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Abstract: Simulation technologies offer interesting opportunities for computer planning of orthog-
nathic surgery. However, the methods used to date require tedious set up of simulation meshes based
on patient imaging data, and they rely on complex simulation models that require long computations.
In this work, we propose a modeling and simulation methodology that addresses model set up
and runtime simulation in a holistic manner. We pay special attention to modeling the coupling of
rigid-bone and soft-tissue components of the facial model, such that the resulting model is computa-
tionally simple yet accurate. The proposed simulation methodology has been evaluated on a cohort
of 10 patients of orthognathic surgery, comparing quantitatively simulation results to post-operative
scans. The results suggest that the proposed simulation methods admit the use of coarse simulation
meshes, with planning computation times of less than 10 seconds in most cases, and with clinically
viable accuracy.

Keywords: soft-tissue simulation; finite-element model; surgical planning; orthognathic surgery

1. Introduction

Orthognathic surgery is performed on patients who suffer from dentomaxillofacial
disharmony. Deformities of maxillofacial bones may prevent proper functioning of these
bones, which are key for chewing, breathing and speaking [1]. They may also cause
important functional problems such as sleep apnea, malocclusion problems, or lack of
skeletal harmony. In addition to functional problems, facial aesthetic appearance is also
often a motivation for orthognathic surgery, in combination with orthodontic treatment [2].
The aim of orthognathic surgery is to correct the maxillofacial deformities and dental
occlusion, by cutting and repositioning maxillary and/or mandibular bones [3,4].

In the last decades, thanks to technological and scientific progress, virtual surgical
planning has evolved tremendously, enabling pre-operative planning of interventions
such as orthognathic surgery. Planning of orthognathic surgery is carried out in close
collaboration between orthodontists and maxillofacial surgeons, and leverages existing 3D
surgical planning solutions [5–7] .

However, current solutions for orthognathic surgical planning suffer a trade-off be-
tween accuracy and speed. Several commercial software solutions, such as Dolphin (Dol-
phin Imaging & Management Solutions, CA, USA) or Maxilim (Medicim NV, Mechelen,
Belgium), offer interactive planning methods, albeit with crude approximations of the
biomechanical response. They approximate the response of soft tissue after bone reposi-
tioning as a simple geometric transformation, without accurate mechanical modeling.

J. Pers. Med. 2021, 11, 982. https://doi.org/10.3390/jpm11100982 https://www.mdpi.com/journal/jpm

https://www.mdpi.com/journal/jpm
https://www.mdpi.com
https://orcid.org/0000-0002-3592-8269
https://orcid.org/0000-0002-1324-9986
https://orcid.org/0000-0002-9277-4630
https://orcid.org/0000-0003-1648-5308
https://orcid.org/0000-0002-3880-7622
https://doi.org/10.3390/jpm11100982
https://doi.org/10.3390/jpm11100982
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jpm11100982
https://www.mdpi.com/journal/jpm
https://www.mdpi.com/article/10.3390/jpm11100982?type=check_update&version=2


J. Pers. Med. 2021, 11, 982 2 of 22

In contrast, multiple research works have studied computational models of soft tissue
for accurate prediction of the surgical outcome [6,8–13]. Most of these works rely on
complex finite-element models (FEM), and they need up to several minutes to estimate the
deformations due to simulated surgical interventions [8,12,14].

1.1. Contributions

This study proposes a soft-tissue simulation methodology that achieves high accuracy
thanks to an FEM foundation, but it also provides high computational efficiency for
a semi-interactive planning experience. A key novelty in this proposal is to approach
two major tasks of soft-tissue modeling, namely mesh preparation and mathematical
modeling, in a cross-informed manner. Previous methods pay a performance penalty
due to poor treatment of the boundary conditions between soft tissue and bones. These
boundary conditions are expressed with fine geometric detail that leads to high-resolution
discretizations, and are solved using computationally costly methods. Instead, we model
boundary conditions in a manner that allows the use of simple and fast numerical solvers,
and we design procedures for mesh preparation that simplify the definition of boundary
conditions between soft tissue and bones. As a result, simulation models bear a complexity
that is well under the standards of previous methods, with the accompanying benefit on
simulation performance, but without compromising accuracy.

We have tested the proposed simulation methodology on a cohort of 10 orthognathic
surgery patients. For all these patients, we obtain both pre- and post-operative data, which
allows us to simulate surgical planning while replicating true interventions, and validating
the predicted result with respect to the post-operative data. We achieve consistently a
simulation performance of a couple seconds, with accuracy comparable to that of high-
resolution simulations. Figure 1 shows one example result, and compares it to pre- and
post-operative scans.

(a) (b) (c) (d)

Figure 1. These images depict one of the patients (M8) of the test cohort. The first two images
compare a pre-operative 3D scan (a) and a deformation of this scan produced by our planning
simulation (b). Next, the pre-operative scan, in green, is overlaid with a post-operative scan, in grey,
to highlight the effect of the actual surgery (c). The final image compares our simulation result,
in brown, to the post-operative scan (d). In the planning simulation, 86% of the deformed surface
attains an error of less than 3 mm with respect to the post-operative scan, and the error is concentrated
at the neck. Moreover, this high accuracy is achieved with an FEM simulation that takes less than 4 s
to compute.

1.2. Background

Before describing in detail our methodology, we review previous work on simulation
and planning procedures for orthognathic surgery. The amount of works that document
the use of simulation in a clinical context is immense, and we discuss only a few with
particular contributions.

1.2.1. Classification of Previous Work

Bobek et al. [15] proposed the use of an intraoral fiducial marker for accurate prediction
of lip deformation, which could be integrated with other methodologies and increase
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accuracy. The study of Lee et al. [16] is particularly notorious due to the size of the cohort,
with 204 patients. And Xia et al. [17] explain the complete planning procedure to a clinical
audience. In [18], the authors summarize the work carried out at their lab for over 15 years,
discussing possible extensions of soft-tissue simulation to the evaluation under motion or
ageing of the face.

The use of soft-tissue FEM simulation for predicting orthognathic surgery was demon-
strated at least 25 years ago [19,20]. Since then, many works have shown the application of
FEM soft-tissue simulation for planning of orthognathic surgery, covering a broad range
of interventions. Some of the interesting additions to baseline FEM models include the
use of muscle fibers [21], accurate volume preservation [22], or efficient collision handling
based on distance fields [23]. We also list here works that developed a full planning
software based on FEM simulation [24–27]. However, these works do not validate their
methods clinically.

The relevance of orthognathic surgery has favored the existence of multiple commer-
cial software solutions for planning. Some works evaluate the features of these solutions,
Dolphin (Dolphin Imaging & Mangement Solutions, CA, USA) [28], SurgiCase CMF (Ma-
terialise, Leuven, Belgium) [29], or 3dMD Vultus (3dMD Inc., Atlanta, GA, USA) [30].
The recent review by Olivetti et al. [7] analyzes multiple modern software solutions.

In the remainder of this section, we pay detailed attention to works that validate
soft-tissue simulation by comparing simulation results to actual clinical interventions. We
discuss these works according to the main components of our methodology.

1.2.2. Simulation Meshes

The first step in the preparation of the simulation scene is to define simulation meshes
for the soft tissue and the bones. Most approaches use a pre-operative CBCT-scan of the
patient as input, and the different relevant anatomical elements are segmented and then
meshed. Segmentation may be carried out following manual or semi-automatic approaches.
Some works complement the CBCT-scan with a 3D scan of the patient’s face [8].

A different approach to the preparation of the simulation meshes is to consider only
the patient’s face as input [8,9,11,12]. In some of these cases, a precomputed template is
adapted to the patient’s specific anatomy [8,12].

Our methods use as input a CBCT-scan of the head and a 3D scan of the face. We
segment the patient’s preoperative CBCT image and consider the entire head at a volumetric
level (with the bones embedded in the soft tissues of the oral cavity), and not just the
skin around the face. Moreover, we separate the lips, which move following maxilla
and mandible separately and therefore are crucial for a correct result [9,12,13,31]. We
complement the input data further with a dental scan, which we register to the CBCT
image, for higher accuracy of the simulation at the teeth.

Simulations are typically executed on volumetric meshes, but some works use also
surface meshes [10]. The volumetric mesh can be either tetrahedral [6,9,11,13,14,32] or
hexahedral [12,31]. The number of elements and nodes is normally around some thou-
sands [6,12,31] but can go up to a million [14].

In this proposal, we use volumetric meshes of tetrahedra created using TetGen (v. 1.5,
WIAS, Berlin, Germany [33]) (same as [9]). Keeping the simulation meshes at a moderate
resolution is key for computational efficiency of planning simulation. However, it is non-
trivial to achieve the desired accuracy with low-resolution meshes. We succeed to do this
by carefully modeling boundary conditions, which allows the use of an efficient solver.

1.2.3. Soft-Tissue Model

Most of the previous works use FEM models, either self-developed [8,10,11,13], or built
in commercial software such as Ansys (Ansys Inc, Canonsburg, PA, USA) [12,14,32]. Some
works use other models, such as the mass-spring model [9] or the mass-tensor model [11,34].
Mollemans [6] compared these three models.
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The materials used in simulation vary between homogeneous linear elastic ma-
terials [6,10,32], heterogeneous linear materials that separate muscle and adipose tis-
sue [11–13,31], or nonlinear materials [6,35]. Some studies take into account viscoelas-
ticity [14] and different parameters values [13] to reach optimum simulation results.

In this proposal, we use a self-developed FEM implementation with a nonlinear Neo-
Hookean material. Our experiments suggest that nonlinearity and heterogeneity are not
crucial for a correct prediction of the planning output on interventions applied to the bones,
but they might be necessary if detailed interventions are executed, e.g., on the lips.

One crucial aspect for predictive planning is correct modeling of boundary conditions.
The usual approach is to move the bones and let the soft tissue deform according to their
displacement, as in real surgery. This allows clinicians to explore the result under different
transformations to bones. Soft tissue can be classified into different groups, depending
on its interaction with bones. The most accurate models consider tissue groups such as
fixed, free, bonded or sliding [11,31]. Only a few works take into account the sliding effect
between the lips and the teeth [8,11,32]. The displacement applied to the bones may depend
on the test case, such as only the maxilla [13,14], only the mandible [35], or both [6,8–11,36].

We consider all types of boundary conditions between soft tissue and bones, i.e., fixed,
free, bonded or sliding, as discussed above. We let the clinician apply cuts to the bones
and transform bone fragments independently. A key aspect of our approach is to handle
efficiently the bonded interaction between soft tissue and bone fragments, by splitting
the initial coupling into face groups. This feature is implemented efficiently in our self-
developed soft-tissue solver.

1.2.4. Performance and Validation

In previous FEM-based methods, the simulation of orthognathic procedures required
in the order of a few minutes [8,12,14]. Mollemans [6] executed simulations in just half a
minute, but using highly simplified geometry and without considering the separation of
the lips. Semi-interactivity, i.e., computation time of just a few seconds, was reached only
using models based on the mass-spring or mass-tensor methods [11,34].

Most of the studies have performed clinical validations on small cohorts of patients
(fewer than 10 patients). However, some studies have used considerably larger cohorts
(e.g., 25 patients in [10] and 40 patients in [8]). Our study falls in the mid range, with a
cohort of 10 patients.

The validation may be either qualitative or quantitative. Qualitative validation uses
questionnaires answered by surgeons [6,8,9,11,12]. Quantitative validation performs error
measurement between the simulated output and actual post-operative results. Several
studies report low errors, between 1 and 3 mm, which guarantee practical applicabil-
ity [6,8–13]. We also follow quantitative validation, by measuring error with respect to
post-operative results.

Our work brings a notable contribution in its combination of computational efficiency
and thoroughness of the validation. We present modeling and simulation methods that
enable accurate predictions in just a few seconds. Moreover, we have validated these
methods on a cohort of 10 patients, which cover a diverse set of clinical cases.

2. Materials and Methods

As discussed in the introduction, soft-tissue modeling entails two tasks, which are typ-
ically addressed separately: mathematical modeling of soft-tissue deformations and mesh
preparation. By approaching these two tasks in a cross-informed manner, we minimize the
requirements on the soft-tissue models, and therefore we maximize run-time simulation
efficiency. In this section, we describe the methods we follow for mathematical modeling
and mesh preparation, highlighting how these two tasks interplay.

The section starts with the description of the soft-tissue model, which adopts state-of-
the-art finite-element methods (FEM). The section continues with a brief description of our
bone model, based on rigid bodies. Next, it describes how we tackle boundary conditions in
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a compact and efficient manner. We find that a compact and modular approach to specify
boundary conditions is a key element for simulation efficiency, often underestimated.
Modular handling of boundary conditions simplifies the preparation of simulation meshes
as well as run-time input of user-defined manipulations. Based on the compact protocol
for the definition of boundary conditions, the section continues with the preparation of
the simulation meshes and the configuration of boundary conditions, both at initialization
and at run-time. Finally, this section discusses the presentation of the planning results with
high-quality visualization.

2.1. Mathematical Modeling of Soft Tissue

We model as soft tissue all relevant soft anatomical elements of the face, such as lips,
gums, internal muscle of the face, the top area of the neck, and the skin. We consider
all these elements as one elastic continuum, which is connected to bone elements as we
will discuss later. Considering all soft tissue as a continuum may be a crude approxi-
mation for certain analysis, but it appears sufficient for orthognathic surgery planning,
as suggested by our experiments. Previous works in the literature differ widely in their
choices of material models and material parameters. Despite a predominance of linear
elasticity [10,13,14,31,32], some consider nonlinear materials [6,12]. The value of Young
modulus is as far as 3 kPa [31] or 1 MPa [14]. After some tests, we opted for a (nonlinear)
Neo-Hookean material with a Young modulus of 100 kPa and Poisson’s ratio of 0.47. The fa-
cial tissue is admittedly heterogeneous, but our results suggest that our approximation is
sufficient for the application at hand.

Since we adopt state-of-the-art FEM for soft-tissue modeling, we keep this descrip-
tion short. We formulate soft-tissue simulation as a numerical optimization problem,
and we outline the degrees of freedom of this problem, as well as the objective function
or energy that is minimized. The interested reader may follow the bibliography for more
information on material models [37], the finite-element discretization [38], and computer
implementation [39].

Let us define the undeformed and deformed positions of points within the elastic
soft tissue as X and x, respectively. Deformation can be characterized by the deformation
gradient F = ∂x

∂X . Based on the deformation gradient, a constitutive law defines the elastic
energy density of the material. In our simulation model, we adopt a Neo-Hookean material
model, with energy density

Ψ(F) =
µ

2

(
trace

(
FT F

)
− 3
)
− µ log(det(F)) +

λ

2
(log(det(F)))2. (1)

The Lamé constants µ and λ are set based on the Young modulus and Poisson ratio of
the material.

In a computer model, the deformation field x is discretized at a set of nodes, and we
denote as x a vector of degrees of freedom (DoFs) that concatenates the positions of all
nodes. In the remainder, we use boldface font to denote vectors and matrices that assemble
quantities over all discrete elements. The deformation field is interpolated in the continuum
using shape functions as x = N(X) x. In our simulations, we use tetrahedral elements with
linear shape functions. The deformation gradient can be obtained by differentiating the
deformation field as F = ∂N

∂X x.
The FEM solution to the elasticity problem yields the nodal deformations x which

minimize the total energy Vsoft(x) of the soft tissue. This energy is composed of the volume-
integral of the elastic energy density Ψ(F) and the work of external forces fext. In practice,
the integral is computed using quadrature, as the weighted sum of energy values computed
at discrete integration points, with weights {wi}. With our choice of linear finite elements,
one integration point per element is sufficient, and its weight is just the volume of the
corresponding tetrahedron. The total energy can be summarized as:



J. Pers. Med. 2021, 11, 982 6 of 22

Vsoft =
∫

Ω
Ψ(F) dΩ− fT

ext x ≈∑
i

wi Ψ(Fi)− fT
ext x. (2)

Note that we have decided to ignore gravity in our analysis. As the soft tissue is already
pre-loaded with gravity forces in its initial configuration, adding gravity would produce
wrong deformations. A more accurate approach would be to estimate the undeformed
shape of the soft tissue such that, with the inclusion of gravity, it is at rest at the initial
configuration. However, our experiments suggest that this is not necessary, and dropping
gravity is a reasonable approximation.

In an unconstrained setting, the deformation of the soft tissue is obtained by find-
ing the roots of a force equilibrium problem fint + fext = 0, where the internal forces are

computed as the negative gradient of the elastic energy, fint = −∑i wi
∂N
∂X

T ∂Ψ
∂F

T
. In this

expression, ∂Ψ
∂F denotes the First Piola-Kirchhoff stress, and the shape function derivatives

∂N
∂X transform the stress into nodal forces. However, we propose to model boundary condi-
tions, in particular the interaction of soft-tissue and bone elements, using constraints. Then,
the elastic deformation problem needs to be reformulated as a constrained optimization,
as detailed later in Section 2.4.

2.2. Mathematical Modeling of Bones

We choose to model bones as rigid bodies, and our results seem to confirm that the
deformation of bony structures is irrelevant for planning of orthognathic procedures. Based
on this design choice, we start by discussing how we augment the DoFs of the system
x with the DoFs of rigid bones. The configuration of a rigid bone can be parameterized
by the position of its center of mass xb and a rotation matrix Rb. Then, a point with rest
position X is transformed to a world position x = Rb X + xb. At each iteration of the
simulation, we reparameterize the rotation using an incremental rotation in the tangent
space [40]. Describing this incremental rotation using an axis angle θb, the world position
is reformulated as x = Rb X− (Rb X)× θb + xb. This expression defines the instantaneous
kinematics of a bone; therefore, for each bone, we augment the system DoFs x with the
center of mass xb and the incremental rotation θb.

As bones are rigid, they do not contribute any elastic energy. Moreover, due to our
gravity-free approximation, they do not contribute any internal energy to (2). However,
bones affect the formulation of the overall problem through boundary conditions, i.e., con-
straints, which we discuss next.

2.3. Mathematical Modeling of Boundary Conditions

Our simulations support different constraints. We focus our attention on contact
constraints and tissue coupling. Carefully modeling these constraints allows us to formulate
soft-tissue simulation as a computationally efficient problem.

2.3.1. Sliding Contact

The simulation must support sliding contact between soft and/or rigid surfaces. Math-
ematically, contact can be modeled as constraints that prevent interpenetration. However,
instead of hard constraints, for contact we use soft constraints, i.e., we model elastic en-
ergies that penalize interpenetration. This choice is robust when contact occurs between
volumetric objects, for which penetration depth can be robustly computed; and this is the
case for all the anatomical elements involved in the orthognathic scene.

We start by defining a non-penetration constraint for each individual contact. Given
two contact points xp and xq, with collision normal u, we formulate a non-penetration
constraint as uT (xp − xq

)
= 0. We can express all contact points in the scene in terms of

the system DoFs generically as B x + d, and group all contact normals into a matrix U.
Then, non-penetration constraints are mathematically formulated as

Ccontact(x) = UT (B x + d) = 0. (3)
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Instead of enforcing these constraints exactly, we formulate a penalty energy. With a
uniform stiffness k for all contacts, this penalty energy is:

Vcontact(x) =
1
2

k Ccontact(x)T Ccontact(x) =
1
2

k (B x + d)T U UT (B x + d). (4)

This energy is simply added to the soft-tissue energy in (2).

2.3.2. Tissue Fixing and Coupling

Soft tissue may be fixed in space or coupled to moving bones. We focus our dis-
cussion on tissue coupling, as tissue fixing can be regarded as a special case of coupling.
Tissue coupling requires identifying a subvolume of the complete soft tissue, and then
setting constraints on the corresponding nodes of the FEM discretization. While this is
conceptually simple, our methods include two features that make the implementation
highly efficient. First, during the simulation setup (see Section 2.5), we provide a simple
interface to define couplings, leveraging a common meshing of the surfaces of soft tissue
and bones. Second, we support this type of constraint in (8) without solving a complex
constrained optimization, or without the need to assemble the Hessian of the soft tissue
with a separation of coupled and free nodes.

We define a selection matrix S, which selects the coupled DoFs on the soft tissue.
These constrained DoFs are defined as a linear function A of free DoFs z (which contain
bone DoFs as defined in Section 2.2) and possibly some position offset c. In the case of
fixed tissue, A = 0, and c compiles the positions of fixed nodes, Then, we can define the
coupling constraints as:

Ccoupling(x) = S x− (A z + c) = 0. (5)

We also define explicitly the free DoFs as z = S̃ x, where S̃ is another selection matrix,
complementary to S, i.e., S̃ = I− ST S. We can reconstruct the full DoFs by combining the
constrained and free DoFs as

x = S̃T z + ST A z + ST c. (6)

2.3.3. Smooth Coupling at Bone Cuts

We pay special attention to one particular type of coupling. When a bone is cut,
adjacent portions of the soft tissue become coupled to different bone fragments. These
fragments are transformed separately, and the adjacent portions of soft tissue may suffer
unrealistically large local deformations. Implants are also often placed between fragments,
as shown in Figure 2, which would further increase the local soft-tissue deformation.

We have designed a smooth coupling method for soft-tissue regions adjacent to bone
cuts. This method builds on the technique of linear blend skinning (LBS) [41], which
blends the rigid transformations of multiple bones. For each soft-tissue node, the LBS
transformation can be expressed as a linear combination of rigid DoFs, hence it matches
the general formulation of the coupling constraint (5). We define the weights of the bone
transformations as follows. At the location of a bone cut, we use weights of 0.5 for the two
resulting bone fragments. Then we linearly interpolate to weights of 1.0 and 0.0 along a
distance of 1 cm from the cut.

Figure 2 compares the error on patient M2 with and without smooth coupling.
As clearly visible in the areas highlighted with red ellipses, smooth coupling approxi-
mates in a simple yet accurate way the tissue deformation produced by cuts and also by
the insertion of small implants. It removes the need for any complex modeling, and can be
treated completely automatically within the modeling and simulation pipeline.
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Figure 2. This figure shows the impact of the smooth coupling method described in Section 2.3.3 on the planning simulation
for patient M2. (a) shows, color-coded, the different cuts applied to the maxilla and the mandible. It also shows implants
added in the real surgery, with two of them highlighted with red ellipses. The next two images compare the planning
simulation without smooth coupling (b) and with smooth coupling (c). With smooth coupling, the error is notably lower near
the cuts, as shown for example in the two highlighted areas. Notice how the smooth coupling method even approximates
the insertion of implants in a very easy yet accurate way.

2.4. Constrained Optimization Problem

Next, we see how we leverage the definition of coupling constraints to efficiently solve
a constrained optimization problem. Putting together the soft-tissue energy (2), the contact
energy (4), and the coupling constraints (5), soft-tissue simulation can be formally posed as
the constrained optimization

x = arg min Vsoft(x) + Vcontact(x), s.t. Ccoupling(x) = 0. (7)

This optimization can be solved by performing Newton iterations. On each iteration

the objective function is approximated quadratically using its Hessian H = ∂2Vsoft
∂x2 + ∂2Vcontact

∂x2

and gradient g = ∂Vsoft
∂x

T
+ ∂Vcontact

∂x
T

as

x = arg min
1
2

xT H x + gT x, s.t. Ccoupling(x) = 0. (8)

However, thanks to the explicit transformation between free and full DoFs (6), we can
directly express the optimization as an unconstrained optimization on the free DoFs:

z = arg min
1
2

zT
(

S̃ + AT S
)

H
(

S̃T
+ ST A

)
z +

(
g + H ST c

)T (
S̃T

+ ST A
)

z. (9)

And the solution to this unconstrained optimization is trivially obtained by solving
the following linear system:(

S̃ + AT S
)

H
(

S̃T
+ ST A

)
z = −

(
S̃ + AT S

) (
g + H ST c

)
. (10)

As it becomes evident, with our approach to model constraints, the complex con-
strained optimization (8) becomes a simple linear system. The matrix of this linear system
is built by first multiplying terms corresponding to the constrained DoFs by the matrix A,
followed by a selection of rows and columns from the full Hessian. The right-hand side is
built by applying the same procedure to the full gradient. After each linear-system solve,
we execute a line search to guarantee that the total energy is reduced, and we continue
with the next Newton iteration until the full simulation converges.

2.5. Preparation of Simulation Meshes and Couplings

In our computational planning approach, we assume the following patient imaging
data is collected and input to the process (see Figure 3): a CBCT-scan, from which the
different anatomical elements are segmented; a dental 3D scan, for high modeling and



J. Pers. Med. 2021, 11, 982 9 of 22

simulation accuracy of teeth; and a textured 3D scan of the face, which is only used for
evaluation of results and is applied after the simulation. Setting up a simulation scene for
pre-operative planning is a laborious task. Moreover, it often requires a combination of in-
context knowledge from the anatomical, clinical, and simulation areas, to define simulation
properties that are anatomically and clinically relevant. By approaching mathematical
modeling and scene preparation in a cross-informed manner, we minimize the requirements
on simulation knowledge for the technicians in charge of scene preparation.

(a) (b) (c)

Figure 3. Summary of the patient imaging data collected for the planning process. CBCT-scan of the head (a), dental 3D
scan (b), and textured face 3D scan (c) for patient M1.

The step of segmentation and meshing of the operation scene requires separating the
volumetric anatomy into distinct objects, as well as defining interfaces between them. Our
overall workflow is similar to the one followed by Mollemans et al [6]. However, in our
approach the definition of object interfaces accounts for the models of boundary conditions
described in Section 2.3, and is implemented through simple protocols. In this way, we
are able to employ the simplified constrained optimization solver discussed in Section 2.1,
which has a positive impact on the runtime cost of simulation during planning. To prepare
the simulation data, we alternate volumetric and surface representations, which are best
suited for different operations. For volumetric operations we leverage the open-source
software 3D Slicer (v. 4.10.2, https://www.slicer.org/, accessed on 28 September 2021) [42],
and for surface operations we leverage Meshmixer (v. 3.5, Autodesk Inc., Mill Valley,
CA, USA).

2.5.1. Bones

Processing of bone structures includes three major steps: segmentation, cleanup,
and preparation for cutting. We execute segmentation of the input CBCT-scan images on
3D Slicer. The images are first processed using a median filter, and then they are segmented
using a thresholding algorithm. In this way, bone structures are separated from the soft
tissue. Results of a segmentation in 3D Slicer are shown in Figure 4. Manual editing may
be necessary in some areas like the mandibular condyles, and a smoothing filter is used for
small regions.

We generate separate bone surfaces for the mandible and the skull, and we load
them in Meshmixer for further clean-up. Meshmixer allows surface-editing operations to
clean irregularities, close holes, remesh, simplify the mesh, make cuts, and many other
options. First, surfaces are imported into the program, without any scale or rotation.
Then, secondary meshes unintentionally generated during the segmentation process are
discarded. The dental scan is also imported, registered and merged with the bone meshes
through a Boolean union.

https://www.slicer.org/
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(a) (b)
Figure 4. Results of segmentation in 3D Slicer. (a) shows segmentation of the entire patient. (b) shows
segmentation of skin and bones.

The specification of cutting operations is a task to be performed by the clinician as a
part of planning. We let the user place cutting planes relative to the bone meshes, and once
verified we use them to separate the input meshes into two or more fragments. Each
of these fragments can then be handled as a separate object in the simulation, and can
be manipulated by the clinician during planning. In our project, we use Meshmixer to
define and execute cutting operations. Figure 5 shows some examples of bone meshes after
cleanup, cut and refinement in Meshmixer.

Once cuts are executed, all bone geometry is fully defined. At this point, we simplify
bone meshes to reach just the necessary mesh complexity to represent the required de-
tail, but without an excessive number of vertices which could slow down the planning
simulation. Mesh quality must be checked and iterated if necessary. In Section 3, we
extensively discuss how we manage to use meshes of low complexity, and hence high
efficiency, without compromising planning quality. Once bone meshes are appropriately
simplified, we pass them to the simulation engine for the definition of rigid-body DoFs as
described in Section 2.2.

(a) (b)

Figure 5. Meshes of bones after cleanup, cut and refinement in Meshmixer. Image (a) shows three
maxillary segments; image (b) shows three mandibular segments.

2.5.2. Soft Tissue

Much of the process to prepare simulation meshes for soft tissue is the same as
for bones. However, bone geometry is used as a reference to accurately find interfaces.
The process starts with segmentation in 3D Slicer. In our experience, soft tissues require
more manual intervention than bones, e.g., cleaning metal artifacts caused by braces,
editing irregular areas like the lips, or applying smoothing filters to small regions. We also
separate the lips in case the CBCT-scan was obtained with closed lips. Finally, we segment
the air in the oral cavity using a simple thresholding approach, and we subtract it from the
soft tissue using a Boolean difference operation.

We continue the cleaning process in Meshmixer. We close open areas of the soft tissues
which are irrelevant from a clinical point of view, or which are far from the clinical region of
interest, such as the openings of the respiratory tract (trachea and nostrils) and the external
auditory canal (see Figure 6). We also discard small internal cavities. As a result of this
cleaning and segmentation operation, we produce preliminary soft-tissue surfaces.
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(a) (b)

Figure 6. The preliminary segmentation of the skin mesh (a) is postprocessed to close small cavities
and clean the surface (b).

We then apply a Boolean difference operation between the preliminary soft-tissue
surfaces and the bone surfaces. In particular, we apply this difference operation to the
maxilla and the mandible. As a result of this operation, the surfaces of the tissue and the
bones match exactly, and we leverage this newly created surfaces to simplify the definition
of fixed tissue or tissue-bone couplings as described in Section 2.3.

When the bones are cut as part of planning, the tissue-bone couplings must be mi-
grated to the new bone fragments. To this end, we leverage the common meshing of
coincident bone and tissue surfaces provided by the Boolean difference operation. If a
bone is cut into multiple fragments, we identify the new surface fragments, and for each
fragment we define a face group on the corresponding soft-tissue surface. Then, we set a
tissue-bone coupling for each bone fragment and its corresponding soft-tissue face group.
Figure 7 shows examples of bone fragments and coupled face groups on the soft tissue.

(a) (b)

Figure 7. When cutting a bone, the couplings between this bone and soft tissue need to be accordingly split. We pseudo
automatically separate the coupled surface of the soft tissue into different face groups in the Boolean subtraction operation.
Image (a) shows bones cut into 6 fragments and image (b) shows the corresponding face groups in the interior of the
skin mesh.

Last but not least, we execute a mesh simplification process to retain a mesh complexity
that is sufficient for accurate planning, but which will minimize the runtime computational
cost of the simulation, as shown in Figure 8. We use pseudoautomatic tools in Meshmixer
to execute the simplification, requesting higher accuracy in regions of particular interest
to the clinicians, such as the lips, the chin, or the nose. The result of this process is a set
of soft-tissue surfaces, which are clean and closed. They are tetrahedralized using Tetgen,
and the result defines the soft-tissue model as described in Section 2.1. The soft-tissue
surfaces also enjoy well-defined interfaces with bone surfaces, which serve the definition
of couplings as described in Section 2.3.
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(a) (b)
Figure 8. We simplify simulation meshes to retain the complexity that is sufficient for accurate
planning, but which will minimize runtime cost. These images show examples where the raw mesh
is simplified to 23,000 triangles (a) and 2600 triangles (b).

2.6. Textured Output Visualization

In this study, we focus on the quantitative evaluation of simulated planning. However,
for effective presentation to the clinical team, it is important to visualize the planning
results with the patient’s face texture.

To this end, we employ the pre-operative textured 3D scan of the patient’s face. After
the generation of the high-resolution soft-tissue surfaces, we execute a rigid registration
step to the textured scan. The result of this registration yields a mapping of the texture to
the surface meshes, and we retain this mapping during mesh simplification. After every
planning simulation, we simply render the simulation results with the overlay of the face
texture (Figure 9).

(a) (b) (c) (d)
Figure 9. Preoperative 3D scan (a,c) and textured output (b,d) of patient M7, in frontal view (a,b) and
lateral view (c,d).

3. Results

We have tested the described simulation methodology on a cohort of 10 orthognathic
surgery patients. Informed consent for the use of medical images was obtained from all
subjects, and the study was approved by the Ethics Committee of Hospital Universitario
La Paz (Madrid, Spain).

In this section, we describe the validation methodology, we summarize the charac-
teristics of the test cohort, we discuss the specific experiments that we have carried out,
and we outline the results in terms of simulation error and simulation performance.

3.1. Validation Methodology

For each orthognathic patient analyzed in the study, we have collected post-operative
CBCT-scans in addition to the pre-operative data outlined in Section 2.5. Based on the com-
bination of pre- and post-operative data, we have identified the specific osteotomies and
transformations applied to the patients, and we have carried out the same operations using
our simulated planning methods. This enables a quantitative comparison of simulation
results to ground-truth post-operative data.
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We start by segmenting bone geometry and bone fragments in the post-operative
CBCT-scan, following the same procedure we describe for pre-operative data in Section 2.5.
We identify the osteotomies executed to the maxilla and the mandible, and we apply the
same cuts to the simulated bones. Next, we measure the transformations applied to the
physical bone fragments, as these become the input to our simulation methods. We do this
by executing a rigid registration operation between the pre- and post-operative fragments,
using an Iterative Closest Point algorithm. Example results are shown in Figure 10.

Thanks to the registration results, we define the rigid transformations to be applied
to the simulated bone fragments. Finally, with this information, we compute soft-tissue
deformation by iteratively solving the numerical problem described in Section 2.4. To en-
sure robust computation of the deformations, we decompose the bone transformations
in multiple substeps (10 in the examples), and for each substep we solve the nonlinear
optimization (7) to convergence. This requires iterating the linear problem (10). Note that,
on each iteration, the bone-tissue couplings extend the effect of the bone transformations
to the soft tissue.

Figure 10. For validation of the proposed simulation methods, we simulate surgical procedures
executed on actual interventions. To this end, we identify bone cuts in post-operative scans (brown),
we apply those cuts to pre-operative scans (green), and we register the cut bone fragments between
both scans. The images show the input pre-operative and post-operative scans (a), and again the
same scans after registration (b). The transformations applied to the individual bone fragments
(numbered 1 to 6 in the images) are used as boundary conditions for our planning simulation.

To measure error between the simulation results and the post-operative data, we
load both data sets into 3D Slicer, and we use a signed closest-point distance compu-
tation. For this error analysis, we ignore regions outside the clinical region-of-interest,
such as the neck and occipital areas, where the CBCT images tend to differ due to pos-
ture misalignment.

3.2. Test Cases

The test cohort of 10 patients has been selected in close collaboration with the Max-
illofacial Surgery Service. The patients were selected to cover a large diversity of personal
characteristics (e.g., diagnosis) and surgical procedures, as this diversity allows ample
testing of the proposed simulation methodology. The main characteristics and the surgical
procedures applied to all 10 patients are listed on Table 1.

We collected the following data for each patient: age (mean 32 years, range 22–51 years),
gender (8 women, 2 men), ethnic group (8 Caucasian, 2 Latin American), and diagnosis
(2 class II malocclusion cases, 4 class III malocclusion cases, 3 asymmetry cases, 1 open
bite case). The surgeries undergone by the patients exhibit diverse procedures for both the
maxilla and the mandible:
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• In maxillary procedures, the maxilla is separated from the skull through a Lefort
osteotomy, classified based on its anatomical level. In this cohort, the distribution of
cases is: 8 Lefort I cases and 1 Lefort II case; one patient did not undergo maxillary
surgery. Moreover, after a Lefort I osteotomy, the maxilla may be segmented (typically
into three fragments) in order to expand the upper arch. Maxilla segmentation was
applied to 6 patients in this cohort.

• In mandibular procedures, the mandible may be sagittally split on both rami (bilateral
sagittal split osteotomy, BSSO) or only one ramus (unilateral sagittal split osteotomy,
USSO). In this cohort, the distribution of cases is: 7 BSSO cases, 1 USSO case; two
patients did not undergo mandibular surgery. Additionally, a chin osteotomy or ge-
nioplasty may be also performed. Genioplasty was applied to 1 patient in this cohort.

In total, 7 out of 10 patients underwent bimaxillary surgery, i.e., both maxillary and
mandibular surgery. Tables 2 and 3 show the pre-operative and post-operative scans for all
10 patients, as well as the bone fragments produced during surgery, before displacement
and fixation.

Table 1. Characteristics of the 10 patients analyzed in the study, including surgical procedures applied to maxilla
and mandible.

ID Gender Age Ethnic Group Diagnosis Maxilla Surgery Mandible Surgery
Lefort Type Segmented Sagittal Split Genioplasty

M1 M 41 Caucasian Class III I Yes BSSO No
M2 F 31 Caucasian Open bite I Yes BSSO No
M3 F 36 Latin American Class III II No BSSO No
M4 F 28 Caucasian Asymmetry I No USSO Yes
M5 F 25 Caucasian Class II I Yes BSSO No
M6 M 51 Caucasian Class II I Yes BSSO No
M7 F 22 Caucasian Class III I Yes No No
M8 F 22 Latin American Class III I Yes No No
M9 F 36 Caucasian Asymmetry No No BSSO No

M10 F 29 Caucasian Asymmetry I No BSSO No

The planning simulations have been performed with two different mesh resolutions
for each patient. In this way, we compare accuracy and performance between fine and
coarse simulations. Our hypothesis is that our modeling and simulation methodology,
in particular the definition of couplings between anatomical elements, allows the use of
coarse simulation meshes without incurring in excessive error. This would allow a large
reduction of simulation times, even semi-interactive planning. Table 4 indicates the mesh
complexity of both fine and coarse meshes for all patients. In all cases, the reduction in
mesh complexity is between 80 and 90%.

3.3. Simulation Error and Performance

As described in Section 3.1, we evaluate signed distances between the simulation
results and the post-operative scans in 3D Slicer. With this information, we compute color
maps in Paraview v 5.8.1 (Kitware Inc., New York, NY, USA) [43] to visualize the error map.
These error maps are visualized, per patient, in Tables 2 and 3. The tables also compare the
error maps using fine and coarse simulation meshes.

We have also computed, for each patient, the cumulative percentage of the surface with
error below a predefined threshold. We have done this for several error thresholds spaced
1 mm. Figure 11 compares the cumulative surface percentage as a function of the error
threshold, for fine and coarse meshes. The plots depict maximum, minimum, and average
surface percentage across the 10 test patients. We validate that, for all the patients, the vast
majority of the surface has an error lower than 3 mm, which is the clinically acceptable limit
in orthognathic surgery planning [6,8–13]. Table 4 lists the cumulative surface percentage
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with an error lower than 3 mm for all the patients, comparing results with both fine and
coarse meshes.

Finally, we have also measured the time required to compute the simulations on all
patients. All simulations were executed on a commodity PC (Intel six-core i7 2.6 GHz CPU
with 32GB RAM). Table 4 lists the computation times for all patients. With fine meshes,
these times range between half a minute and over three minutes. With coarse meshes,
on the other hand, they range between 3 and 15 s.

Table 2. Simulation results for patients M1 to M5. From left to right: pre-operative scan, post-operative scan, bone fragments
produced during surgery, simulation error using a fine mesh, and simulation error using a coarse mesh. Scale of the color
maps ranges from −4 mm to 4 mm.

ID Skin Pre Skin Post Bones Fine Mesh Error Coarse Mesh Error

M1

M2

M3

M4

M5
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Table 3. Simulation results for patients M6 to M10. From left to right: pre-operative scan, post-operative scan, bone
fragments produced during surgery, simulation error using a fine mesh, and simulation error using a coarse mesh. Scale of
the color maps ranges from −4 mm to 4 mm.

ID Skin Pre Skin Post Bones Fine Mesh Error Coarse Mesh Error

M6

M7

M8

M9

M10

Table 4. Summary of simulation results for all patients. The table compares simulation time and error for fine and
coarse meshes.

Patient ID Number of Triangles Simulation Time (s) Surface with Error <= 3 mm
Fine Coarse Reduction Fine Coarse Reduction Fine Coarse Reduction

M1 22,970 2600 89% 90.7 5.7 93% 98% 92% 6%
M2 18,000 3400 81% 111.6 11.8 90% 98% 96% 2%
M3 18,600 3800 80% 68.5 12.6 82% 95% 90% 5%
M4 22,750 4250 81% 107.3 14.9 86% 95% 93% 2%
M5 19,500 3848 80% 202.7 11.8 94% 89% 85% 4%
M6 22,560 2720 88% 102.4 10.7 92% 94% 91% 3%
M7 23,576 2632 89% 111.9 4.8 96% 91% 91% 0%
M8 22,888 2354 90% 77.5 3.8 95% 93% 86% 7%
M9 18,738 2646 86% 38.6 3.3 92% 100% 100% 0%

M10 20,640 3390 84% 65.9 9.3 87% 96% 94% 2%
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(a) (b)
Figure 11. Plots of cumulative surface percentage with error below a predefined threshold. The plots
show maximum, minimum, and average surface percentage across the 10 test patients. They also
compare the results using a fine mesh (a) or a coarse mesh (b).

4. Discussion

The results outlined in the previous section can be analyzed from different angles.
In this section, we analyze the overall accuracy of the planning simulation, but we also pay
attention to possible differences across patients and clinical cases. Finally, we discuss the
impact of the resolution of the simulation mesh.

4.1. Analysis of Simulation Accuracy

The error depicted in the form of color maps in Tables 2 and 3 suggests that the error
is dominated by negative values (i.e., cold colors) vs. positive values (i.e., warm colors).
Negative error means that the simulation result appears inside the post-operative scan.
The dominance of negative/cold error could be due to the following two factors, which
should be studied in a future refinement of the simulation methodology.

First, during the preparation of the simulation meshes described in Section 2.5, the sim-
ulation mesh may shrink with respect to the original data set. This shrinking effect is a
combined result of mesh cleaning, decimation, and refinement. Second, some elements of
a real surgery are not simulated in our methodology, and this could also lead to a loss of
volume in the final results. Such elements that are not simulated include bone grafts, bone
fixation plates, or prostheses (see, e.g., patient M4).

The tendency toward negative/cold errors is slightly higher on coarse meshes. This is
not a surprise, as mesh decimation is a possible source of shrinking as discussed above.

When analyzing the error on different regions of the face, we observe notable differences:

• Chin. Overall, the amount of error at the chin area is very low. This could be explained
by the fact that the skin at the chin is very thin, and the coupling to the mandible
makes the simulation highly predictive.

• Lips. In other regions, such as the lips, skin slides strongly over the underlying bones
and teeth, and the deformation result is more difficult to predict. Overall, we observe
higher variability in the error at the lips, and also some patients with higher error.

• Nose. The quality of the prediction of the deformation of the nose varies strongly
across patients. In this case, the variability may depend on the type of surgery
performed on each patient’s anterior nasal spine. This type of surgery is not easy
to identify in the post-operative CBCT image due to the presence of bone grafts or
fixation plates.

• Neck. Finally, we observe large error in the neck area (e.g., patients M5 and M8),
and specifically at the junction point between the submental area and the neck (“C
point” or “cervical point” in cephalometric analysis). This error was accounted for in
our quantitative analysis, which negatively biased the overall results. However, this
area is not of special interest to orthognathic surgeons. The deformation is known to
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be produced by a retraction of skin after surgery, but surgeons do not account for this
effect during pre-operative planning.

4.2. Analysis of Clinical Cases and Patients

It is important to note that the error reported in the various tables and plots indicates
absolute error, and does not take into account the amount of translation applied to the
bone elements in the surgical intervention. Some cases require a large intervention and are
therefore prone to higher error, such as the bimaxillary and segmented surgery of patient
M1, while others require a milder intervention, such as the slight asymmetry of patient M9.
These surgical differences translate into notable differences in the resulting absolute error,
e.g., 92% and 100% of the surface with error below 3 mm on the coarse mesh for patients
M1 and M9, respectively. Nevertheless, we opted to analyze absolute error as it is a better
indicator of the clinical validity of the planning simulation.

At the same time, the diversity of surgical cases and personal characteristics of the
patients allows us to carry out the following comparisons:

• Ethnicity. The predicted deformation of the central area of the face is visually more
accurate for the Latin American patients M3 and M8) than for Caucasian patients (rest
of patients). As discussed with collaborating surgeons, this may be due to stiffer soft
tissue in the case of patients of Latin American ethnicity, which deforms in a more
predictable way when bones are displaced, compared to Caucasian patients. However,
the group of Latin American patients in the study is very small, and such ethnicity
differences could be analyzed in a more thorough study.

• Diagnosis. Patients with Class II diagnosis exhibit distinct results with respect to
the rest. In these patients (M5 and M6), the simulation result shows error in the
deformation of the lower lip. Initially everted lips, such as those of these patients, do
not reach the full deformation visible in the post-operative scans, where they appear
in front of the teeth, but instead remain slightly everted. This simulation error may be
caused by a lip stretching effect that is not correctly captured by the simulation model,
and remains as one of the items to be improved in the future. Patients with Class III,
asymmetry and open bite diagnoses do not exhibit any common error pattern within
their groups.

• Lefort type. There appears to be a correlation between the type of Lefort osteotomy
and the amount of error in the deformation of the nose. Specifically, the deformation
of the nose is correctly predicted in the case of Lefort II osteotomy (patient M3), but it
appears less predictable for patients with Lefort I osteotomy. This is probably due to
the uncertainty of the intervention carried out on anterior nasal spine, as discussed
earlier. Obviously, if a Lefort osteotomy is not performed (patient M9), there is no
deformation and the prediction is correct.

• Segmentation of the maxilla and mandible. For all patients, the highest error (except
for the neck, which is not clinically relevant as discussed above) appears near the
cut areas, both of the maxilla (e.g., patients M5 and M7) and the mandible (e.g.,
patients M1 and M3). This is probably due to the presence of fixation plates and/or
bone grafts in the real result (e.g., patient M10, whose maxilla was not segmented,
but where the presence of bone graft has been confirmed by the surgeon who carried
out the intervention). As a consequence, patients with a segmented maxilla and/or
mandible show in general larger error than those without segmented bones. However,
the smooth coupling method proposed in Section 2.3.3 reduces considerably the error
in cut areas, as shown in Figure 2.

• Genioplasty. Error in the chin area appears low for patients who did not undergo ge-
nioplasty, but also for those who did (patient M4), as already mentioned. The analysis
of genioplasty could be extended to a larger cohort.
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4.3. Comparison of Fine and Coarse Meshes

The cumulative error analysis summarized in Figure 11 indicates a small loss of
accuracy when the resolution of the simulation meshes is reduced. On average, 92% of
the surface of the patients has an error lower than 3 mm with coarse meshes, and with
fine meshes this percentage grows to 95%. Simulations with coarse meshes also exhibit a
slightly wider range of error values.

However, when the specific patient cases are inspected in more detail, as depicted in
Tables 2 and 3, we can see that error appears in the same areas with coarse and fine meshes.
The use of coarse meshes does not lead to additional sources of error, and the coarse and
fine simulations are qualitatively equivalent.

The accuracy of coarse simulation meshes indicates that for most clinical cases they are
perfectly valid, as the error in critical areas remains under clinically acceptable thresholds
(i.e., 3 mm). In the worst case, the coarse simulation can be used as a faster preview of
the clinical prediction, which can dramatically accelerate planning iterations. Only when
the coarse simulation provides a clinically satisfactory result, surgeons may launch a fine
simulation for higher accuracy.

The combination of coarse and fine simulations is further justified by the extreme
reduction in computation times. As listed in Table 4, the reduction in simulation times
achieved with coarse meshes (90.7% on average) is higher than the reduction in mesh
complexity (84.8% on average). Moreover, this drastic reduction in simulation times
produces only a minimal reduction in simulation accuracy (3.1% on average, measured as
the cumulative surface percentage with error below 3 mm).

5. Conclusions

In this work, we have presented a simulation methodology for planning of orthog-
nathic surgical interventions. The proposed methodology pays special attention to the
definition of couplings between anatomical elements, e.g., bones and soft tissue. Complex
handling of these couplings in previous work is a source of simulation complexity, which
requires high-resolution meshes and long computation times to ensure accurate results.
In contrast, the proposed methodology addresses in a combined manner the preparation
of the simulation meshes and the computational definition of couplings, and results in
runtime simulations that are accurate even with coarse meshes. The ability to use coarse
meshes has a drastic impact on the simulation cost, as demonstrated in our results.

The analysis of results discussed in the previous section suggests that coarse meshes
are accurate enough for full prediction of the clinical intervention in some cases. In other
cases, due to the slight increase in error, we advise executing a final prediction using fine
meshes. The use of coarse meshes can anyway have a strong impact in practical planning
situations, as clinicians will be able to execute fast planning using coarse meshes as a good
preview of the final result.

In this paper, we have carried out global quantitative validation of the simulation
methodology. Further validation actions should include quantitative validation of anatom-
ical landmarks, as well as qualitative clinical evaluation. For quantitative validation on
landmarks, previous works [8] have proposed clinically interesting points, such as the
tip of the nose, the lips, or the chin. For qualitative clinical evaluation, we will follow
procedures carried out in previous work [6], with the help of the orthognathic surgery
team at Hospital Universitario La Paz. An interesting possibility for further validation is to
quantify errors in facial recognition, as explored by Olivetti et al. [44].

The proposed simulation methodology also admits further technical extensions.
As discussed in Section 4.2, the lips appear to be the anatomical elements with higher mod-
eling inaccuracies, in particular in case of everted lips. The soft-tissue model presented in
Section 2.1 can be extended to include pretension, by defining rest configurations different
than the one of the pre-operative scan.

Other areas of interest for future work include the acceleration of the model setup and
the inclusion of richer planning functionalities. Currently, model setup requires multiple
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manual steps at both the volumetric and surface level. These steps could be accelerated
with the use of model templates that are automatically morphed to patient data. Similarly,
the cutting operations typically follow pre-defined clinical procedures, and they could
be implemented as parametric operations that are easily applied on the patient’s model.
Finally, the textured visualization of the simulation results, described in Section 2.6, could
be leveraged during planning operations and/or for communication purpose.
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