; 
sadness: M = 66.67%; anger: M = 66.67%). Highest overall classification accuracy was provided by the combined 
Model M3 with an overall classification accuracy of M = 79.17% (happiness: M = 66.67%, affection: M = 91.67%; 
sadness: M = 91.67%; anger: M = 66.67%). M1 revealed the highest predictor importance for vertical movement 
and limb angles on an intrapersonal level (Fig.  2A). M2 showed that IPD and motion–energy balance were 
the most relevant features for classification on an interpersonal level (Fig. 2B). The combination model (M3) 
revealed the highest importance of vertical movement, velocity, IPD, IPO, and motion–energy balance (Fig. 2C).

Representational similarity analysis: relatedness of perceived emotions and EBL features.  To 
determine the relationship between the perceptual impression and EBL features, we carried out an RSA. The 
visual comparison between the model RDMs (Fig. 3A) and the average rating RDMs (Fig. 3B) revealed a high 
structural similarity. In a first step, we compared model RDMs (Fig. 3A) and feature RDMs on the intrapersonal 
and interpersonal levels (Fig. 3C,D). Representational distances (computed as “1 − Kendall’s τA correlation”) of 
the categorical and feature RDMs are depicted via MDS plots. Visual inspection of the intrapersonal MDS plot 
(Fig. 4A) showed a clear separation between kinematic and postural features. Within the interpersonal RDMs 
(Fig. 4B) motion–energy balance was located closest to emotion and valence category RDMs.
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Feature RDMs of vertical movement, velocity, limb angles, limb contraction, and volume & volume STD 
correlated positively with the emotion category model RDM. Limb angles and limb contraction also correlated 
positively with the valence model RDM. Regarding interpersonal features, we found weak positive correlations 
between IPO balance, IPD, personal space, IPO, and motion–energy balance and the emotion category model 
RDM; as well as between IPO Balance, motion–energy balance, and IPD and the valence model RDM (Fig. 4A,B).

Second, we determined the relatedness between EBL features and perceptual impressions by correlating 
emotion- and valence-rating RDMs and intra- and interpersonal model RDMs. Regarding the relationship 
between perceived emotion and intrapersonal features, we found significant correlations for all kinematic 
and postural parameters except acceleration (Fig. 5A). The highest correlations were for vertical movement 
(r = 0.1) and velocity (r = 0.08). It has to be noted that all correlations were rather low ranging from 0.01 to 0.1. 
Nevertheless, it is worth mentioning that vertical movement performed better than the remaining features as 
revealed by pairwise comparisons between the feature RDMs (Fig. 5A). None of the feature RDMs came close 
to the noise ceiling (0.29–0.31).

When comparing intrapersonal features with valence ratings, we identified significant correlations for each 
kinematic and postural feature ranging from 0.03 to 0.14. Data revealed that postural parameters performed 
better than kinematic parameters. As revealed by pairwise comparisons, limb angles correlated most strongly 
(r = 0.12) with valence ratings and performed significantly better than all other models (Fig. 5C). The second 
strongest correlation (r = 0.08) was found for limb contraction, which additionally outperformed all kinematic 
features. Hence, kinematic intrapersonal EBL features related more strongly to the perceived emotion category, 
and postural intrapersonal EBL features related more strongly to perceived valence.

The comparison between interpersonal feature RDMs and emotion category rating RDMs (Fig. 5B) revealed 
the highest correlation for personal space (r = 0.07). Furthermore, IPO balance (r = 0.06) and motion–energy 
balance (r = 0.06), as well as IPD (r = 0.06), IPO (r = 0.06), and distance correlation limb contraction (r = 0.03) 
performed significantly better than the remaining models (p < 0.001).

Regarding the comparison between interpersonal features and valence ratings (Fig. 5D), the highest explana-
tory value was provided by IPO balance (r = 0.18). This also outperformed all other models (p < 0.001) with the 
exception of motion–energy balance (r = 0.18). Except for the four distance correlation RDMs, all interpersonal 

Happiness Affection Sadness Anger

Intrapersonal Features

VEL (mm/s)
F(3,44) = 10.87,
p < 0.001, η2 = 0.43

M = 374
SEM = 41.30

M = 204.71
SEM = 31.16

M = 124.14
SEM = 14.80

M = 335.24
SEM = 45.05

VM (mm)
F(3,44) = 21.69,
p < 0.001, η2 = 0.6

M = 748.63
SEM = 88.53

M = 248.46
SEM = 31.44

M = 188.81
SEM = 31.72

M = 497.18
SEM = 47.63

VOL (m3)

F(3, 44) = 5.66,
p < 0.01, η2 = 0.3

M = 0.38
SEM = 0.05

M = 0.32
SEM = 0.03

M = 0.22
SEM = 0.02

M = 0.38
SEM = 0.02

VOL STD (m3)

F(3, 44) = 5.58,
p < 0.01, η2 = 0.3

M = 0.1
SEM = 0.02

M = 0.07
SEM = 0.01

M = 0.04
SEM = 0.01

M = 0.11
SEM = 0.01

Interpersonal Features

IPD (mm)
F(3, 44) = 8.47,
p < 0.001, η2 = 0.4

M = 1023
SEM = 89.65

M = 622
SEM = 38.14

M = 910
SEM = 89.38

M = 1191
SEM = 97.89

IPD STD (mm)
F(3, 44) = 3.02,
p < 0.05, η2 = 0.2

M = 97.99
SEM = 19.55

M = 122.34
SEM = 23.33

M = 45.90
SEM = 9.58

M = 99.12
SEM = 19.1

DC LC (Pearson’s r)
F(3, 44) = 4.18,
p < 0.05, η2 = 0.22

M = 0.43
SEM = 0.05

M = 0.55
SEM = 0.05

M = 0.62
SEM = 0.6

M = 0.39
SEM = 0.03

DC VOL (Pearson’s r)
F(3,44) = 3.49,
p < 0.05, η2 = 0.19

M = 0.42
SEM = 0.07

M = 0.49
SEM = 0.06

M = 0.53
SEM = 0.07

M = 0.28
SEM = 0.04

PS (%)
F(3,44) = 7.49,
p < 0.001, η2 = 0.34

M = 33.71
SEM = 11.96

M = 88.91
SEM = 6.92

M = 46.86
SEM = 13.50

M = 24.25
SEM = 7.85

IPO (%)
F(3, 44) = 9.01,
p < 0.001, η2 = 0.4

M = 40
SEM = 9 52

M = 79.63
SEM = 8.56

M = 32.21
SEM = 7.96

M = 25.15
SEM = 5.91

ME BAL (AU)
F(3, 44) = 6.83,
p < 0.001, η2 = 0.32

M = 0.93
SEM = 0.01

M = 0.90
SEM = 0.02

M = 0.78
SEM = 0.05

M = 0.76
SEM = 0.04

IPO BAL (AU)
F(3, 44) = 8.42,
p < 0.001, η2 = 0.36

M = 0.55
SEM = 0.13

M = 0.85
SEM = 0.08

M = 0.17
SEM = 0.1

M = 0.31
SEM = 0.11

Table 2.   ANOVA of feature emotion categories.
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features attained weak significant correlations with valence ratings. Thus, emotion and valence perception of 
interacting people seems to depend most strongly on the displayed motion–energy balance and orientation as 
well as on proxemic measures (IPD, IPO, personal space).

Furthermore, we conducted an explorative analysis of feature combinations (Fig. 3E). Regarding emotion 
perception, we averaged vertical movement with each of the six highest performing interpersonal features (IPO 
balance, personal space, motion–energy balance, IPO, IPD, DC LC). Only feature combinations between verti-
cal movement and IPO (r = 0.11) as well as between vertical movement and motion–energy balance (r = 0.11) 
performed significantly better than the remaining combination models and all intra- and interpersonal models 
(p < 0.001) except for the combination between vertical movement and IPO balance. This indicates that emotion 
perception of EBL was best predicted not by a single feature in isolation, but by a combination of several features.

Regarding valence perception, averaging limb angles and IPO balance (r = 0.21), as well as limb contraction 
and IPO balance (r = 0.2) revealed higher correlations. Furthermore, pairwise comparisons revealed significant 
differences between all combination RDMs and feature RDMs on both levels (p < 0.001), except for the combi-
nation between limb angles and motion–energy balance as well as the single feature motion–energy balance. For 
more information, see Supplementary Figs. S9, S10 and Supplementary Table 2.

Discussion
Our data provide a detailed quantitative description of movement features in emotional interactions that 
are related to emotion perception. The systematic decomposition of an interaction into an intrapersonal and 
interpersonal level reveals that both levels relate substantially to the emotional content of the scene as well as to 

Figure 2.   Estimated feature importance for emotion classification. (A) Model M1 = intrapersonal features as 
predictors (overall classification accuracy 56.75%). (B) Model M2 = interpersonal features as predictors (overall 
classification accuracy = 59.41%). (C) Model M3 = M1 + M2 combination model (overall classification accuracy 
of 69.54%). Bars and error bars show means and standard deviations of predictor importance for different 
validation samples. Chance level of emotion classification at 25%. LA  limb angles, LC limb contraction, SM 
symmetry, VEL velocity, ACC​ acceleration, VM vertical movement, VOL volume, VOL STD volume standard 
deviation, DC VEL distance correlation velocity, DC ACC​ distance correlation acceleration,  DC LC distance 
correlation limb contraction, DC VOL distance correlation volume, IPD interpersonal distance, IPD STD 
interpersonal distance standard deviation, IPO interpersonal orientation, IPO BAL interpersonal orientation 
balance,  ME BAL motion energy balance, PS personal space, SYNC VEL synchronization velocity, SYNC ACC​ 
synchronization acceleration.
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Figure 3.   Representational dissimilarity matrices. (A) Theoretical model RDMs that assume different 
similarities based on emotion and valence categories (0 if identical, 1 otherwise). (B) Behavioural, averaged 
over participants emotion (1 if correct, 0 otherwise) and valence rating RDMs (Euclidean distance as similiarity 
measure). RDMs for (C) intrapersonal features, (D) interpersonal features and (E) combination features using 
Euclidean distance as similarity measure. LA limb angles, LC limb contraction, SM symmetry, VEL velocity, 
ACC​ acceleration, VM vertical movement, VOL volume, VOL STD volume standard deviation, DC VEL distance 
correlation velocity, DC ACC​ distance correlation acceleration, DC LC distance correlation limb contraction, 
DC VOL distance correlation volume, IPD interpersonal distance, IPD STD interpersonal distance standard 
deviation, IPO interpersonal orientation, IPO BAL interpersonal orientation balance, ME BAL motion energy 
balance, PS personal space, SYNC VEL synchronization velocity, SYNC ACC​ synchronization acceleration.



9

Vol.:(0123456789)

Scientific Reports |        (2022) 12:15088  | https://doi.org/10.1038/s41598-022-19267-5

www.nature.com/scientificreports/

Figure 4.   Relationship between model RDMs and feature RDMs for (A) intrapersonal features, (B) 
interpersonal features, as indicated by Kendall’s τA correlation. Significant correlations shown by asterisks (ns 
not significant; *p < 0.05; **p < 0.01; ***p < 0.001). MDS plots approximate Kendall’s τA correlation distance 
(1 − Kenadll’s τA) among RDMs: the closer the points to each other, the more similar their corresponding 
RDMs.
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its perception. We show that the emotional content of social interactions has a specific kinematic and postural 
fingerprint and can be described via quantitative intra- and interpersonal parameters. Both levels are linked 
to each other inseparably. This linkage is reflected not only by a model that integrates intra- and interpersonal 
features (M3) exhibiting the best performance but also by the explorative analysis of feature combinations. 
We further show a strong correspondence between those features that characterize the emotional content of a 
stimulus and the features that are critical for emotion perception3. Representational similarity analysis reveals that 

Figure 5.   Relationship between behavioural RDMs and feature RDMs. (A,C) Intrapersonal Features; (B,D) 
Interpersonal Features; Kendall’s τA correlation between emotion rating RDMs and Pearson correlation between 
valence rating RDMs. Significant correlations shown by asterisks (ns not significant; *p < 0.05; **p < 0.01; 
***p < 0.001, controlling FDR at 0.05). Lower and upper bounds of the noise ceiling are depicted by a grey bar. 
Pairwise comparisons indicate which feature RDMs perform significantly differently. Colour corresponds to 
significance level (black: ns; orange: p < 0.05; red: p < 0.01; calculated via two-sided signed-rank test across 
subjects, controlling FDR at 0.05). LA limb angles, LC limb contraction, SM symmetry, VEL velocity, ACC​ 
acceleration, VM vertical movement, VOL volume, VOL STD volume standard deviation, DC VEL distance 
correlation velocity, DC ACC​ distance correlation acceleration, DC LC distance correlation limb contraction, 
DC VOL distance correlation volume, IPD interpersonal distance, IPD STD interpersonal distance standard 
deviation, IPO interpersonal orientation, IPO BAL interpersonal orientation balance, ME BAL motion energy 
balance, PS personal space, SYNC VEL synchornization velocity, SYNC ACC​ synchronization acceleration.
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it is especially kinematic parameters that contribute to the perception of emotional content on an intrapersonal 
level; whereas on an interpersonal level, balance and proxemics parameters are important cues for the observer. It 
also becomes apparent that observers use mainly interaction-specific information to decode relational emotions 
such as affection. We further found that intrapersonal postural parameters such as limb angles and interpersonal 
balance parameters such as motion–energy balance and IPO balance show the strongest relation to the valence 
percept.

Recently, de Gelder and Poyo Solanas have proposed a framework in which perceptually relevant information 
from bodies via movement and posture is coded in the brain through midlevel features such as limb contraction 
and head-to-hand distance43. Our results support the importance of these midlevel features and add compu-
tational interaction-specific parameters to their framework. The present data show that the emotional content 
of a scene is characterized by midlevel features such as velocity or motion–energy balance. For example, happy 
interactions are characterized by higher velocity profiles than affection and sadness, but not higher than anger. 
These findings are broadly consistent with those reported in the existing literature2,3,19,20,22. Affectional and sad 
interactions show a high degree of similarity regarding their intrapersonal kinematic and postural parameters. 
These emotions, however, reveal characteristic differences on the interpersonal level (e.g., IPO, IPO Balance, 
IPD STD, personal space).

Regarding emotion perception, our findings show an association to characteristic body expressions on both 
the intra- and the interpersonal level. Representational similarity analysis reveals that vertical movement, IPO 
(average & orientation), and motion–energy balance are best suited to explain emotion perception. In contrast 
to some research reports12,24,36,44, we were unable to distinguish emotional categories via postural features such 
as limb angles and limb contraction. Here, it has to be taken into account that most former studies used stimuli 
depicting a single person mainly in a frontal view and not social interactions observed from a third-person 
perspective as in the present study. The present data show that participants confused happiness with anger, 
although only to a small extent. Conversely, anger trials were more often confused with sadness than with hap-
piness. Most often, affection stimuli were confused with happiness. A study investigating emotions in gait3 has 
demonstrated that confusions occur preferentially between emotions that share a similar level of movement 
activation: angry gaits tend to be confused with happy gaits, and sad gaits with fearful ones. Thus, these authors 
concluded that velocity is particularly important for the perception and expression of emotions3,20,22. Our findings 
also suggest that velocity of movements is important in the process of emotion recognition. However, velocity is 
not sufficient to distinguish between emotions such as anger and happiness, especially within social interactions 
where interpersonal cues such as proxemics or balance are available for the observer. Interpersonal cues such as 
motion–energy balance between two agents allow a perceptual distinction between happiness and anger. Motion-
energy balance explains (1) the high degree of confusion between happiness and affection and (2) the low degree 
of confusion between anger and happiness when social information is available. Motion-energy balance within 
interactions, therefore, seems to be an important property for the observer to generate an emotional percept. 
Hence, social context information is particularly important for recognizing emotional content, especially when 
the depicted emotions depend more on reciprocal interactions (e.g., affection)10,45. The present results provide a 
computational framework for this observation. For example, affection differs from other emotions only regard-
ing its interpersonal movement characteristics. This is underpinned by the calculated classification trees: the 
intrapersonal model is less accurate than the interpersonal model, underlining that emotions such as affection 
have a strong interpersonal character and that the spatiotemporal coupling of two moving agents seems to be of 
great significance especially for perceiving socially expressible emotions10,17.

Besides emotion recognition, we were interested in the perceived emotional valence—a dimension that 
reflects the subjective impression of a scene related to approach–avoidance tendencies46. Our data reveal that on 
the intrapersonal level, postural features such as limb angles best explain the participants’ valence perception. 
Regarding interpersonal features, motion–energy balance and orientation between interacting people are the 
best predictors of perceived valence.

Finally, we observed a noteworthy, albeit not significant, trend towards a synchronization of velocity profiles, 
indicating that higher synchronization between people is associated with a positive impression of the perceived 
interaction. A study investigating interpersonal behaviour in a social task has shown that patterns of proxemic 
behaviours and interpersonal distance predicted the subjective quality of interactions28. Thus, balance and 
spatiotemporal harmony are predictors for both the experienced and the observed quality of an interaction.

Interestingly, our RSA results show that emotion category recognition is better predicted by kinematic fea-
tures, whereas valence perception is related more to postural features of the stimuli. Basically, human emotions 
can be conceptualized within a two-dimensional model comprised of emotional valence (the subjective value—
i.e., positive vs negative) and arousal (intensity)47,48. The present results reveal that emotions possessing the same 
valence (e.g., anger and sadness) are more similar in terms of the actors’ postural features. Further, we observed 
that emotions that differ in terms of their valence but are similar in terms of their intensity (e.g. happiness and 
anger) resemble each other regarding their kinematics. Thus, one might assume that postural features might be 
more likely to reflect the valence and kinematic features might be more likely to reflect the arousal or intensity 
of the presented stimuli.

Altogether, we found a set of EBL features that characterizes emotional content and predicts the perception of 
the emotional quality of human interactions. These features are defined on an intra- and interpersonal level and 
include kinematic, and postural characteristics as well as proximity, balance, and synchronization. We conclude 
that the perception of human emotional interactions is a function of not only inherent kinematics of the agent 
but also interpersonal balance and proximity between agents.
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Limitations and future implications.  It should be noted that the present and comparable studies differ 
with respect to the stimulus material used, stimulus length, emotional content, contextual information, and 
feature calculation17,24. These differences explain the partly heterogeneous results on emotion perception. 
Despite this heterogeneity, perception and recognition of emotional content are robust regardless of the stimulus 
material used. Thus, humans seem to weigh the relative importance of different movement features flexibly 
depending on the specific stimulus properties presented to them.

We have to acknowledge that neither an intrapersonal nor an interpersonal feature correlates with the 
perceptual performance on the noise ceiling level, and that we found only weak positive correlations in the 
present study24. One reason for this may be that many features are similarly pronounced in different emotion 
categories. For example, happiness and anger are characterized by similar velocities. Hence, it would seem 
appropriate to develop models that integrate multiple feature dimensions of the observed scene. First solutions 
are offered by the present attempt to use a combination of features to classify the emotional content as well 
as to predict the emotional percept. Future studies, however, might apply more ecologically valid stimuli and 
combine different features in a multidimensional space in order to phenotype emotion specific properties of 
EBL in social interactions. Such approaches that aim to decode emotional human states from a combination of 
nonverbal signals on multiple levels are highly relevant in the context of human–robot interaction in order to 
ensure natural communication47–50.

Data availability
The datasets used and analyzed during the current study are available from the corresponding author on 
reasonable request. The source code is available at https://​zenodo.​org/​record/​47645​52#.​YiXYK​i9Xb0p 
(MATLAB).
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