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Abstract: CIL-102 (1-[4-(furo[2,3-b]quinolin-4-ylamino) phenyl]ethanone) is a major active agent of
Camptotheca acuminata’s alkaloid derivative, and its anti-tumorigenic activity, a valuable biological
property of the agent, has been reported in many types of cancer. In this study, we researched the
novel CIL-102-induced protein for either the induction of cell apoptosis or the inhibition of cell
migration/invasiveness in colorectal cancer cells (CRC) and their molecular mechanism. Firstly, our
data showed that CIL-102 treatment not only increased the cytotoxicity of cells and the production of
Reactive Oxygen Species (ROS), but it also decreased cell migration and invasiveness in DLD-1 cells.
In addition, many cellular death-related proteins (cleavage caspase 9, cleavage caspase 3, Bcl-2, and
TNFR1 and TRAIL) and JNK MAPK/p300 pathways were increased in a time-dependent manner.
Using the proteomic approach with a MALDI-TOF-TOF analysis, CIL-102-regulated differentially
expressed proteins were identified, including eight downregulated and 11 upregulated proteins.
Among them, upregulated Endoplasmic Reticulum resident Protein 29 (ERP29) and Fumarate Hy-
dratase (FUMH) by CIL-102 were blocked by the inhibition of ROS production, JNK activity, and
p300/CBP (CREB binding protein) signaling pathways. Importantly, the knockdown of ERP29 and
FUMH expression by shRNA abolished the inhibition of cell migration and invasion by CIL-102
in DLD-1 cells. Together, our findings demonstrate that ERP29 and FUMH were upregulated by
CIL102 via ROS production, JNK activity, and p300/CBP pathways, and that they were involved in
the inhibition of the aggressive status of colorectal cancer cells.
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1. Introduction

Colorectal cancer (CRC) is an aggressive, malignant disease with a poor prognosis [1].
A large body of evidence demonstrates the self-sufficiency of CRC cells by using growth
signals to escape from apoptosis, along with the tendency for cancer invasion and metasta-
sis to be the fourth leading cause of cancer-related deaths in the industrialized world [2]. In
fact, cell apoptosis is an important physiological process of cell death that helps maintain
our body homeostasis [3]. Under the intrinsic apoptotic stimulus, such as an abnormal
ROS evaluation, the release of cytochrome c from the mitochondria sequentially increases
the activity of caspase-9 and caspase-3 for the induction of cell apoptosis [4]. In addition,
ROS functions as the second messenger that is sensitive to oxidative damage-mediated
cell apoptosis, and it triggers the intrinsic or extrinsic apoptotic signaling pathways [5].
Therefore, with regard to cancer therapy, the induction of cancer cell apoptosis, or ROS, is
a great therapeutic strategy for destroying cancer cells without excessive inflammation [6].
Due to the issue of intrinsic chemo-resistance, it is imperative and urgent to develop more
effective drugs for CRC treatment rather than classical chemotherapy treatments [7].

Recently, phenolic phytochemicals and Camptothecin (CPT)—alkaloids originally iso-
lated from the bark and stem of Camptotheca acuminata—were both capable of inhibiting
cell proliferation [8,9] and inducing cell apoptosis in CRC. CPT interacts mechanically with
the DNA to form a complex, and it reduces the synthesis of DNA, RNA, and protein [10].
A number of the synthesized furo[2,3-b] quinoline derivatives, such as CIL-102, have
been recognized for their anti-cancer effects on many cancer types, including prostate
and breast cancer, leukemia, and cervical carcinoma [11,12]. CIL-102 treatment not only
inhibits the proliferation and invasiveness of cancer cells [13,14] but also induces cancer cell
apoptosis [15]. Many intracellular signals, such as ERK1/2, Cdc25cSer216, p21, GADD45,
and ROS production, participate in CIL-102-mediated anti-cancer action [15,16]. In gastric
cancer, CIL-102 treatment has shown a strong anti-cancer effect. Furthermore, the treat-
ment activates intracellular signals for the induction of cancer cell apoptosis. These signals
were involved in the H3K4 trimethylation of TNFR1 and TRAIL proteins, including ROS
derived and JNK/mTOR/p300 pathways in DLD-1 cells. CIL-102 treatment works well
to induce cell apoptosis in other types of cancers, such as colorectal cancer; however, its
mechanism related to the induced downstream protein, by means of CIL-102 treatment for
its anti-invasiveness properties, remains unclear.

By using the proteomic approach with the MALDI-TOF-TOF analysis (2DE MS/MS),
Endoplasmic Reticulum resident Protein 29 (ERP29) and Fumarate hydratase (FUMH)
were identified as the novel upregulation proteins of CIL-102 treatment in DLD-1 cells.
Furthermore, CIL-102 increases and produces ROS, JNK activity, and p300/CBP pathways.
Both ERP29 and FUMH are required for the CIL-102-mediated inhibition of cell migration
and the invasiveness of colorectal cancer cells. Taken together, this study demonstrates a
novel anti-cancer mechanism for CIL-102 to inhibit cell migration and the invasiveness of
colorectal cancer cells via the upregulation of ERP29 and FUMH.

2. Materials and Methods
2.1. Chemical Reagents, Antibodies, and Cell Culture

The chemical reagents, such as 1-[4-(Furo[2,3-b]quinolin-4-ylamino)phenyl] ethenone
(CIL-102), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), ROS scav-
enger (N-acetyl cysteine [NAC]), 2,7-dichlorodihydrofluorescein diacetate (H2DCFDA),
dihydroethidium (DHE), ERK inhibitor (PD98059), c-Jun N-terminal kinase (JNK1/2) in-
hibitor (SP600125), p300/CBP inhibitor (C646), mTOR inhibitor (rapamycin), SDS, NP-40,
sodium deoxycholate, and protease inhibitor cocktails, were obtained from Sigma (St. Louis,
MO, USA). The antibodies were obtained from Santa Cruz Biotechnology (Santa Cruz,
CA, USA), including anti-p300/CBP (sc-32244), anti-Bcl-2 (sc-7382), anti-Bcl-XL (sc-8392),
anti-β-actin (sc-8432) antibodies (diluted 1:1000), and monoclonal secondary antibodies (sc-
2357, diluted 1:5000). The purchased antibodies from Cell Signaling Technology (Beverly,
MA, USA) were anti-cdk1, anti- ERK1/2Thr202Tyr204 (#9101), anti-JNK1/2 Thr183Tyr185
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(#9251), anti-cleavage caspase-3 (#9661), and caspase-9 (#9505) antibodies (diluted 1:1000).
The purchased antibodies from Millipore (Millipore, CA, USA) were anti-Acetyl-Histone
H3 (Lys9/14) (12-360) antibodies (diluted 1:1000). The purchased antibodies from Sigma-
Aldrich (Sigma, Saint Louis, MO, USA) were anti-p300/CBP (P2859) and anti-β-actin
(A5441) antibodies (diluted 1:1000). All culture materials were from Gibco (Grand Island,
NY, USA). Two human colon cancer cell line DLD-1 (BCRC Number: 60132) and the human
colorectal carcinoma cell line HCT-116 (BCRC Number: 60349) were purchased from the
Bioresources Collection and Research Center (BCRC) of the Food Industry Research and De-
velopment Institute (Hsinchu, Taiwan). The human DLD-1 and HCT-116 cells were grown
in plastic tissue culture flasks or dishes or in microplates (Nunc, Naperville, Denmark)
with the cell culture medium, including Dulbecco’s Modified Eagle Medium (DMEM), and
supplemented with 10% fetal calf serum (Gibco), non-essential amino acids, 1 mM sodium
pyruvate, and 1% antibiotics (100 units/mL of penicillin and 100 µg/mL of streptomycin),
at 37 ◦C in a humidified atmosphere of 5% CO2 and 95% air [17].

2.2. Cell Viability and Reactive Oxygen Species Detection

The 4′,6-diamidino-2-phenylindole (DAPI) staining was used to check the morpho-
logical characteristics of the cells under fluorescence microscopy. After fixing with 4%
paraformaldehyde for 30 min at room temperature, permeabilizing in 0.2% Triton X-100
in phosphate-buffered saline three times for 15 min, and then PBS washing, the cells
were incubated with 1 µg/mL of DAPI for 30 min. Using a fluorescent microscope with
340/380 nm, the apoptotic nuclei in the field of the 200~300 cells were observed. According
to a previous report [18], the percentage of apoptotic cells was scored and calculated under
a 200×magnification excitation filter.

As previously described, after co-staining with Annexin V–FITC and propidium iodide
(Biosource International, Camarillo, CA, USA), the cells were subjected to flow cytometer
analysis (Attune NxT Flow Cytometer, Thermo Fisher Scientific Inc.) for measurement
of cell apoptosis. Based on the fluorescent intensity, the number of the apoptotic cells
(V+/PI−) can be calculated using the Attune NxT software 3.1 (Thermo Fisher Scientific
Inc., Ramsey, MN, USA), and the data are represented as a percentage of the untreated
control group with three independent experiments [19].

Using the fluorescent probes of H2DCFDA (2,7-dichlorodihydrofluorescein diacetate),
it was possible to detect intracellular accumulation of ROS (O2−) in the cells. After PBS
washing, the cells were applied to Attune NxT Flow Cytometer analysis and analyzed
with Attune NxT software. The data were analyzed and presented as a percentage of the
fluorescent intensity with three independent experiments. The apoptotic cells (V+/PI−)
were identified using the fluorescence-activated cell sorter analysis in an Attune NxT Flow
Cytometer [20].

2.3. Matrigel Invasion and Scratch Analysis

Based on a chamber with two medium-filled compartments, the Boyden chamber
assays were used to measure tumor cell invasion. As described above, the cells (1× 105/mL
cells (1 × 105/mL)) in a serum-free medium were collected and added to an inner cup of
the 48-well transwell chamber (Corning Life Sciences, Corning, NY, USA). The transwell
chamber was coated with 50 µL of matrigel (BD Biosciences, Franklin Lakes, NJ, USA; 1:10
dilution in a serum-free medium). The outer cup had the medium that was supplemented
with 10% serum or the indicated agent. After 24-h incubation at 37 ◦C in a humidified
atmosphere with 5% CO2, the membrane containing the cells was fixed and stained with a
modified Giemsa stain (Sigma, Saint Louis, MO, USA). Under a light microscope at a 200×
magnification, the cells on the lower side of the membrane were counted and analyzed [21].
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Scratch assays of the plating cells in a six-well culture dish were performed. After
the cells attached and reached confluence, a 4-mm scratch was made through the culture
dish. After washing twice with phosphate-buffered saline (PBS, pH = 7), the cells were
cultured in the culture medium with or without CIL-102. Using Openlab v3.0.2 image
analysis software (Improvision, Coventry, UK), it was possible to quantify the area that
was progressively filled with the cells in the period of the experimental time [21].

2.4. Proteomic Dimensional Protein Electrophoresis Analysis

The chemical reagents and experimental procedure for 2D gel electrophoresis were
described in our previous study [22]. After treatment, the total proteins of the cells were
extracted and precipitated by 10% trichloroacetate in acetone. Their concentrations were
measured by the Bradford assay with bovine serum albumin as the standard sample
for normalization. Prior to the 2D-PAGE analysis, protein samples were suspended in
a rehydration solution and then applied to Iso-Electric Focusing (IEF) in the pH 3–10
immobilized-gradient strips (Immobiline Dry Strips, Amersham Biosciences, Uppsala,
Sweden) with an Ettan IPGphor II apparatus (Amersham Biosciences). Using 10% SDS-
PAGE gels, it was possible to carry out the two-dimension electrophoresis.

2.5. In-Gel Digestion and the Peptide Fingerprints’ Identification with MALDI-TOF

The total cell proteins that were resolved in six pairs of silver-stained 2D SDS-PAGE
gels were scanned using the ImageMaster 2D Platinum Software 6.0 (Amersham Bio-
sciences). Therefore, the protein profiles of each pair of silver-stained gels were recorded
and compared with other treated groups. Among all six pairs of 2D gels, the protein spots
differentially expressed by at least three folds were subjected to the in-gel digestion for
further mass spectrometric analysis of matrix-assisted laser resorption ionization-time-of-
flight flight/time-of-flight (MALDI-TOF/TOF). After the gel pieces were then dehydrated,
performed with trypsin digestion, the FlexAnalysis system (Bruker-Franzen Analytik,
Bremen, Germany) was used to acquire mass spectra as the sum of the ion signals by
the irradiation of the targets with a mean of 300 laser pulses. Peptide fingerprints (se-
lected in the mass range of 700–4000 Daltons) were analyzed by the Mascot software
(http://www.matrixscience.com, accessed on 5 February 2021). A Mascot score with
p < 0.05 was considered statistically significant, as described in our previous study [22].
The MALDI-TOF/TOF data were searched and analyzed by the in-house MASCOT soft-
ware (version 2.2.04) to identify proteins that required the detection of unique peptides
and proteins with more than two spectral counts. Then, by using MASCOT search engines,
the peptide mass data of each spot were submitted to the SwissProt 100425 human species
bio-information stations for further analysis. With a higher MASCOT score in the bovine
database than in the human database, the proteins were considered as serum contamination
and removed [23].

2.6. Cell Extracts’ Preparation and Immunoblot Analysis

To obtain the total cell lysate, the cells were lysed with a buffer (1% NP-40, 0.5%
sodium deoxycholate, 0.1% Sodium Dodecyl Sulfate (SDS)) and a protease inhibitor mixture
(phenylmethylsulfonyl fluoride, aprotinin, and sodium orthovanadate). As previously de-
scribed [24], the total cell lysates (50 µg of protein) were separated by SDS-polyacrylamide
gel electrophoresis (PAGE) (12% running, 4% stacking). After transferring the protein in gel
on the membrane, the designated antibodies and Western light chemiluminescent detection
system (Bio-Rad, Hercules, CA, USA) were used to detect the level of the specific proteins.

http://www.matrixscience.com
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2.7. The shRNA Lentivirus Transfection

The methods of the shRNA Lentivirus transfection for applying the knockdown of
genetic functions were established (Santa Cruz Biotechnology) [14]. Following the recom-
mended protocol, the cells were infected with the designated Control shRNA Lentiviral
Particles, ERP29 and PROF1 siRNA, and shRNA Plasmids using the shRNA expression of
lentiviral particles (Santa Cruz, CA, USA).

2.8. Statistical Analysis

Data were reported as the means± standard deviation (means± SD) of three indepen-
dent experiments, and the groups were compared using the one-way Analysis of Variance
(ANOVA) with Tukey’s Multiple Comparison Test by the SAS software statistical package
“SigmaPlot” version 9.0 (SAS Institute Inc., Cary, NC, USA) [25]. Significant differences
were established at p < 0.05.

3. Results
3.1. CIL-102 Reduces the Migration and Invasion of DLD-1 Cells

Our previous study demonstrated that there was an increase in the cellular levels
of p21 and GADD45 by the 9-anilinofuroquinoline derivative, CIL-102, inhibiting DLD-
1 proliferation and cell cycle distribution [15,16]. It remains unknown whether it can
inhibit migration and invasion in the CRC. Its affecting proteins also remain unknown.
Firstly, DAPI staining showed that treatment with CIL-102 at 1-µM concentrations induced
the early apoptotic chromatin condensation in DLD-1 cells (Figure 1A), but previously
not in normal epithelial HCoEpiC cells [13]. Using the scratch-wound assay to observe
the continuous rapid movement of DLD-1 cells for 24 h (Figure 1B), our data revealed
that cells that did not receive the CIL-102 treatment control showed at a high confluence
(90–100%) of the monolayer region, which gradually migrated into the cell-free “scratch”
region (Figure 1D). In contrast, treatment with CIL-102 at 1- and 2-µM concentrations
for 24 h reduced the cell migration by 22% and 11%, compared to the treatment control
group (Figure 1C). Furthermore, by using the Boyden chamber assay, we determined
that CIL-102 at 1-, 2-, and 5-µM concentrations also inhibited the invasiveness of DLD-1
cells. The quantification of revealed observations also exhibited a significant anti-invasive
effect compared to the control group and was respectively shown as 65%, 35%, and 16%,
which supported the results obtained with the scratch-wound assay in a dose–response
relationship (Figure 1E). By using flow cytometry analysis for annexin-V and PI, our
results revealed that an increased percentage of annexin V-positive cells was found in all
untreated and CIL-102-treated DLD-1 cells in a dose-dependent manner and was shown as
8%, 23%, and 28%. (Figure 2A). In addition, CIL-102 initially increased the intracellular
ROS production in DLD-1 cells after 24 h, by 1.2- and 1.5-fold (Figure 2B), compared to
the control.
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condensation) of the apoptotic cells were measured by DAPI staining under fluorescence microscopy. The red arrow 
indicates the apoptotic cells. (B,D) The migration of treated DLD-1 cells, with or without CIL-102 (1 and 2 μM), was 
performed for 6, 12, and 24 h and visualized by scratch-wound assay, as described in the Methods section. The 
quantification of the filled surface area with DLD-1 cells was done by using densitometric analyses. Data are presented as 
a percentage of the control group (means ± SD), based on three independent experiments in triplicate. Control VS 
CIL-102, * p < 0.05, compared with the control group for 12 h; # p < 0.01, compared with the control group for 24 h. (C,E) 
Invasiveness of DLD-1 cells treated with various concentrations (1, 2, 5 μM) of CIL-102 for 24 h was detected by the 
Boyden Chamber method, as described in the Methods section. The lower and upper chemotaxis cells were separated by 
a polycarbonate membrane. The representative images of cell invasion were detected through a layer of matrigel into the 
inner membrane under microscopy. Magnification× 200. The number of cell invasions into the inner membrane was 
quantified by manual counting and the data are presented as means ± SD. Control cells indicate the cells with a saline 
treatment. The experiments were performed in triplicate. * p < 0.05, compared to the untreated control cultures. 

Figure 1. CIL-102 treatment impairs cell migration and the invasiveness of human colorectal cancer cells. (A) DLD-1 cells
were treated with either 0.1% DMSO (as control) or CIL-102 (1 µM) for 24 h. The morphological characteristics (nuclear
condensation) of the apoptotic cells were measured by DAPI staining under fluorescence microscopy. The red arrow
indicates the apoptotic cells. (B,D) The migration of treated DLD-1 cells, with or without CIL-102 (1 and 2 µM), was
performed for 6, 12, and 24 h and visualized by scratch-wound assay, as described in the Methods section. The quantification
of the filled surface area with DLD-1 cells was done by using densitometric analyses. Data are presented as a percentage
of the control group (means ± SD), based on three independent experiments in triplicate. Control VS CIL-102, * p < 0.05,
compared with the control group for 12 h; # p < 0.01, compared with the control group for 24 h. (C,E) Invasiveness of DLD-1
cells treated with various concentrations (1, 2, 5 µM) of CIL-102 for 24 h was detected by the Boyden Chamber method, as
described in the Methods section. The lower and upper chemotaxis cells were separated by a polycarbonate membrane. The
representative images of cell invasion were detected through a layer of matrigel into the inner membrane under microscopy.
Magnification× 200. The number of cell invasions into the inner membrane was quantified by manual counting and the
data are presented as means ± SD. Control cells indicate the cells with a saline treatment. The experiments were performed
in triplicate. * p < 0.05, compared to the untreated control cultures.
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frame, as indicated. (B) Intracellular ROS of DLD-1 cells treated, with or without CIL-102, at 1- and 
2-μM concentrations for 24 h was measured by a FACS analysis, as described in the Materials and 
Methods sections. Representative histograms of typical H2DCFDA profiles are shown. The 
production of ROS was expressed as the fold of the control group. Data are presented, based on 
three independent experiments, as mean ± S.D. 

3.2. CIL-102 Treatment Triggers Apoptotic Signals in DLD-1 Cells 
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CIL-102-induced cell apoptosis of DLD-1 cells, the protein levels of the hallmarks 
representing apoptotic cell death [26], such as the cleavage of caspase 9, caspase 3, and 
Bcl-2, were measured by Western blot. Our data showed that the CIL-102 treatment 
increased the active form of caspase-3 and -9 in a time-dependent manner in DLD-1 cells 
(Figure 3). In contrast, anti-apoptotic Bcl-2 and Bcl-XL proteins were decreased in the 
cells with the CIL-102 treatment (Figure 3A). Furthermore, in comparison to the 
untreated group, a time-dependent increase was found in the phosphorylation of JNK1/2 
Thr183/Tyr185 and the level of p300/CBP in the CIL-102-treated DLD-1 (Figure 3B). 

Figure 2. CIL-102 treatment induces cell apoptosis and the ROS production of DLD-1 cells. (A) FITC-
conjugated Annexin-V and PI stainings of DLD-1 cells, with or without CIL-102 treatment, for 24 h
were performed by flow cytometry analysis, as described in the Materials and Methods sections.
The percentages of the apoptotic or neurosis cells in these treated cells are shown in each frame, as
indicated. (B) Intracellular ROS of DLD-1 cells treated, with or without CIL-102, at 1- and 2-µM
concentrations for 24 h was measured by a FACS analysis, as described in the Materials and Methods
sections. Representative histograms of typical H2DCFDA profiles are shown. The production of
ROS was expressed as the fold of the control group. Data are presented, based on three independent
experiments, as mean ± S.D.

3.2. CIL-102 Treatment Triggers Apoptotic Signals in DLD-1 Cells

To determine which cell death-related proteins were involved in the CIL-102-induced
cell apoptosis of DLD-1 cells, the protein levels of the hallmarks representing apoptotic
cell death [26], such as the cleavage of caspase 9, caspase 3, and Bcl-2, were measured by
Western blot. Our data showed that the CIL-102 treatment increased the active form of
caspase-3 and -9 in a time-dependent manner in DLD-1 cells (Figure 3). In contrast, anti-
apoptotic Bcl-2 and Bcl-XL proteins were decreased in the cells with the CIL-102 treatment
(Figure 3A). Furthermore, in comparison to the untreated group, a time-dependent increase
was found in the phosphorylation of JNK1/2 Thr183/Tyr185 and the level of p300/CBP in
the CIL-102-treated DLD-1 (Figure 3B). Accordingly, our data showed that CIL-102 may
activate multiple-protein kinases’ pathways for the induction of intrinsic cell apoptosis.
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Figure 3. CIL-102 treatment activates the death-related signaling pathways in DLD-1 cells. The
protein level of CIL-102 (1 µM)-treated DLD-1 cell for 0–24 h were detected by Western blot, including
cleavage caspase 3, cleavage caspase 9, Bcl-2, and Bcl-XL (A) and p-JNK and p300/CBP (B). Protein
levels were quantified by a densitometric analysis and normalized by a loading control, β-actin. The
data are presented as 100% of the control group (means ± SD) from three independent experiments.
* p < 0.05, when compared with the untreated control group at 12 h. # p < 0.05, when compared with
the untreated control group at 24 h. (B). * p < 0.05, p-JNK when compared with the untreated control
group at 12 h. # p < 0.05, p300/CBP when compared with the untreated control group at 24 h.

3.3. Proteomic Profiling of CIL-102-Treated DLD-1 Cells

By using the proteomic approach with the MALDI-TOF-TOF analysis, we wanted to
investigate the novel CIL-102-upregulated protein [27,28]. More than 800 protein spots
from cell lysates of DLD-1 cells, with or without the CIL-102 treatment, were visualized in
the silver-stained 2D-PAGE analysis (Figure 4). The images of protein expression profile
gels (i.e., the six pairs from the control and the CIL-102-treated groups) were analyzed
by using the ImageMaster software. Our image analysis showed that 19 proteins were
identified as differentially expressed proteins, where their protein level had more than
a three-fold change compared to the untreated and CIL-102-treated groups (Figure 4).
Among them, 11 protein spots showed a greater than three-fold change in the CIL-102
treatment (Figure 5, Table 1), including Fumarate Hydratase (FUMH) and Endoplasmic
Reticulum Resident Protein 29 (ERP29). Compared to the untreated group, eight spots of
19 differential display proteins were downregulated consistently by the CIL-102-treated
group (Figure 5). After the peptide fingerprint identification of these spots by MALDI-TOF
MS, the full names of 19 proteins were listed in Table 1. It presents the zoomed views of
a representative gel region and displays several differentially expressed, oxidative stress-
related proteins on the effect of CIL-102, which inhibited invasive action in the DLD-1.
Spots 9 and 10 were subsequently identified by using a 2D proteomic analysis, including
Fumarate Hydratase (FUMH) and Endoplasmic Reticulum Resident Protein 29 (ERP29),
which may mediate the oxidative stress and the aggressive effects of CIL-102 in DLD-1 cells
(Table 1). From previous studies, one protein ERP29 was shown to be a tumor suppressor
and a chaperone protein, which involves the regulation of primary tumor development
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and the arrest of cell growth [27]. Another differential display protein, FUMH, also shows
anti-tumor functions, including the inactivation of tumor metastasis, tumor aggressiveness,
and EMT changes by epigenetic modification [28].

Table 1. Differentially expressed protein.

Spot Protein Name Mr/PI Accession No MASCOT Score Matched Peptides

1 Stress-induced-phosphoprotein 63/6.4 STIP1_HUMAN 1200 95
2 X-ray repair cross-complementing protein 6 70/6.2 XRCC6_HUMAN 1230 55
3 Glucose-6-phosphate isomerase 63/9.1 G6PI_HUMAN 60 2
4 S-methyl-5′-thioadenosine phosphorylase 31/6.9 MTAP_HUMAN 261 10
5 Heterogeneous nuclear ribonucleoprotein L 64/9.2 HNRPL_HUMAN 310 17
6 Alcohol dehydrogenase [NADP(+)] 36/6.3 AK1A1_HUMAN 438 17
7 Glutamate dehydrogenase 1 61/5.8 DHE3_HUMAN 1000 49
8 GMP synthase 77/6.4 GUAA_HUMAN 592 20
9 Fumarate hydratase 54/9.4 FUMH_HUMAN 420 21

10 Histidine triad nucleotide-binding protein 1 13/6.4 HINT1_HUMAN 125 8
11 Endoplasmic reticulum resident protein 29 29/7.5 ERP29_HUMAN 430 23
12 WD repeat-containing protein 1 66/6.1 WDR1_HUMAN 625 39
13 GTP-binding nuclear protein 24/7.7 RAN_HUMAN 534 40
14 Heat shock protein beta-1 22/5.9 HSPB1_HUMAN 411 42
15 Mitochondrial import receptor subunit TOM40 homolog 38/6.9 TOM40_HUMAN 372 15
16 Peroxiredoxin-2 22/5.5 PRDX2_HUMAN 548 38
17 Heat shock protein 75 kDa 80/8.9 TRAP1_HUMAN 468 14
18 L-lactate dehydrogenase B chain 36/5.6 LDHB_HUMAN 491 26
19 UDP-glucose 6-dehydrogenase 55/6.8 UGDH_HUMAN 1049 60
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Figure 4. The representative two-dimensional gel electrophoretograms of DLD-1 cells, with or
without the CIL-102 treatment. Six pairs of cell protein extracts from the CIL-102-treated and
untreated DLD-1 cells were evaluated, and a representative pair of the proteomic gel images are
shown. Nineteen protein spots (the upregulation of eight protein spots and the downregulation of 11
protein spots in the CIL-102-treated group) with a three-fold difference between both groups, were
subjected to a MALDI-TOF-TOF analysis. The full names of these differentially displayed protein
spots are encircled and annotated in Table 1, respectively.
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Figure 5. A representative close view of CIL-102-mediated differentially expressed proteins. The
expression pattern of differentially expressed proteins (the number is the same as in Table 1) in DLD-1
cells, with or without CIL-102 treatment (one pair of experiments), are shown. Six pairs of cell protein
extracts with four reproducible blots were performed in total.

3.4. Upregulation of FUMH and ERP29 by CIL-102 via the Signaling Pathways of ROS, JNK, and
Histone Acetylation to Inhibit Cell Migration and Invasion

Next, we determined if FUMH and ERP29 play a role in the reduction of cancer cell
migration and invasion by CIL-102. As shown in Table 2, the downregulation of both
FUMH and ERP29 by shRNA significantly decreased the CIL-102-inhibited migration
and invasion in DLD-1 cells at 24 h, respectively (* p < 0.01). In contrast, the addition of
Lenti shRNA ERP29 and shRNA FUMH alone significantly increased cancer migration
and invasion (Table 2), which implies that they have a tumor-suppressive effect. These
data indicated that CIL-102 treatment reduced the migration and invasion of DLD-1 cells
through the upregulated FUMH and ERP29.

To determine which signaling pathways are involved in the upregulation of FUMH
and ERP29 by CIL-102, chemical inhibitors were used to block ROS production, JNK
activation, and histone acetylation in CIL-102-treated DLD-1 cells. As shown in Figure 6,
ROS scavenger NAC, JNK inhibitor SP600125, and P300 inhibitor C646 almost blocked the
CIL-102-induced levels of the phospho-JNK, P300 CBP, and histone H3K9K14ac (acetyl
Lys9/Lys14). Furthermore, our data showed that the increase of FUMH and ERP29 by CIL-
102 was blocked by these chemical inhibitors (Figure 6), which suggests that the CIL-102
treatment increased FUMH and ERP29 expression through the production of ROS and the
activation of JNK and P300. Taken together, our results demonstrated a novel mechanism
for CIL-102 to reduce the migration and invasion of CRC cancer via the upregulation of
FUMH and ERP29.
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Table 2. Effects of the kinase inhibitor on the CIL-102 induction associated with cancer cell aggressive
status in DLD-1 cells.

Cell Invasion (%) Migration (%)

Control 100 100
CIL-102 24 ± 2 42 ± 2
CIL-102

Lenti GFP 97 ± 2 98 ± 2

CIL-102
Lenti ERP29 55 ± 3 58 ± 3

CIL-102
Lenti FUMH 45 ± 3 65 ± 2

Lenti ERP29 165 ± 2 140 ± 2
Lenti FUMH 150 ± 2 145 ± 2
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Figure 6. ROS production, histone acetylation, and JNK signal participate in the upregulation of
ERP29 and FUMH by CIL-102. (A) DLD-1 cells were treated with kinase inhibitors (NAC for the
inhibition of ROS production; SP is an inhibitor for the JNN signal; C646 is for the inhibition of
acetyltransferase) in the presence or absence of CIL-102. One hour later, all cell lysates were prepared
and subjected to a Western blot analysis. (B) The protein levels of phosphorylated JNK, p300/CBP and
Histone H3 (H3K9K14ac), ERP29, FUMH, and β-actin were detected with the indicated antibodies
and quantified by using a densitometric analysis. After normalization, β-actin served as loading
control, and the data are presented as 100% of the untreated control group (means ± SD) from
three independent experiments. * p < 0.05, p-JNK when compared with the untreated control group.
# p < 0.05, p300/CBP when compared with the untreated control group. & p < 0.05, H3K9K14ac when
compared with the untreated control group. @ p < 0.05, ERP29 when compared with the untreated
control group. 4 p < 0.05, FUMH when compared with the untreated control group.

The results and the data showed that FUMH and ERP29 expression in DLD-1 cells
is essential for the implication of oxidative stress ROS and JNK/P300 CBP signaling;
this is along with the association that CIL-102 inhibited cell invasion and tumor growth.
These results are consistent with the proteomic results, which indicates that a proteomic
differential display model FUMH and ERP29 are applicable when assessing CIL-102-
inhibited DLD-1 cells.

4. Discussion

Colorectal cancer (CRC) is a sequential multistage process that includes tumor initia-
tion, tumor promotion, and tumor metastasis [29]. Effective agents for CRC treatment have
not yet been found. Therefore, bioactive safe compounds from foods have been considered
a source for developing the chemo-preventive compounds for cancer chemoprevention
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and metastasis suppression. Many reports demonstrate that these chemo-preventive com-
pounds can also inhibit cancer cell metastasis [4,30,31] via a variety of mechanisms, such
as ROS production. CIL-102, a derivative of the 9-anilinofuroquinoline from the bark
and stems of Camptotheca acuminate, is used as an antiseptic drug [8,9]. Anti-cancer
and chemo-preventive properties of CIL-102 have recently been reported, including the
inhibition of tumor cell proliferation [10], the induction of cell apoptosis, and cell cycle
arrest [11,12]. However, the biochemical effect of CIL-102 that triggers its anti-carcinogenic
properties in CRC cells and its regulatory mechanism remains unclear. In this study, we
found that CIL-102 reduces the aggressive status (migration and invasiveness) of DLD-1
cells (Figure 1). Furthermore, our data indicate the essential role of ROS generation and
JNK/p300 CBP pathways during the execution of apoptosis and anti-invasion by using nat-
urally extracted CIL-102 (Figures 2 and 3B, Table 2). This study elucidated the mechanism
of the observed inhibition of the metastasis of CRC cells, suggesting that the inhibition of
metastasis is related to the CIL-102.

Many studies demonstrate that cellular mechanisms contribute to the overall cancer-
prevention effects of these dietary phytochemicals [31,32]. Our previous study demon-
strated that CIL-102 causes mitotic arrest and the tumor-growth inhibition of human
CRC cells via ROS generation [14–16]. In this study, our data showed how the method
of CIL-102 treatment may be used to inhibit the tumor invasion of DLD-1 cells through
ROS increment and the activation of the JNK/p300 CBP signaling pathway. With respect
to the dosage and duration of inductive ROS production, phenolic phytochemicals ac-
tivate signal transduction pathways, leading to either cell cycle arrest or apoptosis and
invasiveness [4,13,16].

Our present study demonstrates that DLD-1 cells treated with CIL-102 show oxidative
alterations in terms of signaling transduction events and ROS overloading that result in
the therapeutic effects on cancer invasion (Figure 2, Table 2). To identify the novel CIL-
102-regulating molecule and its anti-cancer mechanism, two-dimensional electrophoresis
(2-DE)-based proteomic analysis was performed (Figure 4). The level of Endoplasmic
Reticulum resident Protein 29 (ERP29) and Fumarate Hydratase (FUMH) were increased in
CIL-102-treated DLD-1 cells (Figures 4 and 5). A recent study demonstrated that ERP29, a
molecular chaperone, acts as a tumor-suppressor protein and a novel regulator, which leads
to cell growth arrest and cell transition from a proliferative to a quiescent state. Furthermore,
it leads to the reprogramming of molecular portraits to suppress tumor growth. Thus,
ERP29 needs to be further assessed as a potential effect of medical intervention for CRC
therapy by CIL-102 for inhibiting the malignant behavior of the CRC [33–35].

In addition, FUMH, an enzyme participating in the Tricarboxylic Acid (TCA) cycle,
catalyzes the reversible hydration of fumarate to generate malate [36]. We also previously
found the effect of CIL-102 on neuroblastoma cells and identified FUMH as having tumor
suppressor- and tumor invasiveness-related proteins. CIL-102 elicits these proteins during
the upregulation of FUMH. They play a central role in controlling the migratory potential
of tumor cells by regulating the epithelial-to-mesenchymal transition (EMT)-associated
gene expression, such as Vimentin and E-cadherin, in response to either oxidative stress or
DNA damage [37]. Through JNK/p300 CBP signaling cascades, the trans-differentiation of
the EMT pathway is a critical cellular event that controls the induction of cell apoptosis and
migration in prostate, breast, and colon cancer cells; further studies are mediated actions in
CIL-102-treated CRC cells.

Based on the proteomic differential displays of DLD-1 cells [21,22,27], our results
showed the important finding that these activation effects result from a downstream gene
of ERP29 and FUMH expression and the phosphorylation of the JNK/p300 CBP pathways,
as well as the execution of apoptosis and anti-invasiveness by CIL-102 (Figures 5 and 6 and
Table 2). Interestingly, these results, from lenti shRNA ERP29 and shRNA FUMH alone
CRC, showed ERP29 and FUMH protected CRC cells from a reduction of malignancy to
promote metastasis and may be a potential effect of medical intervention for CRC therapy
(Table 2). We recently researched the novel CIL-102-induced protein for either the induction
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of cell apoptosis or the inhibition of human DLD-1 cells and their molecular mechanism
related to the targeted downstream protein; this was done by using two-dimensional
electrophoresis (2-DE)-based proteomic analysis to identify the proteins involved in the
activation of JNK/p300 CBP signaling pathway and oxidative stress. It suggested that
the generation of ROS, as well as the JNK/p300 CBP pathway, to promote apoptosis and
decrease invasiveness could be partly due to the Endoplasmic Reticulum resident Protein
29 (ERP29) and Fumarate hydratase (FUMH) expression by CIL-102. Thus, CIL-102, a
derivative of Camptotheca acuminata, represents a novel chemotherapeutic agent worth
investigating further. To validate these particular findings, further studies using other
differential proteins are needed to determine whether there is mediated oxidative stress,
DNA damage, and EMT pathway actions.

5. Conclusions

In conclusion, on the basis of proteomic differential proteins, we suggest the upreg-
ulation of ERP29 and FUMH expression by CIL-102 via the activation of the JNK/p300
CBP pathway and the induction of ROS production (Figure 7). This study is potentially
interesting with respect to its novel chemotherapeutic approach of using CIL-102 to treat
malignant CRC and cancer development.
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Figure 7. Working model of CIL-102 inhibits cell migration and the invasion of DLD-1 cells. ERP29
and FUMH are identified as novel CIL-102-upregulated proteins for the inhibition of cell migration
and invasion in colorectal cancer. After the CIL-102 treatment, the activation of ROS and JNK/p300
CBP pathways are involved in cell migration and the invasion of colorectal cancer through the
upregulation of ERP29 and FUMH.
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