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Background: Bisphenol A (BPA), known as an endocrine disruptor, is widely used in the world. BPA is
reported to cause inflammation-related diseases. Korean Red Ginseng (KRG) has been used safely in
human for a long time for the treatment of diverse diseases. KRG has been reported of its mitigating
effect on menopausal symptoms and suppress adipose inflammation. Here, we investigate the protective
effect of orally administered KRG on the impacts of BPA in the liver and uterus of menopausal mice
model.
Methods: The transcriptome analysis for the effects of BPA on mice liver was evaluated by Gene
Expression Omnibus (GEO) databaseebased data (GSE26728). In vivo assay to evaluate the protective
effect of KRG on BPA impact in ovariectomized (OVX) mice were designed and analyzed by RNA
sequencing.
Results: We first demonstrated that BPA induced 12 kinds of gene set in the liver of normal mice. The
administration of BPA and KRG did not change body, liver, and uterine weight in OVX mice. KRG
downregulated BPA-induced inflammatory response and chemotaxis-related gene expression. Several
gene set enrichment analysis (GSEA)ederived inflammatory response genes increased by BPA were
inhibited by KRG in OVX mice.
Conclusion: Our data suggest that BPA has commonly influenced inflammatory response effects on both
normal and OVX mice. KRG protects against BPA impact of inflammatory response and chemotaxis in
OVX mouse models. Our comparative analysis will provide new insight into the efficacy of KRG on
endocrine disrupting chemicals and OVX mouse.
� 2020 The Korean Society of Ginseng. Publishing services by Elsevier B.V. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Bisphenol A (BPA; 4,40-isopropylidenediphenol) is a compound
used in the synthesis of phenol resins, polyacrylates, polyesters,
epoxy resins, and polycarbonate plastics [1,2]. Many chemicals used
in manufacturing, including BPA, have the ability to interrupt the
endocrine system, and thesematerials have been termed endocrine
disruptors [3,4]. As an endocrine disrupting chemical, BPA imitates
the structure of the endogenous ligand, interfering with the action
of the hormone, resulting in a physiological process that can cause
hormone-related diseases [5,6]. The side effects of these health
problems have been reported in numerous articles. BPA promotes
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adiposity, inflammation, and gene expression related to lipid syn-
thesis and triglyceride accumulation, and it also induces premature
menopause in women by mimicking the endocrine system [7e9].
Although efforts to identify the effects of BPA are ongoing, the
impact of BPA on postmenopausal women is not well known. Re-
searchers have attempted to evaluate the effects of endocrine dis-
ruptors on bone metabolism after menopause [3], but further
investigation into the effects of BPA on postmenopausal women is
needed.

Korean Red Ginseng (KRG; Panax ginseng Meyer) has many
therapeutic effects; the effects of 6-year-old KRG have been
particularly well recognized [10,11]. KRG is a heat-modified product
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of ginseng radix (root of P. ginseng), with higher contents of ginseng
saponins or ginsenosides compared with the original root [11,12].
Ginseng also contains a number of active ingredients, including
polysaccharides, phytosterols, peptides, polyacetylenes, fatty acids,
and polyacetylenic alcohols, that have various effects on carbohy-
drate and lipid metabolism, cognition, and angiogenesis, as well as
on the neuroendocrine, immune, cardiovascular, and central ner-
vous systems [13,14]. Research to reveal more of the untapped
potential of ginseng is ongoing, with more than 6,000 articles
regarding traditional uses, chemical constituents, and biological
and pharmacological effects of ginseng already published [11,15]. A
recent study on its obtunding effect on menopausal symptoms
reported that ginseng inhibited ovariectomy-induced obesity,
adiposity, and adipocyte hypertrophy by modulating angiogenesis
and matrix metalloproteinase activity, as well as also suppressed
adipose inflammation in ovariectomized (OVX) mice [16].

We investigated the protective effect of orally administered KRG
against the influences of BPA in the liver and uterus of OVX mice.
Uterus wet weight is reportedly increased by the estrogenic activity
of BPA in normal and OVX rats [17]. We hypothesized that BPA may
accelerate lipid synthesis and accumulation in the liver and uterus
of OVX mice but that KRG would prevent BPA-induced functional
changes. Experiments were designed with a focus on distinguish-
ing gene expression levels and changes in gene ontology (GO)
categories. First, we investigated the impact of BPA on CD-1 mouse
liver. Then, the impacts of BPA on OVXmouse liver and uterus were
identified, and the protective effect of KRG was demonstrated. Our
data suggest that BPA commonly influences inflammatory response
effects in both normal and OVX mice. We also found that KRG may
protect against the impacts of BPA on inflammatory response and
chemotaxis in OVX mouse models. Our comparative transcriptome
analysis provides new insight into the efficacy of KRG on endocrine
disrupting chemicals and menopause.

2. Materials and methods

2.1. Microarray analysis

Gene expression data in every six mice of six-week-old CD-1
mice liver samples treated with low dose of BPA (50 mg/kg/day),
treatedwith high dose of BPA (5,000 mg/kg/day) and treatedwithout
BPA for 28 days via food contamination were downloaded from
National Center for Biotechnology Information and Gene Expression
Omnibus (GEO) database. GEO series accession number GSE26728
was analyzed via the platform of GPL7042, which was published by
Marmugi A, Ducheix S, Lasserre F, Polizzi A et al. (2012).

2.2. Gene set enrichment analysis

UP and DOWN gene lists are analyzed together by gene set
enrichment analysis (GSEA) software, version 3.0 available from the
Broad Institute (http://software.broadinstitute.org/gsea/index.jsp)
[18]. Submittedgene listwasnormalizedby thequantilemethod from
the preprocess Core library. GSEA was performed with default algo-
rithmas1000permutations,minimumtermsizeof 15, andmaximum
term size of 500. Annotated gene sets of HALLMARK collection,
version 6.2were used as enrichment input, which gene setwere from
Molecular Signatures Database (http://software.broadinstitute.org/
gsea/msigdb/index.jsp) [19]. Enriched gene sets were assigned
based on nominal p-value< 0.05 and FDR q-value< 0.25.

2.3. Materials

BPA (CAS # 80-05-7, � 99%) was purchased from Sigma-Aldrich
(St. Louis, MO, USA). KRGwasmanufactured and kindly provided by
the Korea Ginseng Corporation (Daejeon, Korea). The extraction
procedure for the KRG followed the international standard pro-
duction process (ISO 19610). The extract of six-year-old Panax
ginseng root (body 75% and root 25%) was prepared by repeated
steaming and drying process from the Korea Ginseng Corporation.
The extract was freeze-dried, and finally, we obtained a dark-brown
powder (KRG). The analysis of KRG was based on the reported
method [20]. The phytochemical characteristics of KRG with stan-
dard ginsenosides were confirmed by HPLC (High performance
liquid chromatography) analysis. Rb1, 5.16 mg/g; Rb2, 1.82 mg/g;
Rc, 2.22mg/g; Rd, 0.47 mg/g; Re, 2.16 mg/g; Rf, 0.93 mg/g; Rg1, 2.89
mg/g; Rg2 (s), 0.37 mg/g; Rg2 (r), 0.21 mg/g; Rg3(s), 0.14 mg/g;
Rg3(r), 0.08 mg/g and Rh1, 0.13 mg/g. BPAwas dissolved in corn oil,
whereas KRG was dissolved in triple distilled water.

2.4. In vivo assay

Six-weeks-old female CD-1 mice were OVX and had 1 week of
purification period. A total of 49 mice (Control mice; n ¼ 7, Sham;
n ¼ 7, OVX; n ¼ 35) were obtained from Doo Yeol Biotech (Seoul,
Korea). Except for non-OVX group and sham group, OVX mice were
randomly divided into 5 groups (negative control, E2; positive
control, BPA, KRG, BPA plus KRG group, n ¼ 7). The animals were
kept at a temperature of 23� 2�Cwith 12 hours dark and light cycle
and allowed free access to food and water. Body weight was
monitored before and after the experiment, and statistical signifi-
cance between experimental groups and a negative control group
were analyzed by ANOVA and the significance level was set at
p < 0.05. The dose of BPA and KRG was considered through several
references [17,21e25]. Before treatment, the dose range finding
assaywas conducted independently for oneweek (data not shown),
and finally the BPA dose of 200 mg/kg/day and the KRG dose of 1.2
g/kg/day were determined. After sacrificed, the liver and uterine
tissues were carefully amputated, weighed, and stored at �70 �C.

2.5. RNA isolation, library preparation, and sequencing

Total RNA of liver and uterus was isolated using Trizol reagent
obtained from Invitrogen (Grand Island, NY, USA). RNA quality was
assessed by Agilent 2100 bioanalyzer using the RNA 6000 Nano
Chip (Agilent Technologies, Amstelveen, The Netherlands), and
RNA quantification was performed using ND-2000 Spectropho-
tometer (Thermo Fisher Scientific., DE, USA). For control and test
RNAs, the construction of library was performed using QuantSeq 30

mRNA-Seq Library Prep Kit (Lexogen, Vienna., Austria) in accor-
dance with the manufacturer's instructions [26]. QuantSeq 30

mRNA-Seq reads were aligned using Bowtie2 (Langmead and
Salzberg, 2012). The RT (Read Count) data were processed based on
quantile normalization method using EdgeR within R (R develop-
ment Core Team, 2016) using Bioconductor (Gentleman et al, 2004).
Gene classification was based on searches carried out by Database
for Annotation, Visualization and Integrated Discovery (DAVID)
(http://david.abcc.ncifcrf.gov/) and Medline databases (http://
www.ncbi.nlm.nih.gov/). The final RNA-Seq data were deposited
in the National Center for Biotechnology Information’s GEO data-
base (GSE133430).

2.6. Real-time quantitative reverse transcriptionepolymerase chain
reaction

The expression level of VCAM-1 mRNA and CCR7 mRNA in mice
was detected by real-time quantitative reverse transcriptionepo-
lymerase chain reaction (qRT-PCR) using the RNeasy Mini Kit
(Qiagen, Venlo, Netherlands). Relative expression values were ob-
tained using the 2-DDCT method and normalized to the control
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value for percent fold changes. The forward primer of VCAM-1 was
50-TGA CAA GTC CCC ATC GTT GA-30 and the reverse primer was 50-
ACC TCG CGA CGG CAT ATT T -3'. For CCR7, the forward primer was
50- TCA TTG CCG TGG TGG TAG TCT TCA -30 and the reverse was 50-
ATG TTG AGC TGC TTG CTG GTT TCG -3'. The forward primer of
GAPDH was 50- CTG CAC CAC CAA CTG CTT AGC -30 and reverse was
50- GGG CCA TCC ACA GTC TTC TGG -3'.

2.7. Enzyme-linked immunosorbent assay

Mouse TNF-a enzyme-linked immunosorbent assay kit was
purchased from R&D Systems (Minneapolis, MN, USA). Tissues
were homogenized and lysated in tissue cell lysis buffer (150mM
NaCl, 100mM Tris, 1mM EGTA, 1mM EDTA, 1% Triton X-100, 0.5%
sodium deoxycholate and protease inhibitor. The pH of the buffer
was 7.4).

2.8. GO and pathway analysis

Differentially expressed genes (DEGs) were analyzed base on
Excel-based DEG analysis. Genes listed in Venn diagram graphs and
gene category graphs were selected considering fold change and
normalized RC values (Fold change> 2, Normalized RC (log2)¼ 3 or
4). Twelve kinds of gene set were selected as shown in Fig. 1, its
components were downloaded from Quick GO website (https://
www.ebi.ac.uk/QuickGO/). The heat map graph was drawn with
Multiexperimental viewer software.

2.9. Functional annotation analysis

Selected genes in each tissue were submitted to DAVID, version
6.8 software for GO analysis and functional pathway mapping [27].
Submitted gene lists were analyzed by DAVID to distinct GO
En
ric

hm
en

t s
co

re
 (E

S)

Interferon gamma response

BPA treated Ctrl

NES = 1.82
P value = 0

0.0
0.1
0.2
0.3
0.4

En
ric

hm
en

t s
co

re
 (E

S)

0.0
0.1
0.2
0.3
0.4
0.5

Interferon alpha response

BPA treated Ctrl

NES = 1.89
P value = 0.001

BPA treated Ctrl

En
ric

hm
en

t s
co

re
 (E

S)

MTORC1 signaling

NES = 1.57
P value = 0

0.20
0.25
0.30
0.35
0.40

-0.05
0.0
0.05
0.10
0.15

En
ric

hm
en

t s
co

re
 (E

S)

Epithelial mesenchymal transition

BPA treated Ctrl

NES = 1.57
P value = 0.002

0.20
0.25
0.30
0.35
0.40

-0.05
0.0
0.05
0.10
0.15

En
ric

hm
en

t s
co

re
 (E

S)

Cholesterol homeostasis

BPA treated Ctrl

NES = 1.51
P value = 0.027

0.0
0.1
0.2
0.3
0.4

-0.1

En
ric

hm
en

t s
co

re
 (E

S)

0.20
0.25
0.30
0.35
0.40

Allograft rejection

BPA treated Ctrl

NES = 1.46
P value = 0.015

-0.05
0.0
0.05
0.10
0.15

-0.10

Fig. 1. Gene set enrichment plot of genes regulated by BPA. GSE26728 includes microarray
day and 5,000 mg/kg/day, respectively) for 28 days in their feed. The results of GSEA of DEGs b
package. The most significantly enriched signaling pathways were selected based on the norm
q-value < 0.25. The y axis represents the enrichment score, and the x axis lists genes that sho
The black bar indicates the locations of the genes in each gene set. BPA, bisphenol A; DEGs
categories and the significant enrichment was determined by count
> 10 and EASE score of p-value < 0.05, which is a modified Fisher
exact p-value. Functional pathway database is referred to Kyoto
encyclopedia of genes and genomes (https://www.kegg.jp/kegg/).
Significantly enriched GO or functional pathways are visualized
with -log10 transformation of p-value.

2.10. Statistical analysis

All in vivo data were expressed as mean � SD using GraphPad
Prism 7.0 (Graph Pad Software, La Jolla, CA, USA). Statistical analysis
of the data was determined by one-way ANOVA, and p < 0.05 was
considered as statistically significance.

3. Results

3.1. BPA induces 12 gene sets in the mouse liver

To analyze the protective effects of KRG against BPA, we first
examined the major effects of BPA. We conducted GSEA using a
public data set of transcriptome analysis of the mouse liver exposed
to BPA from the GEO (accession number GSE26728) to identify
signaling pathways that were differentially activated in the liver. A
total of 12 gene sets were considered differentially enriched in the
BPA treatment group on enrichment of Molecular Signatures
Database Collection gene set “h.all.v6.2.symbols.gmt” (Fig. 1).
Interestingly, the inflammatory response gene set was regarded as
significant with a normalized enrichment score of 1.56 and nominal
p-value of 0.005. Other gene sets, including interferon alpha
response, interferon gamma response, and IL-6 JAK-STAT signaling
factors, which may influence the inflammatory response, also
showed significant changes in expression upon BPA treatment.
These results indicate that genes involved in the inflammatory
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wed high levels of expression induced by BPA treatment among the 22,514 total genes.
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response are significantly differentially expressed in GEO-derived
BPA-treated CD-1 mouse liver sample.

3.2. KRG with or without BPA did not alter the liver or uterus
weight

To examine the effects of BPA and the protective effects of KRG,
OVX CD-1 mice were treated with BPA alone, KRG alone, and BPA
with KRG. As shown in Fig. 2A, there were differences in body
weight between the groups, but the degree of change was negli-
gible. The positive control group treatedwith estradiol (E2) showed
significant increases in uterus weight, but KRG and BPA had no
significant effects (Fig. 2B). Similarly, KRG and BPA did not cause
changes in liver weight (Fig. 2C). KRG and BPA showed no signifi-
cant effects on body, uterus, or liver weight at the doses and
administration period used in the present study.

3.3. KRG with or without BPA-induced differential gene expression
in the liver and uterus

Then, we compared gene expression levels associated with KRG
treatment with or without BPA. Liver and uterine tissues were
subjected to RNA-sequencing analysis. The genes showing changes
in expression in the BPA treatment group and the BPA plus KRG
treatment group compared with their levels in the negative control
are summarized in a Venn diagram (Fig. 3A and B). We then
examined whether the gene set affected by BPA (Fig. 1) differed
from that affected by KRG by assessing the numbers of genes in
each of the 12 gene sets showing a greater than twofold change in
expression induced by simultaneous BPA and KRG treatment vs.
treatment with BPA alone (Fig. 3C and D). As a result, fifteen genes
(12.61%) related to inflammatory response showed changed
expression in the liver; nine genes (Tlr2, Il1b, Emp3, Marco, Pde4b,
Cd14, Csf1, Lcp2, F3) were upregulated, whereas six genes (Rgs16,
Cdkn1a, Ccl2, Tnfsf15, Pvr,Itga5) were downregulated (Fig. 3E). Nine
genes (7.56%) related to inflammatory response showed altered
expression in the uterus; one gene (Msr1) was upregulated and
Fig. 2. KRG with or without BPA did not alter the liver or uterus weights. Treatment wit
treated with BPA (200 mg/kg/day) diluted in corn oil and KRG (1.2 g/kg/day) diluted in tripl
weight (B), and liver weight (C) were recorded. BPA, bisphenol A; KRG, Korean Red Ginsen
eight genes (Cxcl10, Slc1a2, Cxcl9, Tacr1, Il10ra, Inhba, Calcrl, and
Myc) were downregulated (Fig. 3F). These results suggest that
genes were differentially expressed between the group treated
with BPA and the group treated with KRG and BPA.

3.4. KRG downregulated BPA-induced expression of genes related to
the inflammatory response and chemotaxis in the mouse liver and
uterus

To determine the effects of KRG on the effects of BPA, RNA-
sequencing data from the liver and uterus were subjected to
GO annotation using the DAVID bioinformatics resource. Inflam-
matory response and chemotaxis-related genes were expressed in
both the liver and uterus, although they did not show the highest
degrees of significance (Fig. 4A). Moreover, the gene expression
levels were examined to determine which components were
associated with the inflammatory response and chemotaxis. Genes
that showed more than a twofold change in expression in the BPA-
treated group were examined in the group treated with both BPA
and KRG, and the results are visualized as heat maps (Fig. 4B). The
expression levels of most of the genes upregulated by BPA were
found to be downregulated by KRG. Among them, the VCAM-1
factor in the liver and the CCR7 factor in the uterus were verified
by qRT-PCR (Fig. 4C). Besides, TNF-a, a cytokine factor involved in
the inflammatory response, was shown to be elevated by BPA and
alleviated by KRG in both liver and uterus (Fig. 4D). Taken together,
these database-based annotations indicate that KRG inhibited some
portion of the genes related to the inflammatory response and
chemotaxis that were upregulated by BPA.

3.5. Expression levels of some BPA-induced inflammatory response
genes were reduced by KRG

Independent of GO analysis, we identified gene expression
changes common to GEO-derived microarray data and RNA-
sequencing data. First, we focused on the expression of inflam-
matory responseerelated genes that were altered by BPA (Fig. 5A).
h BPA and KRG was started 1 week after ovariectomy. Ovariectomized CD-1 mice were
e distilled water every day for 7 days via oral administration. Body weight (A), uterine
g.



Fig. 3. Differential gene expression induced by BPA treatment with or without KRG in mouse liver and uterus. The levels of mRNA transcripts in mouse liver and uterus were
determined by the library preparation and sequencing method. Venn diagrams show the classification of DEGs in the BPA group and BPA plus KRG group in the mouse liver (A) and
uterus (B). Numbers represent the numbers of genes showing a more than twofold change in expression compared with negative controls. Upper numbers, upregulated genes;
lower numbers, downregulated genes; middle numbers, contraregulated genes. Under the same conditions, genes with different expression levels between the BPA plus KRG group
and the BPA-only group in the mouse liver (C) and uterus (D) were selected and charted by the percentage of genes in each gene ontology out of the total number of genes. The
numbers of genes upregulated or downregulated in the liver (E) and uterus (F) in the BPA plus KRG group are shown in red and green bar graphs, respectively. BPA, bisphenol A;
KRG, Korean Red Ginseng; DEGs, differentially expressed genes.
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Each gene upregulated by both low and high doses of BPA was
regarded as enriched by BPA. To determine the effects of KRG on the
changes induced by BPA, we analyzed the differences in the
expression levels of these genes between the BPA group and the
KRG plus BPA cotreatment group. The gene expression patterns
induced by BPA in the liver and uterus were not all consistent. That
is, some genes considered to be upregulated by BPA treatment on
CD-1 mice liver derived from GSE26728 showed downregulation
on OVX CD-1 mice liver and uterus. Nevertheless, several factors
were consistently upregulated by BPA, and the extent of upregu-
lation was reduced by KRG. That is, the increases in Rgs16, P2ry2,
Rasgrp1, Ccl2, and Tlr3 expression in the liver and in Itgb3, Abca1,
Lcp2, and Tlr2 expression in the uterus were reduced by cotreat-
ment with KRG (Fig. 5B). These results suggest that some BPA-
induced inflammatory responseerelated genes were suppressed
by KRG treatment.
4. Discussion

Recently, transcriptome research has earned considerable
attention owing to advances in next-generation sequencing [28].
RNA-sequencing (RNA-Seq) is an innovative next-generation
sequencing tool for comprehensive transcriptome profiling [29,30].
In contrast to microarray and quantitative PCR analyses, RNA-Seq
allows identification of novel transcripts, as well as confirmation
of alternative splicing and mutations [31]. GO analysis combined
with transcriptome profiling is a great tool for interpreting
genome-wide insights.

A previous study reported that KRG lowered urinary BPA levels
and BPA-induced malondialdehyde levels [32]. Here, we investi-
gated the beneficial effects of KRG on BPA-induced side effects in an
OVX mouse model by examining the transcriptome profile. We first
confirmed through gene set enrichment analysis that 12 GO cate-
gories, including inflammatory response, had high normalized
enrichment scores in BPA-treated normal mouse liver (Fig. 1). The
GSE26728 transcriptomedata set publishedbyMarmugi et al. (2012)
was originally used to examine the lipid accumulation effect of BPA
inmouse liver [8]. We hypothesized that the lipid accumulation and
inflammatory response effects of BPA inmouse livermight be closely
related. In an experiment using the OVX mouse model, we were
unable to detect weight changes owing to BPA or KRG treatment in
the liveroruterus (Fig. 2).We initiallyexpected that theweightof the
uterus would increase owing to the estrogenic effect of BPA. How-
ever, in some studies, uterineweightwas reducedbyBPA [33], and in
some experiments, the uterus was enlarged by KRG [23]. These
different results are probably owing to differences in mouse strains,
age groups, and/or as the doses of chemicals. Interestingly, GO
analysis revealed that oral administration of KRG improved the BPA-
induced inflammatory response in both the liver and uterus of the
OVX mouse model (Fig. 4). Several genes upregulated by BPA in the
normal mouse were also upregulated in the OVX mouse model, but
KRGsuppressed their expression (Fig. 5). This is supportedby reports
that KRG has anti-inflammatory effects [34e38].



Fig. 4. Induction of inflammatory response and chemotaxis-related genes by BPA was reduced by KRG. Functional annotation of genes regulated by BPA plus KRG compared
with those regulated by BPA alone. Gene Ontology analysis of regulated DEGs in the liver and uterus (A). Genes showing equal expression are marked with red boxes. Heat map plots
of DEGs related to the inflammatory response and chemotaxis. The genes upregulated by BPA were identified and evaluated in the BPA plus KRG group and visualized as heat maps
(B). Total RNA of the liver and uterus was extracted, and the expression level of the VCAM-1 and CCR7 mRNAwas analyzed by real-time PCR (C). TNF-a protein levels in the liver and
uterus were analyzed by ELISA (D). *P < 0.05, **P < 0.01. BPA vs OVX-control; #P < 0.05, ##P < 0.01 BPA vs BPA with KRG. BPA, bisphenol A; KRG, Korean Red Ginseng; OVX,
ovariectomized; PCR, polymerase chain reaction; ELISA, enzyme-linked immunosorbent assay; DEGs, differentially expressed genes.
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Fig. 5. Induction of inflammatory responseerelated genes by BPAwas reduced by KRG. Heat map of enriched hallmark inflammatory response gene set from GSE26728 (A). The
effects of KRG and BPA on the expression of inflammatory responseerelated genes. The gene set enriched in GSE26728 was collected and applied to the liver and uterus of the BPA
group and BPA plus KRG group, and the results are visualized as heat maps (B). BPA, bisphenol A; KRG, Korean Red Ginseng.
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In conclusion, the results of our transcriptome analysis suggest
that KRG has a protective effect against BPA in the liver and uterus
of the OVX mouse model and provide a comprehensive basis for
considering the protective effects of KRG against BPA-induced in-
flammatory responses.
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