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Abstract

Analysis of gene quantities measured by quantitative real-time PCR (qPCR) can be complicated by observations that are
below the limit of quantification (LOQ) of the assay. A hierarchical model estimated using MCMC methods was developed to
analyze qPCR data of genes with observations that fall below the LOQ (censored observations). Simulated datasets with
moderate to very high levels of censoring were used to assess the performance of the model; model results were compared
to approaches that replace censored observations with a value on the log scale approximating zero or with values ranging
from one to the LOQ of ten gene copies. The model was also compared to a Tobit regression model. Finally, all approaches
for handling censored observations were evaluated with DNA extracted from samples that were spiked with known
quantities of the antibiotic resistance gene tetL. For the simulated datasets, the model outperformed substitution of all
values from 1–10 under all censoring scenarios in terms of bias, mean square error, and coverage of 95% confidence
intervals for regression parameters. The model performed as well or better than substitution of a value approximating zero
under two censoring scenarios (approximately 57% and 79% censored values). The model also performed as well or better
than Tobit regression in two of three censoring scenarios (approximately 79% and 93% censored values). Under the levels of
censoring present in the three scenarios of this study, substitution of any values greater than 0 produced the least accurate
results. When applied to data produced from spiked samples, the model produced the lowest mean square error of the
three approaches. This model provides a good alternative for analyzing large amounts of left-censored qPCR data when the
goal is estimation of population parameters. The flexibility of this approach can accommodate complex study designs such
as longitudinal studies.
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Introduction

Quantitative real-time PCR (qPCR) has become an important

molecular tool in the life sciences for its ability to both detect and

quantify minute amounts of target nucleic acid present in a

sample. Quantification of nucleic acid is made possible through

real-time measurement of a fluorescence signal that accumulates

as the PCR target amplifies. The fractional cycle in which the

signal crosses a threshold above the background level (Cq) is the

unit of analysis of qPCR assays [1]. There is a theoretical log-

linear relationship between the Cq and the starting concentration

of the target nucleic acid sequence. The starting concentration of

target nucleic acid sequences in unknown samples can be

estimated by comparing unknown Cq’s to a calibration curve

made up of Cq’s from samples of known quantity. This approach

is often referred to as absolute quantification. In practice, the

range of quantities in which this log-linear relationship holds true

is limited, usually spanning 3 to 6 orders of magnitude, and is

referred to as the linear dynamic range. The linear dynamic range

of a qPCR assay defines the limits of quantification (LOQ) of that

assay. Sample quantities above or below these limits cannot be

reliably estimated. However, some qPCR applications, such as

quantification of genetically modified organisms in food, require

measurement of gene quantities in samples with concentrations

near or below the LOQ [2].

Measurement of genes near the LOQ can present difficulties

and is an active area of research [2–9]. It is standard practice for

the same sample of DNA to be run multiple times (i.e. technical

replicates) as a way to assess intra-assay variation. For samples with

very low quantities of the target gene, it is common to have one or

more of the sample’s technical replicates produce no signal or

produce an estimate that is below the LOQ. A qPCR reaction

with no sign of target amplification could indicate that the gene is

truly absent from the sample or that the gene of interest was

present in the reaction but failed to amplify above the threshold

level of fluorescence by the last cycle of the reaction. Alternatively,

no signal could result when the gene of interest was present in the

sample but in such a low concentration that the probability of

including at least one copy of the gene in the small amount of

template added to the reaction was very low [1,9–11]. In these

situations, the number of technical replicates can be increased to

improve the probability of detecting the gene of interest. However,
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increasing replicates will improve estimates of gene quantity only if

some of the replicates are above the LOQ. For large studies with

many samples, increasing the number of replicates is not always

feasible.

When an analytical method is unable to distinguish true

negative samples from samples that are positive at a low level,

those samples are censored. Common methods for dealing with

censored data are to delete the censored observations prior to

analysis or to substitute some value for the censored samples, such

as a fraction of the detection limit, or zero [9,12,13]. All of these

methods have been shown to produce varying degrees of bias,

depending on the level of censoring present in the data [14–16].

One qPCR study recommended that substituting zero for

censored observations will produce less biased estimates than

deletion of censored observations [9].

Many studies that have investigated the performance of qPCR

near the limits of quantification and detection have focused at the

level of individual samples and their replicates. However, for some

applications, qPCR is used to quantify nucleic acid sequences for

the purpose of estimating population level parameters. For

example, in epidemiologic studies of antibiotic resistance, qPCR

has been used to estimate the association between antibiotic

resistance gene quantities in bacterial community DNA and

various risk factors [17–25]. In these situations it is common to

standardize the qPCR measurements either by back-calculating

the gene quantity per qPCR reaction to quantity per sample

volume or by reporting the gene quantity relative to a reference

gene such as 16S rRNA that is used as a proxy for total bacterial

quantity [26,27]. In both cases the data are often log transformed

to make a skewed distribution somewhat symmetric and stabilize

the variance prior to statistical analysis. In this situation,

substitution of zero will result in a log transformed value that is

undefined and some arbitrarily low number on the log scale must

be substituted.

The topic of censored observations in analytical methods has

been covered in many fields. In general, simple substitution

methods or exclusion of censored observations has the potential to

bias results and it has been recommended that those methods

should never be used [14216,28,29]. Alternative approaches have

been proposed, such as parametric methods that randomly impute

single values for censored observations by maximum likelihood

estimation or regression on order statistics [14]. However, these

methods are generally not adequate for epidemiological studies

where the objective is to relate the quantity of a gene to risk

factors, especially when the data come from more complex study

designs such as longitudinal or clustered data [15].

Another option to accommodate censored data is to use a Tobit

regression approach where it is assumed that the censored and

observed data arise from the same underlying normal distribution

and the regression parameters are estimated by maximum

likelihood [15,29]. A more flexible alternative is to create a

hierarchical model that explicitly includes the censoring in the

likelihood function and can be estimated using MCMC or other

estimation algorithms [15,28,30]. The MCMC approach works by

Table 1. Parameter values used to generate simulated data of log10 gene copies per gram of sample.

Scenario True Parameters
Mean (range) percent of censored
observations

Mean number of censored observations
per sample (0, 1, 2, 3)

1 b0 = 3, b1= 0.5, s=1.5 57% (51%–62%) 189, 27, 26, 256

2 b0 = 2, b1= 0.5, s=1.5 79% (75%–86%) 84, 18, 20, 378

3 b0 = 1, b1= 0.5, s=1.5 93% (89%–96%) 27, 8, 10, 455

doi:10.1371/journal.pone.0064900.t001

Figure 1. Posterior densities of three censored observations.
The true sample averages from left to right were 0, 8.3, and 14.3 gene
copies.
doi:10.1371/journal.pone.0064900.g001
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iteratively imputing the censored values, using the imputed values

and observed data in a regression to obtain parameter estimates,

and then using the parameter estimates to randomly impute new

values for the censored data. Over many iterations, distributions of

the missing values are created. This approach also permits

flexibility in the data structure such as repeated measurements

from the same sample.

The objective of this study is to develop a hierarchical model for

analyzing censored qPCR data. The performance of the model

was compared to substitution of fixed values for censored

observations and Tobit regression using simulated data represent-

ing gene quantities in community bacterial DNA. We hypothe-

sized that this model would produce more accurate estimates of

regression population parameters than linear regression performed

on simulated data where censored values are substituted with a

single value. We also tested the model with antibiotic resistance

gene quantities extracted from samples into which the gene had

been spiked, allowing us to know the actual quantity per sample.

Materials and Methods

Rationale for Model Development
Many applications of qPCR measure bacterial genes in a

cultivation-independent manner that permits estimation of gene

quantity in the entire bacterial community of a sample. This

approach requires extraction of community DNA from a sample

such as soil or feces to yield a volume of DNA in solution. A small

proportion of that DNA solution is then added to each replicate

qPCR reaction. Therefore, the output of the qPCR reaction is

gene quantity per volume of template added to the reaction. The

model developed for this study estimated the unknown total log10
gene quantity per gram of sample from the observed gene

quantities in the individual qPCR replicates, some of which were

censored.

For this study, it was assumed that DNA extraction yielded

1000 ml of DNA solution for every sample j. From that total

volume of extracted DNA, it was assumed that 5 ml of template

DNA was added to each of three replicate qPCR reactions. The

three 5 ml aliquots xj1, xj2, xj3 of template and the remaining 985 ml
(xj4) were assumed to follow a Multinomial(nj, pj) distribution,

where nj equals the unknown quantity of the gene of interest in the

entire sample j and pj is a vector of probabilities corresponding to

the proportions of sample added to each of the triplicate reactions

and the unused sample (e.g. p=0.005, 0.005, 0.005, 0.985). Since

the probabilities corresponding to the proportions of sample added

to the sample aliquots are very small relative to the unused sample

probability the model is well-approximated by ‘‘sampling with

replacement’’ and we may consider the xi1, xi2, xi3 as independent

binomial (nj, pj) for j = 1,2,3. Furthermore, for moderate njpj –

which we have here – the binomial is well-approximated by the

Figure 2. Posterior means and 95% credible intervals of log gene quantity versus the true value for one simulated data set with 50
observations.
doi:10.1371/journal.pone.0064900.g002
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Poisson, yielding the following hierarchical model.

xij Dyj , pj , q*Poisson(q10yj � pj)

pj*beta(0:005,0:995)

yj Db0, b1, s*Normal(b0zb1rj , s)

where xij is the observed gene quantity of replicate i from sample j.

The estimated mean of the replicates for sample j approximates

the mean of a binomial distribution nj*pj where nj is the unknown

gene quantity of the entire volume of extracted DNA. The Poisson

approximation to the binomial improves the stability of the model

because there are fewer parameters to estimate. The unknown

quantity (nj) is the product of a correction factor (q) for DNA

extraction efficiency and the unknown log10 gene quantity (yj) in

the entire sample. All DNA extraction protocols yield less than

100% of the DNA present in a sample due to incomplete cell lysis

and volume losses during the extraction process [31]. Extraction

efficiency varies by extraction protocol and the type of sample

from which the DNA is extracted. Here the DNA extraction

efficiency is assumed to be fixed at 65%. This 65% assumption is

based on validation experiments of the DNA extraction method

used by our laboratory (data not shown). If the extraction

efficiency is unknown, a probability distribution can be assigned

to the efficiency to reflect that uncertainty. In addition, it is

assumed here that the original samples from which the DNA was

extracted were all one gram. For samples of varying starting

weight, an additional correction factor can be included to adjust

for these variations. The probability of including a gene copy in

the 5 ml added to a single qPCR reaction (pj) is assumed to follow a

beta distribution centered around 0.005 to allow for extra-

binomial variation in the observed data. The unknown log10 gene

quantity (yj) is assumed to follow a normal distribution with a mean

estimated by the regression equation b0+ b1*riskfactor, where the

generic risk factor is a binary variable (1 or 0).

To estimate the quantities of censored observations, the

censored observations (xij) are expressed in terms of the true copy

number (zij). It was determined from the linear range of the

calibration curve and dilution experiments that the LOQ for the

genes studied by our laboratory is 10 gene copies per reaction

(data not shown). Therefore, a LOQ of 10 copies per qPCR

reaction was used for these simulations. The censored observations

are expressed as the observed value if it is greater than or equal to

10, or ranging from 0 to 9 if censored:

xij~
zij zij§10

0{9 zijv10

� �
ð1Þ

For uncensored data, the likelihood is:

p(xDlj)~ P
n

i~1
P xij Dlj
� �

ð2Þ

where P is the Poisson probability density function (pdf), lj is the
sample mean, and n is the number of observations. Values for the

censored observations are randomly sampled from a Poisson

distribution, constrained from 0 to 9 gene copies, and the imputed

and observed data together are used to estimate the parameters of

the model (See Additional File 1 for code). The estimated

parameters are then used to iteratively impute new values for

the censored observations and then re-estimate the model

parameters. A censored observation with a large estimated l is

more likely to be assigned a value closer to 9 on the following

iteration than a censored observation with a very small estimated

l. After a number of iterations, posterior distributions of the

parameters and censored observations are obtained.

Simulation of Data
The performance of the model was assessed by testing it using

simulated qPCR data. Datasets of 500 samples were generated

representing log10 gene quantity per gram of sample. Each

simulated dataset was generated assuming a normal distribution

using three different mean values to test the model on datasets with

three different degrees of censoring (Table 1). All datasets had a

standard deviation of 1.5, and an indicator variable was used to

Table 2. Bias, mean square error, and percent coverage of
95% confidence intervals of regression parameters estimated
by the hierarchical model, by Tobit regression, and by linear
regression with censored observations substituted with a
value that approximates 0 on the log scale.

Scenario 1 (b0=3) Bias MSE
95% CI
coverage

Hierarchical Model

b0 0.15 0.03 72%

b1 20.05 0.02 95%

Tobit Model

b0 0.13 0.03 75%

b1 20.04 0.02 95%

Substitute 0.00325*

b0 20.23 0.06 45%

b1 20.06 0.02 95%

Scenario 2 (b0=2)

Hierarchical Model

b0 0.19 0.06 79%

b1 20.03 0.03 94%

Tobit Model

b0 0.29 0.11 52%

b1 20.07 0.03 93%

Substitute 0.00325*

b0 20.30 0.10 21%

b1 0.02 0.02 96%

Scenario 3 (b0=1)

Hierarchical Model

b0 0.20 0.21 85%

b1 20.03 0.06 93%

Tobit Model

b0 0.46 0.35 64%

b1 20.06 0.05 93%

Substitute 0.00325*

b0 20.15 0.03 63%

b1 20.11 0.03 87%

*The log of zero is undefined. To approximate an average gene quantity of 0
per sample, a value was substituted that, under the assumption of 65%
extraction efficiency, back calculates to 1 gene copy per gram or 0 log10 copies.
The true values of the regression parameters were b1= 0.5, s= 1.5, and b0=3,
2, or 1.
doi:10.1371/journal.pone.0064900.t002
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randomly assign a binary risk factor to approximately 50% of the

samples in each dataset resulting in gene copy numbers that were

on average 0.5 log10 copies higher in the group with the risk factor

than the group without the risk factor. Because the simulations

were repeated using three different mean values on the log10 scale,

the risk factor effect of 0.5 log10 copies ranged from approximately

21 gene copies to 2100 copies per sample. The risk factor value of

0.5 was selected as typical of statistically significant coefficients that

we have observed in regression models of real qPCR data (data not

shown). In addition, we simulated datasets with an intercept of 3

log10 gene copies, a standard deviation of 1.5 and a risk factor

value of 0.1 to represent the lower bound of significant regression

coefficients that we have observed in our real qPCR data.

The simulated samples of log10 gene quantity per gram were

transformed to gene quantity per gram and multiplied by 0.65 for

assumed losses due to extraction efficiency to yield gene quantity

per 1000 ml of DNA extract. To obtain the gene quantity added to

each of the triplicate qPCR wells per sample, three 5 ml random
samples were drawn from the simulated 1000 ml of DNA extract

using a Dirichlet-multinomial distribution, a multivariate gener-

alization of the beta-binomial distribution. The copy number per

1000 ml was used as the size parameter (n) and the four probability

parameters each followed a beta distribution centered around

0.005, 0.005, 0.005, and 0.985 respectively. The probability

parameters were allowed to follow beta distributions to produce

sample triplicates that are more variable than what would be

produced if the triplicates followed a binomial distribution with a

fixed value for pj. Based on our experience with real qPCR data,

this extra-binomial variation yielded simulated sample triplicates

that more closely resembled reality than simulations assuming a

binomial variance. This process produced three simulated

observations per sample of gene quantity per 5 ml of DNA

resulting in a dataset comprised of 1500 total observations for 500

samples. An LOQ of 10 copies was used as the censoring limit. All

simulated observations with values less than 10 were set to missing

so they could be estimated by the model. The simulated data were

generated using R version 2.12.2 [32].

The model was run using WinBUGS (version 1.4), called from

R with the R2Winbugs package, on 500 simulated datasets for

each parameter combination using non-informative normal priors

for b0 and b1 and a non-informative gamma prior for the inverse

of s [33,34]. The model was run for 5000 iterations with a burn-in

of 1000 iterations. Preliminary runs were made using three

MCMC chains each with different initial parameter values.

History plots, Gelman-Rubin statistic plots, and autocorrelation

plots (not shown) of the regression parameters were examined to

Figure 3. Bias of the intercept (b0) estimated by linear regression with censored observations substituted with values that ranged
from 0 to 10 at three different levels of gene quantity (approximately 3, 2, and l log10 gene copies per gram). For comparison, the
biases of the intercepts estimated by the hierarchical model at the three concentrations are provided in the legend and are shown as tick marks on
the y-axis.
doi:10.1371/journal.pone.0064900.g003
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confirm model convergence. Afterward, one chain was run per

dataset to speed the simulation. The R and WinBUGS code can

be found in Additional File 1.

The posterior means of b0, b1, and s for each iteration were

stored. For every parameter the bias, mean square error (MSE),

and proportion of 95% credible intervals that included the true

values of their respective parameters were calculated [35],

bias~
�̂
bb̂bb{b ð3Þ

MSE~
1

N{1

XN
i~1

b̂bi{
�̂
bb̂bb

� �2

z
�̂
bb̂bb{b

� �2

ð4Þ

For comparison with the hierarchical model, 12 additional

simulations were performed each on 500 datasets generated in the

same way as described above. For one of the 12 simulations,

censored observations were unchanged and Tobit regression was

performed using the censReg function of the R package censReg.

For the other 12 simulations censored observations were replaced

with 0 or integers ranging from 1 to 10 gene copies. Triplicate

observations were averaged and back-calculated to log10 gene

quantity. For situations where all triplicates were below the LOQ,

substitution of zero resulted in an average gene quantity that was

undefined when transformed to log10 copies per gram of sample.

The minimum non-zero concentration in a sample is 1 gene copy

per gram or 0.00325log10 gene copies. For samples with three

censored triplicates, a value of 0.00325log10 was substituted for the

log transformed sample average to approximate a sample where

the gene of interest is not detected in any of the replicates. The

average log10 gene quantity of each sample was used as the

dependent variable in a linear regression with the generic risk

factor as the independent variable. For each of the 12 substitution

scenarios and the Tobit regression scenario the bias and MSE

were calculated for b0, b1, and percent coverage of 95%

confidence intervals were calculated for b0 and b1.

Model Evaluation with Spiked Samples
The hierarchical model was also compared to substitution of

zero using real qPCR data obtained from fecal samples spiked with

known quantities of the tetracycline resistance gene tetL. An

environmental isolate of Enterococcus faecium possessing the tetL gene

was collected from a bovine fecal sample and grown overnight in

TSA plus tryptose. Both genomic and plasmid borne variants of

this gene have been detected in E. faecium [36]. The number of

colony forming units/ml of pure cell culture was determined by

Figure 4. Bias of the generic risk factor (b1) estimated by a linear regression model with censored observations substituted with
values that varied from 0 to 10, at three different levels of gene quantity (approximately 3, 2, and l log10 gene copies per gram). For
comparison, the biases of the intercepts estimated by the hierarchical model at the three concentrations are provided in the legend and are shown as
tick marks on the y-axis.
doi:10.1371/journal.pone.0064900.g004
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plate counts of 10-fold serial dilutions, and the number of tetL gene

copies per CFU was determined by running qPCR on DNA

extracted from the cell culture. Fecal samples were then spiked

with the serial dilutions of the cell culture. DNA was extracted

three separate times from each spiked fecal sample using a

previously published protocol [37]. Standards were created by

extracting DNA from the same 10-fold serial dilutions of pure cell

culture. The quantities of tetL/ml of DNA extract in each sample

were estimated in triplicate by qPCR. The mean tetL quantity/ml
of each sample was back calculated to log10 gene quantity per

gram of feces, using the hierarchical model and manually with

censored observations (,10 copies/ml) replaced by 0. Because

there were no covariates associated with these data, Tobit

regression was not evaluated on this dataset.

Results

Simulated Data
For each simulated dataset, the model estimated posterior

densities for each sample replicate that was below 10 gene copies,

using information present in uncensored observations. For

observations that were part of a sample with three out of three

censored observations, the mass of the posterior densities were

centered over 0 with posterior means that were less than 1 gene

copy (Figure 1). For observations that were part of a sample with

two of three censored observations, the densities were more evenly

dispersed, with posterior means of approximately 6 gene copies.

For observations that came from samples with only one of three

censored observations, the densities were centered toward the

maximum of the range below the censoring limit, with posterior

means of approximately 8 gene copies.

To illustrate how the model estimated the log10 gene copy per

gram of sample, the posterior means and 95% confidence intervals

were plotted against the true values for one simulated dataset with

parameters b0=3, b1=0.5, s=1.5 (Figure 2). For readability, a

small sample size of 50 observations was used in this example;

however, these results are typical of the simulations that were run

with larger sample sizes and varying parameters. For samples with

0, 1, or 2 censored observations, the 95% CI’s are very narrow.

For samples with 3 censored observations the 95% CI’s are very

wide but still include the true values for all but the most extreme

values of simulated data. In this example, samples with 3 censored

observations had standard deviations approximately 0.8 log10
larger than samples with 0, 1, or 2 censored observations. The

difference in precision of estimates among samples with 0, 1, or 2

censored triplicates was small. For example, the difference in the

standard deviation between a sample with no censored observa-

tions and a sample with a similar true log10 gene quantity and two

censored triplicates was approximately 0.02 log10.

Figure 5. Mean square error (MSE) of the intercept (b0) estimated by linear regression with censored observations substituted with
values that varied from 0 to 10 at three different levels of gene quantity (approximately 3, 2, and l log10 gene copies per gram). For
comparison, the MSE’s of the intercepts estimated by the hierarchical model at the three concentrations are provided in the legend and are shown as
tick marks on the y-axis.
doi:10.1371/journal.pone.0064900.g005
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The regression parameter estimates for the intercept, b0,
represented the average log10 gene quantity per gram for samples

that were not associated with the binary risk factor, with true

values in each scenario ranging from 1.0–3.0 log10 gene copies.

The estimates for b1 represented the average increase in log10
gene quantity per gram for samples that were associated with the

risk factor, with true values of 0.5 log10 in every scenario. For all

three scenarios, the hierarchical model overestimated b0 by 0.15–

0.20 log10 gene copies per gram (Table 2). The degree of

overestimation increased as the amount of censoring increased.

The model underestimated the effect of the risk factor, b1, by
20.03 to 20.05 log10 gene copies per gram with the amount of

underestimation decreasing as the degree of censoring increased.

The model performed well in its estimation of b1 in all three

scenarios; the 95% credible intervals for b1 included the true value

in 93%–95% of the iterations. However, the 95% credible

intervals for b0 included the true value in only 72% to 85% of

iterations.

Substitution of censored observations with values ranging from

1 to 10 overestimated the value of b0 by 0.27 to 2.5 log10 gene

copies per gram (Figure 3). The amount of bias increased with the

level of censoring. At all three levels of censoring, the degree of

bias increased as the substituted value increased. Conversely,

substitution of censored observations with values ranging from 1 to

Figure 6. Mean square error (MSE) of the generic risk factor (b1) estimated by linear regression with censored observations
substituted with values that varied from 0 to 10, at three different levels of gene quantity (approximately 3, 2, and l log10 gene
copies per gram). For comparison, the MSE’s of the intercepts estimated by the hierarchical model at the three concentrations are provided in the
legend and are shown as tick marks on the y-axis.
doi:10.1371/journal.pone.0064900.g006

Table 3. Bias, mean square error, and percent coverage of
95% confidence intervals of regression parameters estimated
by three methods: the hierarchical model, Tobit regression,
and linear regression with censored observations substituted
with a value that approximates 0 on the log scale.

Parameters: b0=3,
b1=0.1, s=1.5 Bias MSE

95% CI
coverage

Hierarchical Model

b0 0.003 0.24 94%

b1 20.009 0.16 94%

Tobit Model

b0 0.14 0.04 69%

b1 20.007 0.02 94%

Substitute 0.00325*

b0 21.19 1.43 0%

b1 0.03 0.03 98%

The true values of the estimated parameters were b0= 3, b1= 0.1, and s=1.5.
doi:10.1371/journal.pone.0064900.t003
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10 underestimated the value of b1 by 0.15 to 0.46 log10 gene

copies per gram (Figure 4). As with b0, the amount of bias

increased as the substituted value increased and as the degree of

censoring increased. The MSE’s of parameter estimates also

increased with increasing substitution value and increasing degree

of censoring (Figures 5 and 6).

Substitution of a value approximating 0 copies resulted in b0
values that were underestimated by a range of 20.15 to 20.30

(Table 2). The estimates of b1 were also underestimated by 20.02

to 20.11 log10 gene copies. Coverage of the 95% confidence

intervals of b1 was good (95%–96%) except for scenario three

when the coverage dropped to 87%. As with the hierarchical

model, 95% CI coverage for b0 was inadequate for all three

scenarios (21%–63%). Of all the substitution values that were

evaluated, a value approximating 0 was the only one the produced

results that were comparable to the hierarchical model. For

scenarios 1 and 2, the hierarchical model performed equally well

as substitution of a value approximating 0 in estimation of b1
(Table 2). Both approaches produced similar biases, MSE’s and

95% CI coverage. For scenario 3, the bias of the substitution of 0

approach increased and the 95% CI coverage dropped below

acceptable levels. This was likely due to the fact that the

proportion of observations that were censored was so high that

there was not enough information in the scenario 3 datasets to

adequately estimate b1. Both the hierarchical model and the

substitution of zero method produced inadequate estimates of b0
in all three scenarios. However, the hierarchical model performed

slightly better than the substitution of zero method for scenarios 1

and 2 while the reverse was true for scenario 3.

The Tobit regression model produced results in Scenario 1 that

were very similar to the hierarchical model; b0 was over estimated

by 0.13 and b1 was underestimated by 0.04 and the MSE’s of the

two approaches were equal (Table 2). In Scenarios 2 and 3 the

hierarchical model outperformed Tobit regression.

When the value of the generic risk factor was reduced to from

0.5 to 0.1 (with b0=3 and s=1.5), the hierarchical model

produced the least biased estimates of b0 and b1; however, the
model also produced larger MSE’s for both parameters compared

to Tobit regression (Table 3). The coverage of the 95% CI’s was

better for the hierarchical model than for Tobit regression.

Substitution of 0 considerably underestimated the value of b0 and

overestimated the value of b1 by a larger percentage of the true

value than was underestimated by the other two methods.

Antibiotic Resistance Gene Data
Estimation by qPCR of tetL gene quantity in the pure cell

culture indicated that there were six gene copies per CFU. Based

on these estimates, fecal samples were spiked with serial dilutions

of tetL ranging from 66107 down to 66102 gene copies per gram

of feces. DNA was extracted three times from each spiked fecal

sample resulting in 18 fecal samples, each of which was run in

triplicate, yielding 54 total observations that ranged from ,10

copies to approximately 5.76104 gene copies per ml of DNA. The

Figure 7. Posterior means and 95% credible intervals of log tetL quantity per gram versus the expected log tetL quantity per gram
of spiked fecal samples. Observations denoted by the letter (a) had 8 of 9 censored observations, (b) had 4 of 9 censored, and (c) had 0 censored
observations.
doi:10.1371/journal.pone.0064900.g007
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range of the standard curve was 16107 to 16101 gene copies per

ml of DNA (efficiency = 96%, R2= 0.999).

Overall, 12 of the 54 (22%) observations were censored. At the

four highest concentrations there were no censored observations

and the estimated sample mean quantities were within approxi-

mately 3-fold of the expected value (Figure 7). At the two lowest

concentrations, five out of six samples had at least one censored

observation. Two of the three samples spiked with 66103 gene

copies had two censored triplicates while the third sample had no

censored triplicates. Two of the three samples spiked with 66102

gene copies both had all three triplicates censored, while the third

sample had two of three triplicates censored. The estimated mean

sample gene quantities for samples with censored observations

were overestimated by all three methods except for samples that

had all three triplicates censored; the approach using a substitution

of zero for censored observations underestimated the mean gene

quantities in this scenario. The hierarchical model performed the

best of the three approaches; the MSE of the estimates produced

by the hierarchical model (0.526) was substantially lower than

substitution of zero (1.16).

Discussion

The performance of the hierarchical model was approximately

the same across all three simulated scenarios; the estimates of the

regression coefficient for the risk factor were close to the true value

and the regression intercepts were overestimated in every scenario.

Substitution of zero also produced accurate estimates of the risk

factor coefficient for scenarios 1 and 2, but in scenario 3 when the

level of censoring was extremely high, substitution of zero was no

longer able to adequately estimate the risk factor coefficient. Tobit

regression produced results that were comparable to the hierar-

chical model in Scenario 1, with the least censoring but was

outperformed by the model in the other two scenarios. As with the

hierarchical model, substitution of zero inadequately estimated the

intercept but, in contrast to the hierarchical model, the intercept

was underestimated. For most studies that investigate the

relationship between gene quantity and a risk factor, the regression

coefficient for the risk factor is the parameter that is of primary

interest. Therefore, it is encouraging that, of the three approaches,

the hierarchical model provided the most accurate estimates of the

risk factor effect overall.

When applied to spiked fecal samples of known tetL quantity, the

model overestimated the mean quantity of samples. Substitution of

zero overestimated sample means when at least one replicate was

uncensored but underestimated sample means when all three

sample replicates were censored. The model was developed for use

on data sets with moderate to high degrees of censoring, typically

higher than the level censoring in the spiked tetL experiments.

Nevertheless, the model still yielded a lower MSE than substitution

of zero.

It was observed that the model underestimated the true

simulated values when gene quantity was greater than 4 log10
per gram (Figure 1). However, the 95% CI’s of the posterior

estimates continued to include the true value for large quantity

samples except those greater than approximately 6 log10 per gram.

This decline in performance for high quantity samples is most

likely due to invalidation of the Central Limit Theorem, which

provides the basis for the use of the Poisson distribution to

approximate a binomial distribution [38]. The Poisson approxi-

mation to the binomial is generally described as appropriate when

n is very large and p is very small and when n*p,10. This

condition is true when the log10 gene quantity is less than

approximately 3.5 (i.e. 103.5 * 0.65 * 0.005= 10.2). For the data

sets used in these simulations the percentage of large quantity

samples was small and not likely to affect the regression parameter

estimates. The 95% CI’s of estimated log10 gene quantity failed to

include the true value only for a small percentage of samples with

greater than approximately 6 log10 copies.

In our experience, it is common to measure some antibiotic

resistance genes by qPCR at levels greater than 6 log10 per gram.

With these high quantity genes, the amount of censoring is very

low if not completely absent and special analytical methods are not

necessary. For other genes, the amount of censoring can be very

high, similar to the simulated data in this study. For these low

quantity genes, samples with greater than 6 log10 gene copies are

relatively rare. In this situation, using the Poisson approximation

to the binomial should be appropriate.

Past studies that have used qPCR to measure antibiotic

resistance gene quantities in agricultural samples often do not

provide the LOQ of their assays, nor do they discuss whether or

not censoring was present in their data sets [17225]. Therefore it

is unknown if or how these studies dealt with censored

observations. It is conceivable that censoring was variable

depending on the gene being quantified; in our experience, some

of the genes quantified in these studies range from very high to

extremely low quantities. If high degrees of censoring were present

in these studies and censored observations were replaced by

substitution of a fixed value or were excluded, the results may have

been biased.

Conclusions
The general consensus for using qPCR to measure low quantity

genes is that the number of replicates should be increased to

improve the precision of estimates. For large studies this is not

always feasible. Additionally, in epidemiologic studies involving

qPCR, the main objective is often to measure an association

between gene quantity and a risk factor in a population. In this

case, precise estimation of gene quantity in individual samples is

secondary to estimation of population parameters. Under the

assumptions stated in the methods, the hierarchical model

developed in this study provides a more accurate estimation of

population parameters for moderately to highly censored qPCR

data than do substitution of values close to 0 or Tobit regression.

The use of a hierarchical model and MCMC methods has the

added advantage of being able to accommodate additional levels

to account for more complicated study designs that are common in

epidemiology such as longitudinal studies with repeated measures

within individuals or multilevel data such as animals clustered

within herds.
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