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Some dividing cells sense their shape by becoming polarized along their long axis. Cell
polarity is controlled in part by polarity proteins, like Rho GTPases, cycling between
active membrane-bound forms and inactive cytosolic forms, modeled as a “wave-
pinning” reaction-diffusion process. Does shape sensing emerge from wave pinning? We
show that wave pinning senses the cell’s long axis. Simulating wave pinning on a curved
surface, we find that high-activity domains migrate to peaks and troughs of the surface.
For smooth surfaces, a simple rule of minimizing the domain perimeter while keeping
its area fixed predicts the final position of the domain and its shape. However, when we
introduce roughness to our surfaces, shape sensing can be disrupted, and high-activity
domains can become localized to locations other than the global peaks and valleys of the
surface. On rough surfaces, the domains of the wave-pinning model are more robust in
finding the peaks and troughs than the minimization rule, although both can become
trapped in steady states away from the peaks and valleys. We can control the robustness
of shape sensing by altering the Rho GTPase diffusivity and the domain size. We also
find that the shape-sensing properties of cell polarity models can explain how domains
localize to curved regions of deformed cells. Our results help to understand the factors
that allow cells to sense their shape—and the limits that membrane roughness can place
on this process.

cell polarity | patterning | reaction diffusion | roughness

For cells to respond to changing environments (1, 2) by choosing a direction to crawl,
an axis of division, or a location to form a new branch, they must develop an internal
biochemical polarity, where proteins are distributed inhomogeneously around the cell
surface. In addition, the shape of the cell and its internal membranes can help organize its
polarity—cells can sense their own shape (3). Localization of different proteins to different
regions can occur when individual proteins prefer to bind to membranes that have a
specified curvature range, as is known to happen with BAR proteins (4, 5), ArfGAP (6–8),
α-synuclein (9), SpoVM (10), and septins (11). However, even if individual proteins do
not have a curvature preference, reactions on a cell membrane can be sensitive to the shape
of that membrane, leading to patterns of protein localization sensitive to the membrane’s
shape. This is the broadest idea of “shape sensing.” This shape sensitivity can arise from
the local changes in surface-to-volume ratio (12) or more complicated reaction-diffusion
mechanisms (13–19). Experiments have measured key correlations between localization
of myosin II (20) and the phospholipid phosphatidylinositol (4,5)-bisphosphate (PIP2)
(21) and local cell shape features, like curvature, while inducing curvature within a cell can
change the localization of both myosin II (20) and the polarity protein Rho (22). Yeast
polarity domain size also reflects cell shape (23). Bacterial shape sensing has also been
recapitulated in vitro for the Min system of Escherichia coli (24, 25). Shape sensing may
also play a role in creating instabilities where cells crawl in circles (13, 26) or have a periodic
motion (27). Even the existence of polarization is sensitive to cell volume (28). Most
dramatically, recent work studying the distribution of PAR proteins in the Caenorhabditis
elegans zygote demonstrates a clear binary shape sensing: when PAR proteins are disrupted
from their natural location by experimental intervention, they return to become localized
to the nearest narrow end of the zygote (29). This experiment demonstrates that PAR
proteins sense the long axis of the cell—while not establishing whether this sensing is
self-organized or arises from a preexisting pattern.

Some elements of shape sensing are well understood (e.g., how patterns can be selected
by controlling the possible wavelengths of an initial linear instability) (30). Here, we focus
on a specific aspect of shape sensing; motivated by ref. 29, we study how a single initial
domain of high concentration moves in response to the shape of its membrane. We will
refer to this as “domain migration shape sensing” to distinguish it from other examples
of sensitivity to shape mentioned earlier. Domain migration cannot be captured by linear
stability analysis and is not well understood. As a prototype model, we study a minimal
model of cell polarity, the “wave-pinning” (WP) model of Mori et al. (31), which describes
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Rho GTPase dynamics. We use this model as the simplest model
that robustly describes cell polarity, but it is also closely related to
more detailed models used to describe PAR protein dynamics (32).
Previous work has shown that the membrane-bound active forms
of Rho GTPases localize to the narrow end of the cell (13, 33,
34), and links between the WP model and the Allen–Cahn model
have been suggested (33, 35). These behaviors occur not only in
the basic WP model but also, in significantly more complicated
models, including multiple Rho GTPases and phosphoinositides
(36, 37). Later work has also shown that narrow-end localization
occurs in three dimensions but also, demonstrates that domain
localization in response to a complex cell shape is difficult to
predict (14).

Can we reproduce the shape sensing via domain migration
of ref. 29 using a simple model? Is there a predictive minimal
theory for where polarity proteins will end up in a cell, other
than just solving the complex reaction-diffusion partial differ-
ential equations? Previous simulation work has also focused on
smooth, idealized surfaces. Would reaction-diffusion mechanisms
for shape sensing be robust to the rough, complex shapes observed
in real cells? In this paper, we study these questions. We find
that a minimal WP model is able to recapitulate binary shape
sensing as well as localization of domains to corners of triangular
cells. We also argue that in many cases, we can understand the
dynamics of complex domain shapes arising from the WP model
by minimizing domain perimeter while keeping the domain area
fixed. However, we find that this simple minimization principle
can be disrupted in sufficiently rough membrane geometries,
where shape sensing itself is also less reliable. We show that shape
sensing can be modulated by altering the diffusion coefficient of
the membrane-bound form of our Rho GTPase, as well as the
domain area. Our work is a systematic test of a minimal theory
for how shape influences Rho GTPase cell polarity and provides
an understanding of when shape sensing will succeed depending
on the cell geometry.

1. Models

1.A. WP Model of Cell Polarity. We describe cell polarity with
a variant of the WP reaction-diffusion system (31). This model
treats Rho GTPases exchanging between the active membrane-
bound ρ(r) and inactive cytosolic ρcytosolic states with rate
f (ρ, ρcytosolic) and the membrane-bound form diffusing on the
curved membrane with diffusion coefficient D ; the total amount
of Rho GTPase is conserved. ρ(r) obeys the reaction-diffusion
equation:

∂ρ

∂t
=D∇2ρ+ f (ρ, ρcytosolic). [1]

The reaction term f (ρ, ρcytosolic) includes basal rates of activation
and deactivation and a positive feedback, where activation occurs
more often when active Rho GTPase is already present:

f (ρ, ρcytosolic) = ρcytosolic

(
k0 +

γρ2

K 2 + ρ2

)
− δρ, [2]

where k0 is a basal rate of activation, K is the concentration
at which the positive feedback begins to saturate, and γ is the
maximal rate of activation from positive feedback. The basal rate
of the reverse reaction (i.e., conversion from ρ to ρcytosolic) is δ. In
all the results presented in this paper, we have used k0 = 0.07 s−1,
γ = 5 s−1,K = 2 μm−2, and δ = 3 s−1. Unless otherwise stated,
we use D = 0.5 μm2s−1. The order of magnitude of these
quantities is based on ref. 31.

We assume that the diffusion coefficient of the cytosolic form
is so much larger than the diffusion coefficient of ρ that ρcytosolic
is well mixed (i.e., constant over the cell volume). Because of
the conservation of Rho GTPases between the membrane-bound
and cytosolic forms, the total number of Rho GTPase proteins is∫

membrane ρ+
∫

cytosol ρcytosolic, which is a unitless constant we call
M . We can then determine ρcytosolic as

ρcytosolic =
M

ωS
− 1

ωS

∫
membrane

ρ. [3]

S denotes the surface area of the cell. ω is the ratio of the volume
of the cell to its surface area. Thus, ωS is the volume of the cell.
When we simulate an abstract surface h(x , y) where there is no
clear cytosolic volume, we take ω = 1 μm. We choose M /S =
2.9 μm−2 as a default value in our simulations; changing this
value changes the size of the domain of high Rho GTPase activity,
and if it is increased or decreased too much, it will prevent the
cell from polarizing. Eq. 1 is solved on our curved surfaces using
a finite element method (SI Appendix).

When parameters allow polarization (see, e.g., refs. 27, 31, and
35), the WP model reaction-diffusion equation (Eq. 1) admits
solutions that have a high-concentration region with ρ≈ ρ+

and low-concentration regions of ρ≈ ρ−. These values are set
by the roots of f (ρ, ρcytosolic) = 0, which are, when the system
allows polarization, ρ−, ρ0, and ρ+ in increasing order. An initial
domain of enriched ρ will evolve into a “pinned” state, where it
has an area set by the reaction kinetics, the geometry, and the total
amount of Rho GTPase M . The conditions for pinning, which
set the steady-state domain shape in terms of the total amount M
and the values ρ− and ρ+, are discussed in refs. 27, 31, and 35.
After the formation of a stable pinned domain, the domain moves
over the surface, keeping its area roughly constant. On a flat two-
dimensional surface, Jilkine (33) has used asymptotic analysis to
show that the velocity of the domain edge is proportional to its
curvature, tending to minimize the perimeter.

1.B. Perimeter Minimization Model. On a flat surface, solutions
of the WP equations tend to minimize their domain perimeter
(33), but their area remains roughly constant, suggesting that the
dynamics of domains in these reaction-diffusion systems may be
captured by minimizing perimeter while keeping area constant.
This same idea may also capture more general proposed mecha-
nisms for cell polarity, like binary mixture phase separation (38,
39). In these models, line tension between the two phases drives
domain coalescence and coarsening to minimize interface tension,
while mass conservation keeps domain area fixed. Thus, both
WP and phase separation pictures of cellular polarization tend
to minimize the interface length of a polarity protein domain.
Therefore, we will also study a perimeter minimization (PM)
model of cell polarity. In the PM model, the high–ρ concentration
domain is represented by a portion of the three-dimensional (3D)
surface bounded by a closed curve that lies in the surface (Fig. 1B).
The closed curve is the boundary of the domain. We minimize the
length of the boundary while constraining the enclosed surface
area to be fixed. The domain is free to relocate on the underlying
surface.

To calculate the length of the boundary and the enclosed area,
we project the 3D curve to the x–y plane, as shown in Fig. 1.
The projected curve is divided into triangular “pie slices.” Given
the surface h(x , y) and the points {xi , yi} defining the domain,
we can compute the domain’s perimeter L ({xi , yi}) and area
A ({xi , yi}) on the surface using the first fundamental form of
the surface and Gaussian quadrature (SI Appendix). We chose this
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A B

Fig. 1. (A) A schematic of the reaction involved in the WP model. In the
inactive form, Rho GTPases are in the cytosol, ρcytosolic. The active form ρ is
in the membrane. There is a positive feedback; presence of the active form
on the membrane locally promotes conversion from the inactive form. (B)
Representation of a domain in the perimeter PM model. The red curve lies
in a 3D surface. Its projection on the x–y plane is shown as the black curve. To
calculate the length of the boundary and the surface area enclosed by the red
curve, we divide the black curve into triangles as shown and use results from
differential geometry (SI Appendix).

approach to allow for simple differentiation of the energy. We
have argued that we should expect many polarity mechanisms to
minimize the domain perimeter while keeping domain area fixed.
To numerically find these minima, we minimize the energy:

F ({xi , yi}) = L ({xi , yi}) +
1

2
k (A ({xi , yi})− A0)

2
. [4]

Eq. 4 penalizes deviations away from the prescribed area A0 with
a coefficient k = 103 μm−1 as a strong area constraint. (We find
that with this value of k , steady-state areas are well constrained to
A0 to within about 2%.) We choose A0 to be the average steady-
state area of high concentration domains in WP simulations for
the given surface. The parameter A0 will also depend on the
total amount of protein M because this will alter the steady-state
domain size. Values of A0 for each simulation are provided in
SI Appendix, Table S1.

We assume that the domain evolves in an overdamped way: that
is, the velocity of a point (xi , yi) is negatively proportional to the
gradient of the energy F . The overdamped dynamics assumption
here is a minimal one; more complex models that still minimize
the energy would also be possible (40) [e.g., modeling how the
membrane lipids flow in response to deformations of a domain

with a line tension (41)]. The overdamped dynamics corresponds
to minimizingF using a simple gradient-descent algorithm. Thus,
we generate a series of {xi , yi} that converge to a local minimum.
The update from the nth iteration to the (n + 1)th iteration is
obtained as

xn+1
i = xn

i − β
∂F
∂xn

i

yn+1
i = yn

i − β
∂F
∂yn

i

,

[5]

where β controls the step size along the gradient. To ensure the
steady state, we continue to evolve the system until the solution
remains unchanged to a precision of 10−6 for 1,000 iterations.
We use β = 10−2 μm.

2. Results

2.A. WP Exhibits Binary Shape Sensing. One of the motivating
experimental results for this study is the reorientation of PAR
protein domains in a C. elegans zygote (29) to regions of high
curvature. In these experiments, a C. elegans zygote of roughly
ellipsoidal shape is subjected to cytoplasmic flows such that the
high partitioning-defective protein (PAR) concentration domain
is rotated from the initial position on one end of the zygote. If
the induced rotation is less than 90◦, the PAR domain goes back
to its initial position. However, for rotations greater than 90◦,
the polarity of the cell is reversed. Thus, in the steady state, the
PAR domain is always on one of the ends of the long axis of the
zygote. PAR proteins have reaction kinetics similar to the Rho
GTPases (i.e., there are membrane-bound active and cytosolic
inactive forms that exchange) (42), and PAR models have been
built from extending WP models (32). Therefore, the WP model
may be an effective minimal model for some elements of PAR
polarity. We test if the WP model can reproduce this bistability.
We solve the reaction-diffusion system on an ellipsoidal surface,
with initial conditions describing a high-ρ domain at different
angles θ (Fig. 2B). The WP model is able to reproduce the shape-
sensing behavior of PAR proteins. Fig. 2A shows the top view
of the ellipsoid as domains initialized close to θ = 0 (Fig. 2B)
evolve over time. These domains move from the ellipsoid center

A B

C

Fig. 2. The WP model is able to reproduce the shape-sensing behavior of PAR proteins. A shows a top view. High concentration domains that were created
away from the ends travel toward the ends over a duration of several minutes. Note that we initialize the domain at a size a little smaller than its steady-state
size; it first expands and then migrates. B shows a front view. The angular position of the center of mass of a high-concentration domain from the vertical
axis. (C) The final angular position of the domain center of mass as a function of the initial angular position. The steady state “flips” when θ crosses π. This is
analogous to the binary shape sensing of ref. 29.
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A B

Fig. 3. Steady-state shape of a domain on a smooth sinusoidal test surface.
(A) Steady-state solution of the reaction-diffusion equations on a sinusoidal
surface. Magenta lines are shown to illustrate the boundaries of the high-
ρ domain marked at ρ = (ρmax + ρmin) /2. (B) Steady state of the reaction-
diffusion model (color map; viewed from above) is in agreement with the PM
(solid magenta line).

toward its narrow ends over a duration of 18 min. A domain
created just left of the center evolves to the left end, and a domain
just right of the center evolves to the right end. We formalize
this by tracking the angular position of the center of the high-ρ
domain (Fig. 2B). Varying the initial angular position, we find that
domains initialized closer to the left end (i.e., θinitial ∈ [0,π)) end
up at the left end (θfinal = π/2), and all domains initialized closer
to the right end (θinitial ∈ (π, 2π]) have θfinal = 3π/2 (Fig. 2C ).
This is precisely the binary shape sensing observed by ref. 29.
We emphasize that our model is not a full model of the PAR
system, which should include the effect of antagonistic interac-
tions between different PAR proteins and hydrodynamic flow
(42); however, it illustrates that minimalistic cell polarity models
can capture binary shape sensing without additional assumptions.
The time taken to reach the steady state decreases from 1,800 s
for θ near zero to 100 s for θ near π/2 and naturally increases
symmetrically as θ ranges from π/2 to π. This emphasizes the
role of the initial condition’s symmetry; near-symmetric initial
conditions can take a long time for a spontaneous symmetry
breaking to occur.

2.B. WP and PM Agree on a Simple Smooth Surface Test Prob-
lem. To understand how the dynamics of WP depend on mem-
brane shape in a simple context, we begin with a sinusoidal surface
(Fig. 3A):

h(x , y) = h0 sin
2πx

W0
cos

2πy

W0
, [6]

where h0 = 5.55 μm and W0 = 20 μm, and the system spans
−W0/2≤ x , y ≤W0/2. The surface represents a portion of the
cell membrane, and its size and curvature are similar to that of
the ellipsoid. This surface has the advantage of being able to
be represented as a function z = h(x , y), making PM simpler
(SI Appendix has numerical methods).

We solve the reaction-diffusion equation Eq. 1 on the simple si-
nusoidal surface. We find that, initializing the system with a region
of high-ρ concentration near one of the surface peaks, the high-
activity domain migrates to the peak at long times (Fig. 3A and
Movie S1). We simulate the reaction-diffusion process for 5,000 s
to ensure we have converged to the steady state, but all but a few
domains reach a steady state within a few hundred seconds (e.g.,
Movie S1). The WP model gives as a result a concentration ρ on
the surface that decreases rapidly but smoothly from a maximum
value ρmax ≈ ρ+ to a minimum value ρmin ≈ ρ−. To define an
explicit domain shape and size as in the PM, we must choose
a threshold. We choose the contour of ρ= 1

2 (ρmin + ρmax) as
the boundary for calculating the area and shape of the high–
ρ concentration domain. Fig. 3B shows the “top” view of the
sinusoidal surface of Fig. 3A. The curve in magenta indicates the
steady-state shape of the domain obtained from PM (Eq. 5), which
agrees closely with the transition from high to low ρ. This is
consistent with our idea that PM is a good heuristic for explaining
the shape-sensing behavior.
2.B.1. Steady-state location of the high-activity domain depends
on the domain initial position. Our results in Fig. 2 and the
experimental results of ref. 29 show that regions of high active
polarity protein concentration on the membrane will evolve to
different steady-state locations depending on their initial location.
What trajectory do they take? Our simple test surface h(x , y)
has multiple peaks and troughs as potential steady-state locations
for domains. To understand how domains choose their steady-
state positions and what trajectory they take, we simulate domains
starting from 625 initial positions shown as a small grid of blue
dots in Fig. 4. We do these simulations in both the WP and PM
models. The big red dots indicate the steady-state position of the
center of mass of the domains. A thin white line connecting a blue
dot with a red dot indicates the trajectory of the center of mass of
the domain. Generally, we observe that a domain migrates to the
peak or valley that is closest to it (Fig. 4). Interestingly, for points
that are initialized nearly equidistant between two peaks or valleys,
these domains follow a trajectory tracing out the line of symmetry
between these points. The PM model and the WP model are
in very good agreement in both their predicted trajectories and
steady-state domain locations. While earlier work has suggested

A B C

Fig. 4. Domains on smooth surface robustly find peaks and valleys, with agreement between WP and PM. (A) Rendering of the surface in Eq. 6. B and C show
the trajectories and steady-state positions of domains in the WP and PM models, respectively. In both, the uniformly spaced grids of small blue dots indicate
the initial position of a domain, the white lines indicate the domain’s trajectory, and heavy red dots are the domain’s final location. Color maps are contours of
the height h(x, y).
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that WP models have a perimeter-minimizing property (33, 34,
36), it is somewhat surprising that the trajectories match this well
between the PM and WP model given the simplified overdamped
dynamics we have chosen.

There is a small disagreement between PM and WP for the
three red dots along the central vertical line in the minimization
plot of Fig. 4. From the perspective of the energy minimization,
peaks and troughs of the sinusoid are equivalent. Therefore, the
central vertical line is a line of symmetry. Domains that start
with their center of mass exactly equidistant from a peak and
a trough do not migrate in the PM model but do in the WP
model, where the symmetry is broken at a shorter timescale. The
exact timescale of breaking a symmetry like this will depend on
both the details of the initialization and the rate of accumulation
of floating point errors in both models. Therefore, we would
not necessarily expect these domains initialized precisely on lines
of symmetry to agree between WP and PM. We argue that
the apparent steady states (red dots) away from the peaks and
valleys in Fig. 4 in the PM model are long-lived transients. Small
perturbations away from these apparent steady states lead to the
domains migrating to the peaks and valleys, as with the other
domains (SI Appendix, Fig. S1).

2.C. Shape Sensing Is Disrupted on Rough Surfaces. Cell mem-
branes have roughness due to the presence of filopodia, blebs,
embedded proteins, etc. Any mechanism for domain localization
should be robust to this roughness. Therefore, we would like to
check if our models are robust in predicting the steady states for
rough surfaces. How rough can a surface be before shape sensing
by WP or PM breaks down? We characterize the disruption
of shape sensing by determining whether domains initialized to
different locations on the membrane can still migrate to the global
peaks and valleys when additional roughness is introduced. To an-
swer this question, we superimpose a small-wavelength roughness
of increasing amplitude on the smooth sinusoidal surface,

h(x , y) = h0 sin
2πx

W0
cos

2πy

W0
+ h1 sin

2πx

W1
cos

2πy

W1
, [7]

where W1 = 4 μm, and we choose the amplitude of the pertur-
bation h1 to be 10 or 20% of the amplitude h0.

We analyze the steady-state positions of domains for the same
set of starting positions as studied in Fig. 4. These results are
somewhat involved and are presented in Figs. 5–7.
2.C.1. Domain steady states and trajectories. How are the domain
steady states and trajectories altered in the presence of roughness?
Fig. 5B shows how domains move in the WP model for a surface
with 10% roughness (h1 = 0.1h0), showing steady states as red
dots. Most of the steady states are the same as in Fig. 4, except for
the three red dots at x =−5 μm and the three red dots at x =
5 μm, which lie along lines of symmetry and can be long-lived
transients as discussed above. We find then that the WP model
still localizes domains to the peaks and valleys in the presence of a
roughness of 10% amplitude of the smooth surface.

Fig. 5E shows the steady states of the WP model for the 625
initial conditions for the surface with roughness 20%. Now, we see
several new steady states emerge in addition to the steady states
of the smooth surface. Again, we have some clusters of steady
state around the lines of symmetry at x =±5 μm, but there are
other steady states that are not near any lines of symmetry. Thus,
the shape-sensing ability of the WP model—in the sense of its
ability to find the global peaks and valleys—has deteriorated for
the increased roughness.

On a smooth surface, a domain that minimizes perimeter while
keeping area fixed localizes robustly to the peaks and valleys of
the surface and also, reproduces the evolution of the WP model
(Fig. 4). Both of these properties fail for a sufficiently rough
surface. Fig. 5C shows the solution of the PM model for the
10% surface roughness. In comparison with Fig. 4, we note the
emergence of extra steady states, including states that are not
near the lines of symmetry and cannot be discounted as very

A B C

D E F

Fig. 5. Surface roughness disrupts shape sensing as shown by the presence of steady states at locations away from the global peaks and the valleys of the
surface. The WP model is more robust to it than PM predicts as it has fewer such local steady states. (A) Rendering of the surface in Eq. 7 with h1 as 10% of h0.
B and C show the steady-state positions and the trajectories obtained from the WP model and the PM model, respectively, for the surface in A. (D) Rendering
of the surface in Eq. 7 with h1 as 20% of h0. E and F show the steady-state positions and the trajectories obtained from the WP model and the PM model,
respectively, for the surface in D. As in Fig. 4, the uniformly spaced grids of small blue dots are domain initial positions, white lines are domain trajectories, and
heavy red points are domain final positions. Colors indicate contours of h(x, y).
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A B C

Fig. 6. Steady-state domain shapes agree between WP and PM even at 20% roughness. Three representative examples (A, B, C) are shown from the subset of
initial conditions, where steady-state centroids are in agreement between WP and PM (in the text).

long-lived transients. We argue that the shape-sensing ability of
the PM model is affected more than the WP model for the same
amount of surface roughness.

More dramatically, solving the PM model on a surface with
20% roughness shows a huge increase in the number of steady
states (Fig. 5F )—domains do not typically move over any sig-
nificant distance on the surface and are largely localized to near
their initial position. The ability of the PM model to find global
peaks and valleys has broken down. As we noted above, in the WP
model, domains do not perfectly localize to the troughs and peaks
at 20% roughness, but the level of new steady states created in PM
at 20% roughness is qualitatively worse. This, again, suggests the
relative robustness of the WP model.
2.C.2. Domain shapes. For smooth surfaces, the steady states,
trajectories, and shapes of domains are identical between the PM
and WP models (Figs. 3B and 4). In the presence of surface
roughness, however, the steady states and trajectories do not match
between WP and PM (Fig. 5). Does this indicate a complete
failure of the matching between the PM model and the WP
model, or worse, was the match we saw in Fig. 4 a coincidence?
To check this question, we test if the PM model and WP model
can reproduce the same steady-state domain shapes. However, it
is only appropriate to compare the domain shapes at the same
location on the surface h(x , y). For the 20% roughness case, the
number of steady states predicted by the PM model (Fig. 5F ) is
much larger than the number of steady states predicted by the WP
model (Fig. 5E), but for some of the 625 initial conditions, the
steady states of the WP model and the PM model have centroids
that are close to each other. We compare domain shapes between
PM and WP when the predicted steady-state domain centroids are
in agreement (within a tolerance of 0.15μm), finding that domain
shapes match well between the models, even in the presence of
20% surface roughness (examples are shown in Fig. 6). These

shapes are nontrivial and complex, very different from the circular
domains found on the smooth surface, and the agreement is
excellent. Even though the PM model is unable to give the same
trajectories and the same steady states as the WP model, it is still
quite robust at reproducing the domain shapes.

2.D. PM on Rough Surfaces Is Fragile to Small Changes in
Domain Area. We saw in the previous section that PM can predict
complex nontrivial domain shapes that appear in the WP model
(Fig. 6). This suggests that the steady states of WP do obey a PM
principle—at least locally. However, the large-scale trajectories
and many of the steady states differ between the PM model and
the WP model. Why? The PM model has a tight constraint on
the domain area, while in the WP model, the domain area is only
approximately fixed. In fact, for the WP model, the domain area
varies slightly for different starting positions of the center of mass
and also, at different locations of the center of mass along the
trajectory. For the simulations shown in Fig. 5, we found that the
domain area ranged from 8 to 10% of the total surface area of the
rough membrane. Does PM predict the same domain steady-state
location or trajectory for these different values of domain area?
Fig. 7 shows the trajectory plots obtained from the PM model
when domain area is constrained to a value A0 that is 8, 9, and
10% of the total surface area for the surface with 20% roughness.
The local minima predicted for different domain areas are different
(e.g., white boxes in Fig. 7). This shows that strict PM on a rough
surface is fragile—it depends so strongly on the target area A0

that we should not expect agreement between WP and PM.
The fragility of PM to small changes in area can be understood

by thinking about the domain as moving within an effective
energy landscape U (x ) (Fig. 8). When the surface h(x , y) is
smooth, this landscape is also smooth, and a domain can smoothly
travel to the peak or trough—the energy minimum. However,

A B C

Fig. 7. Steady states predicted by PM are sensitive to domain size. We have highlighted the steady states at the peak, marked with white squares, which is
markedly different in A–C. A–C show the steady-state positions and the trajectories given by the PM model when the domain area is set to 8, 9, and 10% of the
total surface area, respectively. As in Fig. 4, the uniformly spaced grids of small blue dots are domain initial positions, white lines are domain trajectories, and
heavy red points are domain final positions. Colors are the contour map of h(x, y).
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Smooth surface: robust shape
sensing 

Rough surface: shape sensing
fragile to small changes  

Fig. 8. Movement of the domain over a surface is like moving a particle
through energy landscape U(x); shape sensing is like finding the minimum
energy position. For a smooth surface, the global minimum is easily attained,
but for rough surfaces, there are local minima with energy barriers that
prevent reaching the global minimum. Small changes to initial condition or
the landscape parameters lead to changes in outcome (blue arrows; Right).

when the surface becomes rough, we expect the effective energy
landscape to also become rough (Fig. 8, Right)—and domains
become trapped in local minima. More importantly for this
section, we can see that small perturbations to the landscape—as
might be expected from changing the domain area—can lead to
large shifts in the steady state. This corresponds with the fragility
observed in Fig. 7.

2.E. How Reaction-Diffusion Shape Sensing Can Be Made Robust
to Membrane Roughness. The sensitivity of the PM model to
the domain area does not fully explain the difference between the
steady states shown in Fig. 5—the WP model has many fewer
unique steady states than any of the PM results presented in Fig. 7.
Why is the WP model so robust?
2.E.1. Effect of diffusion coefficient. The high–ρ concentration
domain formed by WP has a finite interface width as shown in
Fig. 3A. The PM model domain, on the other hand, has a sharp
interface. The width of the interface increases with the diffusion

coefficient of the reaction-diffusion system (28). So, as we decrease
the diffusion coefficient, the interface width of the WP model will
decrease—potentially leading to better agreement between WP
and PM.

For the smooth surface, the WP model and the PM model are
in good agreement (Fig. 4), and reducing the diffusion coefficient
in the WP model does not alter the results for this surface (Fig. 9A
and D).

In our default parameters, domains in the WP model largely
reach the peaks or valleys of the surface at 10% roughness
(Fig. 5B). However, on reducing the diffusion coefficient from
0.5 to 0.1 μms−1, the WP model begins to show nontrivial local
minima (Fig. 9E), albeit different from those shown by the PM
model as shown in Fig. 5. As we increase the surface roughness
to 20% for D = 0.1 μms−1, the number of local minima for
the smaller diffusion coefficient increases significantly (Fig. 9F ).
The numbers of local minima for D = 0.1 μms−1 for the 20%
roughness case are comparable with the numbers of local minima
seen in the PM model (Fig. 5F ).

We emphasize that our results in Fig. 9 show that decreasing the
diffusion coefficient increases the number of steady states—this is
not just an artifact of decreasing diffusion making kinetics slower.
Because of the slower diffusion coefficient, we ran the simulations
in Fig. 9 with D = 0.1 μm2/s for a time of 20,000 s, compared
with 5,000 s for D = 0.5 μm2/s. We also ensured that these
steady states were converged by running the simulations for finer
finite element meshes and for longer simulation times for a subset
of the initial positions.

We argue that the robustness of the WP model as compared
with the PM model is due to the finite interface width of the
high–ρ concentration domain and that we can control whether
the WP model seeks the true peaks and valleys or gets stuck in
local minima in part by changing this interface width via D.
2.E.2. Effect of domain size. Along with the size of the roughness
and the size of the interface, the diameter of the highρ concentra-
tion domain is another length scale in this problem. Can cells sense
shape more effectively when the domain is probing a larger length

A B C

D E F

Fig. 9. In the WP model, the width of the interface of the high-activity domain can be decreased by reducing the diffusivity. As the WP model approaches the
sharp interface limit, many local minima steady states appear. A–C show the steady-state positions for D = 0.5 μm2s−1 for increasing surface roughness. D–F
show the corresponding steady-state positions for D = 0.1 μm2s−1 for increasing surface roughness. As in Fig. 4, the uniformly spaced grids of small blue dots
are domain initial positions, white lines are domain trajectories, and heavy red points are domain final positions. Colors are contour map of h(x, y).

PNAS 2022 Vol. 119 No. 31 e2121302119 https://doi.org/10.1073/pnas.2121302119 7 of 10

https://doi.org/10.1073/pnas.2121302119


A

B

Fig. 10. Increasing the size of high-activity domains enhances the shape-
sensing ability of the WP model. The steady-state positions in B are closer
to the global peaks and valleys. A shows the steady states and trajectories
obtained from the WP model when M/S = 2.9 μm−2 and the size of the
domains is 9% of the total surface area. B shows the steady states and
trajectories obtained from the WP model when M/S = 3.2 μm−2 and the size
of the domains is 18% of the total surface area. As in Fig. 4, the uniformly
spaced grids of small blue dots are domain initial positions, white lines are
domain trajectories, and heavy red points are domain final positions. Colors
are a contour map of h(x, y).

scale? We investigate the effect of size of the high–ρ concentration
domains on the steady states by increasing M /S , which strongly
influences domain size, from 2.9 to 3.2 μm−2. This increases the
typical domain size to ∼18% of the surface.

For the smooth surface and the surface with 10% roughness,
there were no local minima in the WP model (Figs. 4 and
5B). Increasing the domain size did not produce any significant
difference in these two cases. However, for the surface with 20%
roughness, some of the local minima that were not situated on
any line of symmetry appear to “coalesce” as shown in Fig. 10.
At the lines of symmetry, as we have already noted, it is difficult
for the domains to localize to a unique solution. So, in general, it
seems that increasing the domain size increases the robustness of
the shape sensing slightly.

2.F. Shape Sensing Occurs in a Broad Range of Biologically Rel-
evant Geometries. The insight we have developed in the simple
sinusoidal surface can help us understand both past computational

work and experiments beyond our motivating example of binary
shape sensing (29). We show the evolution of the WP reaction-
diffusion model on three different 3D surfaces in Fig. 11: a sphere
with a bump and a sphere with a larger bump, both approxi-
mating the shmoo-like structures of mating yeast as previously
simulated in, for example, refs. 38 and 43 and a cell with triangular
symmetry. This last shape models C. elegans zygotes studied in
triangular confinement by ref. 44. We have argued above that,
on smooth surfaces at least, the high-activity domain evolves to
locally minimize the perimeter while keeping a fixed area. What
would PM predict on these surfaces? Let us think about a perfect
sphere first. Given the rotational symmetry of a sphere, no angle
is preferred, so a domain initialized in one location will stay in
that location, as if it were on a flat surface. Similarly, because
the sphere with a bump is locally identical to a sphere, except
in the immediate vicinity of the bump, we expect domains to
remain at their initial centers of mass. We then simulate the
WP equations for a sphere with a bump in Fig. 11A. When we
initialize domains at different angles with respect to the bump, we
find that domains on the larger spherical region remain at their
initial angle. However, when domains are initialized closer to the
bump, they are repelled by the bump—localizing to the nearest
undistorted portion of the sphere. This is similar to the final
localization observed in ref. 38 in a similar geometry (figure 7A in
that paper). However, once the domain is initialized sufficiently
close to the bump, it localizes to a final position on the bump—
the local minimum of perimeter with fixed area. This “sphere with
a bump” geometry is particularly informative because it has a
large region that is identical to an unperturbed sphere—leading
to a large fraction of the surface where domains will not migrate
significantly. This shows the value of understanding the dynamics
in terms of a local minimization of perimeter; even though there
is a “global” location with smaller perimeter—placing the domain
at the bump—domains initialized on the sphere do not migrate.
This may explain why shape sensing in related reaction-diffusion
models was viewed as weak (38). By contrast, if the region of
the bump is increased (Fig. 11B), domains become attracted to
the peak over a larger range of initial conditions. These results
show how shape sensing can be disguised on surfaces that are
sufficiently close to a sphere. Our results also illustrate that it is
essential to study a range of different initial conditions; there are
often many different steady states even on a simple surface, and a
full understanding of shape sensing requires seeing under which
conditions different initial conditions converge to these steady
states.

More excitingly, we see that the same mechanism of shape
sensing by WP that we have studied above can explain additional
elements of domain localization. In Fig. 11C, we simulate the

A B C

Fig. 11. Shape sensing from WP occurs in a broad range of biologically relevant 3D cell shapes. We show the final angular position of a domain as a function
of its initial angle, as in Fig. 2C. ρ concentration is plotted for representative examples. Cell shapes are (A) spheres with a bump (“shmoo”), (B) teardrop, and
(C) a samosa shape modeling a cell in a triangular confinement (44). Domains initialized at one location on a 3D cell surface systematically evolve to their nearest
steady-state location.
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WP reaction-diffusion model on a cell with triangular symmetry,
similar to the shapes of zygotes confined in triangular wells studied
by ref. 44. In that paper, the authors found that in zygotes depleted
of AIR-1, PAR-2 localized to the triangular corners of the cell—
the regions of high curvature—and were able to reproduce this
with a model in which the rate of binding to the membrane was
sensitive to curvature. Here, we show that curvature-dependent
binding is not necessary to reproduce localization to the corners.
If we initialize a domain to the sides of the cell, we observe that
it migrates to the corner (Fig. 11C ). This is, again, consistent
with our intuition from the PM idea: domains with the same
area will have a lower perimeter if they are localized to the tips.
(We note that for the corners to have a lower perimeter, there
must be some Gaussian curvature at the corners of the cell. We
would not expect corner localization if the cell was shaped, for
instance, like a triangular prism.) Corner localization behavior
would not have been seen in the original simulations of ref. 44 in
the absence of curvature-dependent binding rates kon because they
worked in one dimension—which does not resolve the full shape
of the domain’s perimeter. While the WP model does not serve as
a complete model for the PAR system, it shows that a minimalistic
cell polarity mechanism can reproduce corner localization without
any additional assumptions.

3. Discussion

In this paper, we have shown that the classic WP model of cell
polarity is sufficient to produce the behavior of binary shape
sensing observed by ref. 29—as might be anticipated by earlier
work (13, 14, 34). We then try to capture some of the essential
features and limitations of shape sensing by the WP Rho GTPase
dynamics as well as developing a heuristic model for it in terms of
minimization of an effective energy proportional to the domain
perimeter. WP reliably senses cell shapes when the cell is smooth,
but introduction of surface roughness significantly disrupts this
process. The ability of WP to sense cell shape in the presence of
roughness is controlled by both the diffusion coefficient D on the
surface (Fig. 9) and the domain size (Fig. 10). The PM heuristic
captures much of the dynamics of domain migration but fails on
rougher surfaces (Fig. 5) due to the relevance of finite interface
sizes and domain area fluctuations (Fig. 7). However, the PM
heuristic does let us understand when domains on more complex,
biological shapes should migrate, including predicting the corner
localization of PAR domains in triangular confinement (Fig. 11).

How fast is shape sensing by WP? Does it occur on a bi-
ologically relevant timescale? In the experiments on long-axis
polarization of PAR proteins (29), the high–PAR concentration
domain reaches a steady states in ∼10 min. Our modeling shows
that protein domains attain their steady states on a timescale of
100 to 1,800 s, compatible with a roughly 10-min timescale.
The longest times required to reach steady state occur when the
domain is initialized nearly symmetrically, requiring a symmetry
breaking. The timescale is similar between the 3D ellipsoidal
domain and our smooth sinusoidal surfaces, where except for
those initial conditions at lines of symmetry, domains take ∼100
to 500 s to reach steady state. Earlier work from Cusseddu et al.
(14) reported results for WP simulations on a capsule, similar to
the ellipsoidal shape, finding a much longer time of 13,463 s to
reach steady state. This may have been influenced by a symmetric
initial condition. However, unlike their simulation model, we
have assumed that the interior is well mixed, and we have also
chosen a larger diffusion coefficient of 0.5μm2s−1 compared with
their value of 0.1 μm2s−1. Koo et al. (45) have reported in vivo
experimental results that Rho GTPases show six different diffusive

states, of which the average diffusivity of the most probable
diffusive states is closer to 0.5 μm2s−1, although we note that
our model does not yet address the possibility of multiple states
with different diffusion coefficients. The diffusion coefficients and
kinetics may influence the plausibility of shape sensing in different
contexts. If the time to attain the steady state is as long as 13,000
s, the large-scale shape of the cell will likely change due to other
phenomena, like formation of protrusions, before shape sensing
by WP happens. Earlier work finding relatively weak effects of
membrane shape on polarization (38) used membrane diffusion
coefficients based on those for yeast, D ≈ 0.0025 μm2/s (46);
this value is orders of magnitude smaller than in our case and may
lead to very slow, if any, shape sensing. Future work incorporating
reaction diffusion on a moving membrane (following, e.g., refs. 47
and 48) would be required to understand whether shape sensing
that is slow relative to surface motion would probe the time-
averaged surface or be disrupted by dynamic changes.

Our results show that, at least for smooth surfaces, the reaction-
diffusion WP model is well captured by PM. This result is consis-
tent with earlier work relating mass-conserved reaction-diffusion
equations and coarsening driven by interfacial tension (i.e., PM)
in simpler contexts (49–51), as well as the analysis of ref. 33. How-
ever, our work highlights crucial limitations of these assumptions.
The fragility of energy minimization on rough surfaces to small
changes in area (Fig. 7) shows that an approximate conservation
of domain area is not sufficient to completely characterize domain
trajectories and steady states and that the full reaction-diffusion
equations need to be solved. In addition, we note that the WP
model consists of two stable phases only when the concentration
of the inactive form is in a suitable range (14, 31). The ability of
cells to sense shape, as with their ability to polarize (28), will be
dependent on cell size and total Rho GTPase amount.

Throughout this paper, we have assumed that the cytosolic
component of the Rho GTPase is well mixed and therefore,
uniform. This contrasts with the key role of the cytosolic diffusion
proposed in long-axis selection by ref. 52 and the full bulk-surface
implementation of the WP model in ref. 14. The well-mixed
cytosol is a common assumption given the large difference in
cytosolic and membrane-bound diffusion coefficients, but it is
a potential limitation of the model. If we extended our model
to allow for a finite level of cytosolic diffusion, the cytosolic
inactive form might not be homogeneous, as observed previously
(36). With an inhomogeneous cytosol, the local ratio of surface
area to volume might play a significant role (12). This would
break the symmetry in our model between positive and negative
curvature—peaks and valleys would no longer be identical from
the point of view of the model.

Our approach shows that shape sensing may emerge from WP
without any explicit dependence upon membrane curvature in
protein binding or kinetics. Previous work has suggested that in
order to explain PAR domain localization in C. elegans zygotes
in triangular confinement, binding rates in the reaction-diffusion
model must be dependent on curvature (44). We have shown in
Fig. 11 that the corner localization of these domains does not
require this curvature-dependent binding but can be reproduced
solely from the minimal reaction-diffusion WP model if simulated
in a 3D geometry. If we extended our model to study explicit
dependence of binding rates on local curvature, this dependence
could also be used to break the symmetry between positive and
negative curvature, as with cytosolic diffusion. However, the abil-
ity of single proteins to sense micrometer-scale curvature on their
own is rare, and many aspects of the mechanism of micrometer-
scale curvature sensing remain unresolved (53, 54). We are not
aware of any evidence showing that Rho GTPases or PAR proteins
have binding rates that depend on local curvature. We, therefore,

PNAS 2022 Vol. 119 No. 31 e2121302119 https://doi.org/10.1073/pnas.2121302119 9 of 10

https://doi.org/10.1073/pnas.2121302119


suggest that preferences for different signs of curvature are more
likely to arise from cytosolic diffusion effects.

Our results show that surface roughness can impede shape
sensing by both energy minimization and Rho GTPase dynamics,
with PM more strongly affected. How crucial is the effect of
roughness to understanding shape sensing in realistic geometries?
This likely varies between cell types; the C. elegans zygote appears
fairly smooth on the micrometer scale (29), while at the other
extreme, blebby cell surfaces may have overhangs and extremely
complex involutions (21), for which the mechanism of domain
migration shape sensing studied here seems implausible. The
importance of roughness is also dependent on the diffusivity of
the membrane-bound Rho GTPases (Fig. 9). Diffusion of polarity
proteins could be altered by their coupling to the cytoskeleton
or other proteins (55–58), controlling the extent to which shape
sensing leads to domains finding the global peaks and valleys or
the long axis or rather, becoming pinned to a local minimum. It is
also possible to regulate the size of polarity domains by changing

the available concentration of Rho GTPases; this will also alter
shape sensing (Fig. 10).

Our results clarify both the power and limits of shape sensing by
reaction diffusion and PM; in the best case, shape sensing proceeds
in a straightforward, predictable way and robustly finds the min-
ima and maxima in reasonable amounts of time. However, both
mechanisms are fragile to sufficiently rough perturbations. This
suggests that many past models of spontaneous cell turning, cell
polarization, etc. (13, 32, 59–61) may need to be systematically
tested to determine to what extent they are robust to realistic
changes in cell geometry.

Data Availability. All study data are included in the article and/or
supporting information. Simulation code has been deposited at Zenodo:
https://zenodo.org/record/6731244 (62).
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