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Abstract

New technologies, such as multiplex immunofluorescence microscopy (mIF), are being

developed and used for the assessment and visualization of the tumor immune microenvi-

ronment (TIME). These assays produce not only an estimate of the abundance of immune

cells in the TIME, but also their spatial locations. However, there are currently few

approaches to analyze the spatial context of the TIME. Therefore, we have developed a

framework for the spatial analysis of the TIME using Ripley’s K, coupled with a permutation-

based framework to estimate and measure the departure from complete spatial random-

ness (CSR) as a measure of the interactions between immune cells. This approach was

then applied to epithelial ovarian cancer (EOC) using mIF collected on intra-tumoral regions

of interest (ROIs) and tissue microarrays (TMAs) from 160 high-grade serous ovarian carci-

noma patients in the African American Cancer Epidemiology Study (AACES) (94 subjects

on TMAs resulting in 263 tissue cores; 93 subjects with 260 ROIs; 27 subjects with both

TMA and ROI data). Cox proportional hazard models were constructed to determine the

association of abundance and spatial clustering of tumor-infiltrating lymphocytes (CD3+),

cytotoxic T-cells (CD8+CD3+), and regulatory T-cells (CD3+FoxP3+) with overall survival.

Analysis was done on TMA and ROIs, treating the TMA data as validation of the findings

from the ROIs. We found that EOC patients with high abundance and low spatial clustering

of tumor-infiltrating lymphocytes and T-cell subsets in their tumors had the best overall sur-

vival. Additionally, patients with EOC tumors displaying high co-occurrence of cytotoxic T-

cells and regulatory T-cells had the best overall survival. Grouping women with ovarian can-

cer based on both cell abundance and spatial contexture showed better discrimination for

survival than grouping ovarian cancer cases only by cell abundance. These findings under-

score the prognostic importance of evaluating not only immune cell abundance but also the

spatial contexture of the immune cells in the TIME. In conclusion, the application of this spa-

tial analysis framework to the study of the TIME could lead to the identification of immune
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content and spatial architecture that could aid in the determination of patients that are likely

to respond to immunotherapies.

Author summary

New technologies, such as multiplex immunofluorescence microscopy, are being devel-

oped and used for the assessment and visualization of the tumor immune microenviron-

ment (TIME). These assays produce not only an estimate of the abundance of immune

cells in the TIME, but also their spatial locations; however, there are currently few

approaches to analyze the spatial context of the TIME. Thus, we have developed a frame-

work for the spatial analysis of the TIME and applied this method to the analysis of T-cells

collected from patients with high-grade serous ovarian carcinoma in the African Ameri-

can Cancer Epidemiology Study. We found that patients with high abundance and low

spatial clustering of tumor-infiltrating lymphocytes and T-cell subsets in their tumors had

the best overall survival. Additionally, best survival was observed for patients with tumors

displaying high co-occurrence of cytotoxic T-cells and regulatory T-cells. These findings

underscore the prognostic importance of evaluating not only immune cell abundance but

also the spatial contexture of the immune cells in the ovarian TIME. The use of our frame-

work for spatial analysis of the TIME and immune cell clustering may be applicable in

other cancers and provide a novel approach to identification of biomarkers for predicting

patient outcomes.

This is a PLOS Computational Biology Methods paper.

1. Introduction

Immunology has been a break-through area in the treatment of cancer [1,2]. One of the most

important findings is the use of agents to block immune checkpoints to activate anti-tumor

immunity. Immune checkpoints are the mechanism by which the immune system maintains

self-tolerance. That is, immune checkpoints are regulators of the immune system and prevent

the immune system from attacking “good” cells. In the case of cancer, the cancerous cells

hijack this mechanism to protect themselves from being attacked by the immune system [3].

The use of checkpoint inhibitors in the treatment of cancer has been a revolutionary approach

and has resulted in the development of numerous checkpoint inhibitors, such as CTLA-4 and

PD-1/PD-L1 inhibitors [4].

Tumors with a dense infiltration of lymphocytes, also known as tumor-infiltrating lympho-

cytes (TILs), are consistently associated with more favorable outcomes among cancer patients

[5–7]. However, abundance alone may not explain a patient’s clinical outcome, and consider-

ation of the spatial architecture of the tumor immune microenvironment (TIME) may shed

new light on clinical outcomes and response to immunotherapies. Lee, et al. (2020) showed

that diffuse large B cell lymphoma tumors with similar densities of TILs had heterogeneous

spatial patterns of cytotoxic T-cells [8], and a study in colorectal cancer observed that cell-to-

cell distances and spatial heterogeneity were more promising as prognostic biomarkers than

cell densities [9]. More recently, as study by Steinhart et al (2021) found that co-localization of
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tumor-associated macrophages and B cells or CD4 T cells was significant associated with better

survival from ovarian cancer [10].

Many technologies have been developed to study the TIME. One study approach is the use

of multiplex immunofluorescence (mIF) microscopy which provides both a summary of the

number of cells positive for a given immune marker (e.g., abundance or density) and spatial

locations of cells. By having spatial locations of the cells positive for the various immune mark-

ers, one can determine spatial clustering and co-occurrence of immune cells. mIF can be

applied to both regions of interest (ROIs) selected from a stained tumor slide or tissue micro-

arrays (TMAs) [11]. Many challenges arise with the use of data resulting from TMAs. In partic-

ular, the tissue area can become folded or ripped due to the “slicing” done for different

experiments, leading to imperfections in the shape and the ability to measure all cells in the

area. These imperfections can lead to TMAs that have sections that appear like no cells exist, as

depicted in Fig 1A. In contrast, ROIs typically do not exhibit this artifact in the data acquisi-

tion process (Fig 1B).

The most common analysis of data from the TIME involves the use of the summary mea-

sures representing immune content in the entire sample (i.e., proportion of CD3+ cells, den-

sity). However, this type of analysis ignores the spatial architecture of the immune cells within

the tumor, which can vary between tumors. As illustrated in Fig 1, some tumors show cluster-

ing of TILs (CD3+ cells; Fig 1C), while other tumors show more dispersion of TILs (Fig 1D).

While there have been studies that attempt to describe the relationship between spatial cluster-

ing of immune cells and patient outcomes using such measures as nearest-neighbor distance

(NND) [12], Hypothesized Interaction Distribution (HID) [13,14], Morisita-Horn index [15],

and Mander’s correlation coefficient [16], many approaches fail to account for issues related

to: correlation between spatial and abundance measures of immune cells; edge/border effects;

and regions in which no cells were able to be measured [17,18]. Thus, we have developed a

framework for the spatial analysis of the TIME using Ripley’s K [19], coupled with a permuta-

tion-based framework to estimate and measure the departure from complete spatial random-

ness (CSR) as a measure of the relationships and interactions between immune cells. We

applied this analysis framework to epithelial ovarian cancer (EOC), the deadliest gynecologic

malignancy in the U.S. [20]. Specifically, we characterized the TIME and explored links

between immune cell abundance of T-cells and their spatial characteristics with overall sur-

vival (OS) among EOC patients.

2. Methods and materials

2.1. Ethics statement

All participants provided verbal consent at the time of the baseline telephone interview, and

written informed consent was obtained for the procurement of tissue specimens and collection

of medical records. The parent protocol for the AACES study was approved by the Duke

Health Institutional Review Board (IRB number Pro00022451).

2.2. Study population and immunofluorescence assays

To test out the proposed framework for assessing spatial clustering within the TIME using Rip-

ley’s K, we used the data from the African American Cancer Epidemiology Study (AACES).

AACES is a population-based case-control study of 595 African American (AA) women with

EOC residing in 11 geographic locations in the U.S. and 752 controls enrolled between

December 2010 and August 2016 [21]. Cases were identified through cancer registries and hos-

pitals, and were eligible for the study if they were 1) aged 20–79 years, 2) self-reported AA

race, and 3) resided in one of the 11 geographic locations. Study participants completed a
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telephone survey at baseline, and for ~90% of the cases, formalin-fixed paraffin-embedded

(FFPE) tissue blocks of the primary tumor were procured. For 75% of cases with tissue,

twenty-five sections were cut from each tissue block, and TMAs were created for the other

25%. A centralized pathology review was completed to confirm diagnosis and histology. A sys-

tematic collection of vital status and follow-up data through linkages with cancer registries and

the National Death Index (NDI) has been conducted annually. As the distribution of immune

cells in the tumor microenvironment and their association with outcomes differ according to

Fig 1. Example of IF data from (A) a TMA core sample and (B) an intra-tumoral region of interest (ROI). As illustrated in the two example figures,

TMAs tend to have more “holes” and uneven cell density as compared to ROIs. Examples of clustering patterns observed in the intra-tumoral ROIs; (C)

locations of CD3+ cells in which the pattern deviates from complete spatial randomness (CSR); and (D) location of CD3+ cells in which the pattern is

close to CSR.

https://doi.org/10.1371/journal.pcbi.1009900.g001
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histotype [22], we focused on the most common and one of the deadliest histotypes, high-

grade serous carcinoma (HGSC) [23], to limit contributions of disease heterogeneity.

To determine immune profiles of these tumors, mIF staining was completed using the Opal

chemistry and multispectral microscopy Vectra system (Akoya Biosciences). Tumors were

stained for one panel including seven fluorophore-labeled markers: CD3, CD8, FOXP3,

CD11b, CD15, DAPI and pancytokeratin (PanCK). After staining, slides were scanned, and

image capture was performed with the Vectra 3.0 Automated Quantitative Pathology Imaging

System (Akoya Biosciences) with images are exported from InForm (Akoya Biosciences) and

loaded into HALO (Indica Labs, New Mexico) for quantitative image analysis. Coordinates of

the cell locations are based on pixels of the image where the image resolution is 0.4977 microns

per pixel (Mpp). For the statistical analyses, we focused on tumor-infiltrating lymphocytes

(CD3+) and relevant T-cell subsets (CD3+CD8+ cytotoxic T-cells; CD3+FOXP3+ regulatory

T-cells). In addition to TMAs, mIF was performed on whole slide images, where three ROIs

from the intratumoral region of each tissue section were selected for analysis (e.g., 100%

tumor cells by cellularity and PCK expression). A summary of the study participants is pre-

sented in S1 Table, where 94 subjects were on TMAs (263 samples) and 93 subjects had ROIs

(260 samples), with 27 subjects with both TMA and ROI data. From the 27 patients that we

have both ROIs and TMAs, there are 72 intratumoral ROIs, and 75 TMA cores.

2.3. Ripley’s K and complete spatial randomness

In our proposed framework, the locations of the immune positive cells in the TIME can be

thought of as a spatial point process. The arrangement of these cells may not follow the

assumption of complete spatial randomness (CSR) for homogenous spatial processes, where

positive cells occur at the same rate λ for the entire region. Attraction (clustering), repulsion,

and competition (dispersion) are all examples of interactions that would lead to a violation of

CSR. Ripley’s K (19) is a popular measures to quantify these interactions by counting the num-

ber of neighboring cells within a radius for each positive immune cell, normalizing by the max-

imum number of pairwise distances, and correcting for border effects. Fig 1D shows an ROI

that exhibits a spatial process that is close to CSR, while Fig 1C shows an ROI that violates the

CSR assumption.

Ripley’s K is computed at several rings with varying radii, r, that is given by the following

formula:

K̂ ðrÞ ¼ ðnðn � 1ÞÞ
� 1A

Xn

i¼1

X

j6¼i

wij1ðjðxj : dðxi; xjÞ < rÞjÞ;

where n is the number of cells, A represents the area of the region of interest within the TMA

or ROI, wij corresponds to the edge correction, and 1|xj:d(xi,xj)<r| is an indicates whether the

jth is a neighbor of the ith cell (the Euclidean distance between cells i and j is less than r), where

the expected value for K̂ðrÞ ¼ pr2. The edge correction accounts for undercounting of the

number of neighboring cells when a cell on the periphery of the TMA core or ROI. The differ-

ence between the observed and expected value, EðK̂ðrÞÞ ¼ l� 1EðnÞ ¼ pr2 where E(n) is the

expected number of cells and λ is the intensity of the cell, helps determine the degree of regu-

larity or clustering. A positive difference corresponds to a higher degree of clustering than

expected, while a negative difference is evidence of a regular pattern existing [19,24,25]. Rip-

ley’s K can be calculated in a univariate form as described above, or a bivariate form where co-

occurrence of immune cell types is explored, for example, the spatial co-localization of cyto-

toxic T-cells and regulatory T-cells.
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Ideally, these point processes occur in a rectangular or circular region of space, however,

the region where cells appear are not necessarily perfect rectangles or circles, such as in the

case of TMAs. To that end, we can still estimate Ripley’s K over the convex hull of the cells

measured in the sample. Another challenge is the “edge effect”, where cells on the periphery of

the tissue sample lose neighboring cells that are located outside the sampled region. Two com-

mon edge corrections are called isotropic and translation [26,27]. The translation and isotropic

edge correction methods can accommodate settings when there are a small number of positive

cells in the tissue samples [24]. Additionally, little difference was observed in the estimate of

Ripley’s K using these two border correction methods to mIF data, with a correlation value

around 1.0.

2.4. Permutation-based measure of CSR

Unlike ROIs selected from whole tissue sections, TMAs have many cores with regions that are

folded or torn; in these cases, it appears that there are no cells present at various locations. This

will result in the appearance of the intensity function of the observed point process to not be

constant across the entire region, while the true underlying process may have been homoge-

nous. Hence, use of the theoretical expected value of K under CSR would not be appropriate.

To overcome this challenge, a permutation approach is used to obtain a robust estimate of the

spatial statistic under CSR.

A class of non-parametric methods are those based on permutation or Monte-Carlo methods,

where the sampling distribution of interest under the null hypothesis (i.e., CSR) is estimated by

randomly assigning the labels and computing the desired statistic. This process is carried out 100

times and the resulting distribution of the statistic is an empirically derived distribution. In the

context of mIF studies, each cell is labeled based on whether a certain marker is present or

absent. These labels are then randomly permuted to each cell and the measure of spatial cluster-

ing is computed, maintaining the number of cells present and absent of a marker. This process is

repeated a large number of times resulting in an empirically derived sampling distribution under

the null hypothesis (i.e., CSR) for the computed spatial statistics (i.e., Ripley’s K). Using this

empirical distribution, the mean is computed and used as the estimate of the spatial statistic

under CSR [28] and the degree of spatial clustering is defined as the difference between the

observed Ripley’s K and the mean of the empirical distribution of Ripley’s K under CSR.

2.5. Association of immune cell spatial clustering and survival from

ovarian cancer

To measure the association of the degree of spatial clustering of immune cells with clinical out-

come, while also accounting for the abundance level, Cox proportional hazards models were

used. Accounting for the abundance level is critical in assessment of the spatial component as

accurate estimation of the spatial measure requires an adequate number of positive cells (i.e.,

negative relationship between abundance level and spatial clustering value, S1 Fig). That is, it

is not possible to estimate spatial measures when there is no positive cells and the estimate of

the level of spatial clustering is somewhat related to the number of positive cells. In computing

Ripley’s K, the radius r was set to 30. In order to provide clinically interpretable results, the

continuous measurement of abundance and degree of spatial clustering were categorized (e.g.,

absent/low level/high level of abundance for immune marker). Typically, categorization takes

place for each variable where values are assigned to groups depending on their relationship to

the median, quartiles or some other threshold.

An alternate to setting the pre-defined threshold is use of the “optimal cut-point”, which is

selected to maximize the test statistic of interest [29,30]. From a statistical standpoint, the
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optimal cut-point is “data-snooping” since we are allowing the results from the statistical test

to inform creation of categories of the variable [31]. On the other hand, for discovery and

hypothesis generation purposes, it is clinically useful to determine an optimal cut-point that

can be validated in other studies with other technologies. For this study, we have chosen to use

the optimal cut-point approach based on 10-fold cross-validation to determine thresholds that

produce the largest difference in the survival curves. The median of the optimal cuts for abun-

dance and degree of clustering were then used to determine the cut-points for abundance and

spatial clustering for the final set of analyses (i.e., 5 groups: no immune cells; low abundance

and low spatial clustering; low abundance and high spatial clustering; high abundance and low

spatial clustering; and high abundance and high spatial clustering). A challenge in determining

the optimal cut-points is that the number of samples in a group/category can get very small

when categorizing across multiple variables. Thus, in the analysis to determine the association

of immune cell abundance and spatial clustering, optimal cut-points were determined based

on a grid search where the search was constrained to possible cut-points in which each group

had at least 10 samples (after removing samples with zero abundance). This constrained

approach ensured that each group had an adequate size for model stability.

For the co-occurrence analysis involving two types of immune cells with OS, the bivariate

version of Ripley’s K was used. As bivariate Ripley’s K is only estimable when both types of

immune cells are present in a sample, the level of spatial clustering was only computed when

both immune markers were present. Hence, five categories were defined as AAN, APN, PAN,

PPL, and PPH, where the first letter corresponds to the (A)bsence or (P)resence of the first cell

type, the second letter represents the (A)bsence or (P)resence of the second cell type, and the

last letter describes the level of spatial clustering (N)one/(L)ow/(H)igh. The marker was

defined as present if at least one cell was positive for the immune marker. Note that the bivari-

ate version of Ripley’s K is not a symmetric statistic. That is, analysis is first completed using

the cytotoxic T-cell as the “anchor” or center for the computation of Ripley’s K, followed by

the analysis using the regulatory T-cells as the “anchor”.

Using these pre-defined categories for the abundance and degree of spatial clustering, associ-

ation of each cell type and phenotype with overall survival (OS) following EOC was completed

using Cox proportional hazard models for CD3+ (T-cells), CD3+CD8+ (cytotoxic T-cells), and

CD3+FOXP3+ (regulatory T-cells). The model included clinical covariates of age at diagnosis

and stage (I, II, III, IV) and accounted for the repeated measurements per tumor/subject. Analy-

sis was completed separately for the intratumoral ROIs and TMAs. Analyses performed for

TMAs were based only on the immune marker data in the tumoral compartment of each core

in order to compare findings between the intratumoral ROIs and the TMAs (i.e., restricted anal-

ysis to the cells determined to be tumor based on PanCK marker and removed the cells within

the stromal compartment). Likelihood ratio tests were used to compare survival models with

and without the spatial information. Permutations were performed with the package spatial-
TIME [32], and all statistical analyses were completed using RStudio with R v4.1.1.

3. Results

3.1. Quality control and assessment

Prior to statistical analysis of the mIF data, quality assessment of the data was completed. In

calling a cell as positive or negative for a marker, a machine learning algorithm within the

HALO (Indica Labs, New Mexico) software was used where a threshold was determined based

on the intensity measurements. As the sensitivity and specificity of this method is not 100%,

there may be cases where a cell is classified for multiple phenotype combinations that are not

possible, such as a cell being classified as both a cytotoxic T-cell and a regulatory T-cell (S2
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Fig). For this analysis, between 1 and 87 cells on 134 of the 260 ROI samples, and between 1

and 73 cells on 67 of the 263 TMA cores were identified as being both cytotoxic T-cell and

Treg. The locations of these cells were retained but phenotype identification was considered to

be CD3+ only.

3.2. Estimate of degree of spatial clustering and CSR in TMAs and ROIs

Following quality control, the levels of spatial clustering were estimated using the permutation-

based value for CSR, where the degree of spatial clustering was computed as the difference in the

observed Ripley’s K and the mean of the empirical distribution of Ripley’s K under CSR. Fig 2

shows three TMA cores and the empirical distribution of Ripley’s K under CSR for marker

CD3. The first row (A) corresponds to a TMA core that does not have large areas where cells are

absent, the second row (B) displays a TMA core with a moderate number of missing cells, and

the third row (C) shows a TMA core with an extensive level of missing cells. As the level of miss-

ing cells increases, the difference between the theoretical and permutation-based estimates for

Ripley’s K under CSR increases. Similarly, the histogram of the distance between the permuta-

tion-based estimate of CSR and theoretical estimates of CSR is presented in S3 Fig for the ROIs

and TMAs. As expected for the ROIs there is not a systematic bias as there is a low level of “miss-

ing cell” regions. However, in the case of TMAs there was a systematic bias in which the mean

of the difference (Theoretical estimate of CSR–Permuted estimate of CSR) is negative, indicating

underestimation of Ripley’s K under CSR based on the theoretical estimate. This bias would

result in a biased estimate of the degree of spatial clustering and incorrect association results

with the phenotype of interest. In contrast, the empirical estimate of Ripley’s K under CSR

would provide a more accurate measure of spatial clustering which accounts for the unevenness

in the cell distribution measured in the sample. Lastly, the permutation approach allows for the

assessment of spatial clustering within the tumor and/or stroma compartments separately.

3.3. Analysis of spatial clustering using univariate Ripley’s K and ovarian

cancer survival

Cox proportional hazard models were fit to assess the association of the abundance and spatial

clustering of cells positive for CD3+ (T-cells), CD3+CD8+ (cytotoxic T-cell), and CD3

+FOXP3+ (regulatory T-cells), adjusting for age at diagnosis and stage, where the degree of

spatial clustering was measured by the difference of the observed estimate of Ripley’s K from

the permutation-based estimate of Ripley’s K under CSR. The estimates of abundance and uni-

variate spatial clustering were collapsed into five categorial groups as described in Section 2.5.

Table 1 presents the hazard ratio (HR) estimates for the different groups with the “None”

group representing the reference group for the ROIs and the TMAs. Table 1 also present the

p-values (4 df) for the association of the level of spatial clustering and immune cell abundance

collectively with survival. Predicted survival curves for the five groups and the three cell types

are presented in Fig 3A for ROIs and Fig 3B for TMAs. S4 Fig presents the corresponding

cumulative event curves, highlighting the survival benefit observed in patients with high abun-

dance and low spatial clustering of T cell markers. The optimal cut-point for determining high

and low abundance (based on 10-fold cross-validation) was around 1–4% for the various cell

types. Using these optimal cut-points for abundance (high vs low) and degree of spatial cluster-

ing (high vs low), there was significant evidence that EOC patients with high abundance and

low spatial clustering (HL group) of CD3+, CD3+CD8+, and CD3+FOXP3+ cells in their

tumors had the best OS in both the ROIs and the TMAs (i.e., the “HL” group had the smallest

hazard ratios (HRs) and these HRs were statistically different from the “none” group (i.e., ref-

erence group)).
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Fig 2. The empirical distribution of Ripley’s K under CSR generated by permutation with the translational edge correction for r = 50 and 100 for CD3

+ cells. The observed value of Ripley’s K is represented by blue dotted line, the mean of the permutation-based CSR distribution is represented by the

vertical black solid line, and the theoretical CSR computed assuming no “holes” in the tissue sample image is the vertical red line. As the level of missing cells

increases (i.e., more “holes”) there is larger difference between the estimate of CSR based on theoretical computation using area and the estimate of CSR

based on the mean of the empirically derived distribution.

https://doi.org/10.1371/journal.pcbi.1009900.g002
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When restricting the analysis to those samples with high abundance based on the optimal

cut-point, a significant difference was observed in the survival curves between patients with

low and high spatial clustering of CD3+ (ROIs: HR = 8.00, 95% CI (1.74, 36.77); TMAs:

HR = 5.18, 95% CI (1.88, 14.25)), CD3+CD8+ (ROIs: HR = 19.84, 95% CI (1.80, 219.00);

TMAs: HR = 4.50, 95% CI (1.59, 12.77)), and CD3+FOXP3+ (ROIs: HR = 2.61, 95% CI (1.18,

5.81); TMAs: HR = 5.27, 95% CI (1.97, 14.16)) immune cells, with EOC patients with low clus-

tering having best survival (Table 2, S5 Fig). Lastly, we found the models including spatial

information were significantly better than models with only the abundance level information

included for CD3+ and CD3+FOXP3+ cells for both the analysis of the ROIs and TMAs

(ROIs: CD3+ p = 1.1E-4, CD3+FOXP3+ p = 0.003; TMAs: CD3+ p = 3.8E-5, CD3+FOXP3

+ p = 9.1E-4), while the model for CD3+CD8+ cells in ROI samples was statistically significant

Table 1. Results from survival analysis of the immune marker abundance and spatial clustering from the ROIs involving 93 subjects with 260 ROIs and TMAs

involving 94 subjects and 263 cores. Degree of spatial clustering based on permutation-based estimate of CSR. Models were adjusted for age at diagnosis and stage.

Group None is reference group. The overall p-value is the joint association of the five categorial variable based on immune abundance and spatial clustering on overall

survival.

Study Marker Group� HR 95% Confidence

Interval for HR

p-value for difference from

"None" reference group

Overall p-value

(4 df)

Cut point used for group

definition

Sample

Size

Abundance

%

Degree of spatial

clustering

ROIs CD3 HH 0.599 [0.34,1.04] 0.070 1.0E-07 2.9 3016 81

HL 0.067 [0.01,0.34] 0.001 23

LH 0.915 [0.56,1.5] 0.724 103

LL 1.039 [0.62,1.74] 0.885 23

None 1.000 reference 1.000 30

CD3+ CD8

+

HH 0.909 [0.49,1.7] 0.765 5.0E-08 3.7 4885 20

HL 0.034 [0,0.3] 0.002 18

LH 0.715 [0.44,1.15] 0.167 103

LL 0.973 [0.58,1.62] 0.917 48

None 1.000 reference 1.000 71

CD3

+ FOXP3+

HH 1.186 [0.72,1.96] 0.504 4.1E-03 1.1 5695 21

HL 0.467 [0.22,0.98] 0.043 32

LH 0.487 [0.27,0.88] 0.018 50

LL 0.751 [0.5,1.12] 0.163 74

None 1.000 reference 1.000 83

TMAs CD3 HH 0.488 [0.29,0.83] 0.009 3.6E-08 1.4 5771 87

HL 0.155 [0.08,0.3] 2.3E-08 36

LH 0.450 [0.26,0.79] 0.005 64

LL 0.782 [0.49,1.25] 0.307 29

None 1.000 reference 1.000 47

CD3+ CD8

+

HH 0.671 [0.35,1.28] 0.228 1.7E-04 3.1 6975 18

HL 0.176 [0.06,0.49] 0.001 22

LH 0.718 [0.43,1.19] 0.201 53

LL 0.845 [0.55,1.31] 0.451 65

None 1.000 reference 1.000 105

CD3

+ FOXP3+

HH 1.272 [0.45,3.63] 0.653 4.9E-06 0.9 13680 12

HL 0.275 [0.15,0.5] 2.2E-05 38

LH 0.716 [0.41,1.24] 0.235 24

LL 0.645 [0.41,1.01] 0.057 68

None 1.000 reference 1.000 121

https://doi.org/10.1371/journal.pcbi.1009900.t001
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(ROIs CD3+CD8+ p = 7.3E-6; TMAs CD3+CD8+ p = 0.14). In summary, the results observed

in the analysis of the ROIs were replicated in the TMA analysis, whereby subjects with high

abundance and low spatial clustering of CD3+ and T cell subtypes (CD3+FoxP3+ and CD3

+CD8+ cells) had significantly better overall survival.

3.4. Analysis of co-occurrence of CD3+CD8+ and CD3+FOXP3+ and

ovarian cancer survival

Bivariate analysis involving Ripley’s K was completed to assess co-occurrence of cytotoxic T

cells (CD3+CD8+) and regulatory T cells (CD3+FOXP3+) with survival following EOC, treat-

ing the CD3+FOXP3+ cell as the reference or “anchor” cell type. Results from the association

of the measure of co-location with OS is presented in Fig 4 and Table 3. The results using

CD3+CD8+ as the reference cell were similar. Among both the ROIs and TMAs, patients with

high co-occurrence of cytotoxic T-cells (CD3+CD8+) and regulatory T-cells (CD3+FOXP3+)

Fig 3. Predicted survival curves from Cox proportional hazard models for the CD3+, CD3+CD8+, and CD3+FOXP3+ cells where the degree of spatial

clustering was based the permutation-based estimate of Ripley’s K under CSR (i.e., observed Ripley’s K–the mean of the empirical distribution of Ripley’s K

under CSR); (A) results from intra-tumoral ROIs (93 subjects, 260 samples); (B) results from tumor compartment of TMAs (94 subjects, 263 samples). Models

adjusted for age at diagnosis and stage within a repeated measures analysis framework.

https://doi.org/10.1371/journal.pcbi.1009900.g003
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had the best survival (ROIs: HR = 0.49, 95% CI (0.28, 0.86); TMAs: HR = 0.42, 95% CI (0.25,

0.71)). In contrast, patients with no cytotoxic or regulatory T-cells had the worst survival.

Lastly, we found the model including spatial information was significantly better than a model

with only the abundance level included (ROIs: p = 0.014; TMAs: p = 0.002).

4. Discussion and conclusion

In this research, we present a novel permutation-based analysis framework using Ripley’s K
(univariate and bivariate) to explore the relationship between the degree of spatial clustering of

immune cells with clinical outcome. The application of this framework to study of the TIME

of EOC tumors from African American EOC patients revealed that not only the abundance of

CD3+ and CD3+CD8+ immune cells but also the degree of spatial clustering of immune cells

within the TIME were associated with overall survival. EOC patients with high abundance and

low spatial clustering of tumor-infiltrating lymphocytes (TILs) and T-cell subsets had

Table 2. Results from survival analysis of the immune marker abundance and spatial clustering from the ROIs and TMAs determined to be high abundance. Mod-

els were adjusted for age at diagnosis and stage. Group high abundance/ low spatial clustering (“HL” group) is the reference group.

Study Marker Group� HR 95% Confidence Interval for HR p-value for difference from "HL" reference group Sample Size

ROIs CD3 HH 8.00 [1.74,36.77] 0.008 81

HL 1.00 reference 1.000 23

CD3+ CD8+ HH 19.84 [1.80, 219.00] 0.015 20

HL 1.000 reference 1.000 18

CD3+ FOXP3+ HH 2.61 [1.18,5.81] 0.018 21

HL 1.00 reference 1.000 32

TMAs CD3 HH 5.18 [1.88,14.25] 0.001 87

HL 1.00 reference 1.000 36

CD3+ CD8+ HH 4.50 [1.59,12.77] 0.005 18

HL 1.00 reference 1.000 22

CD3+ FOXP3+ HH 5.27 [1.97,14.16] 0.001 12

HL 1.00 reference 1.000 38

� HH = high abundance / high spatial clustering; HL = high abundance / low spatial clustering

https://doi.org/10.1371/journal.pcbi.1009900.t002

Fig 4. Predicted survival curves from Cox proportional hazard models for the degree of co-occurrence of CD3+FOXP3+ and CD3+CD8+ cells was based

the permutation-based estimate of Ripley’s K under CSR (i.e., observed Ripley’s K–the mean of the empirical distribution of Ripley’s K under CSR); (A)

results from intra-tumoral ROIs (93 subjects, 260 samples); (B) results from tumor compartment of TMAs (94 subjects, 263 samples). Models adjusted for

age at diagnosis and stage within a repeated measures analysis framework.

https://doi.org/10.1371/journal.pcbi.1009900.g004
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significantly better overall survival. We also observed that patients with high degree of co-

localization of cytotoxic and regulatory T cells had better overall survival. Additionally, this

statistical framework can be applied to mIF study involving other cancer types to understand

the role of the spatial contexture of the immune cells on clinical outcome, as these findings

underscore the prognostic importance of evaluating not only immune cell abundance, but also

the spatial contexture of the immune cells in the TIME.

Comparison of the value of Ripley’s K under the assumption of CSR (complete spatial ran-

domness) based on theoretical derivation or based on the permutation-based estimate found

that the theoretical value can be a biased estimate the true value of Ripley’s K under CSR, with

the bias more pronounced as the level of missing cells or “holes” in the TMA increased. This

bias would subsequently impact the downstream association analyses (i.e., incorrect hazard

ratios, confidence intervals and p-values). Many of the proposed methods being used for the

spatial analysis of digital pathology data, particularly in the setting of TMAs, such as nearest

neighbor distances are not correcting for this “missingness” in cell measurements and thus are

prone to incorrect estimation of the degree of clustering/co-localization. An additional

strength of the proposed statistical framework is that the degree of clustering can be estimated

for an entire TMA or ROI or focused on just the tumor or stromal compartments.

However, there are many challenges in completing the spatial analysis of the TIME, with

many areas requiring further research. One challenge in using Ripley’s K is selection of the

proximity parameter (i.e., r or radius). Often, the selection of this value is based upon prior

knowledge or based on practical considerations. For the present analysis of ovarian cancer

tumors, we chose to use Ripley’s K a r = 30 to measure the level of clustering of immune cells

in a small area (or radius). A possible choice of the proximity parameter is to compute Ripley’s

K at several values of r and select the value that has the greatest difference from CSR [15,33].

However, this implementation would likely lead to different proximity parameters being used

for each image and would make the spatial measure not comparable across samples. Another

approach would be to treat the estimates of Ripley’s K as the various r values as a function or

trajectory and applying functional data analysis (FDA), which allows for linking entire spatial

trajectory to be associated with a phenotype [34–36].

Another challenge that arises when applying Ripley’s K is that many samples may have zero

cells that express the marker of interest (i.e., “immune cold tumors”). For these cases, spatial

clustering is undefined. To accommodate this case in the survival analysis, a category was

Table 3. Results of co-localization/co-clustering of CD3+CD8+ (cytotoxic T-cells) and CD3+ FOXP3+ (regulatory T-cells) using bivariate Ripley’s K for the ROIs

and TMAs. Degree of spatial clustering based on permutation-based estimate of CSR. Models were adjusted for age at diagnosis and stage. The no cytotoxic T-cells and

no regulatory T-cells (none) group/category is the reference group. The overall p-value is the joint association of the five categorial variable based on immune abundance

and spatial clustering on overall survival.

Study CD3+FoxP3+

(Anchor)

CD3+CD8

+

Degree of Spatial

Clustering

HR 95% CI for

HR

p-value for difference from the "None"

reference group

Overall p-value

(4 df)

Sample

Size

ROI Absent Present None 0.72 [0.39,1.35] 0.307 3.2E-02 28

Present Absent None 0.98 [0.52,1.84] 0.938 16

Present Present High 0.49 [0.28,0.86] 0.013 119

Present Present Low 0.81 [0.45,1.47] 0.488 65

Absent Absent None 1.00 reference 1.000 32

TMA Absent Present None 0.77 [0.38,1.56] 0.466 9.6E-05 47

Present Absent None 0.66 [0.33,1.31] 0.231 27

Present Present High 0.42 [0.25,0.72] 0.002 96

Present Present Low 0.88 [0.45,1.71] 0.702 42

Absent Absent None 1.00 reference 1.000 51

https://doi.org/10.1371/journal.pcbi.1009900.t003
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defined in which samples with zero abundance and no spatial clustering was constructed. This

challenge was amplified in the bivariate analysis in which both cell types had to be present in

the sample for estimation of spatial co-localization. Additionally, using the optimal cut-point

is a popular method for determining categories for a continuous variable (i.e., percent abun-

dance, density), however, these methods have been shown to inflate the type I error rate [37–

40] with the optimal cut-point varying between studies. Thus, we implemented a 10-fold

cross-validation approach to determine the cut-point to use when categorizing the immune

cell abundance and the degree of spatial clustering.

In conclusion, this paper illustrates a permutation-based approach for estimating the degree

of spatial clustering when studying the TIME, with application to tumor from African Ameri-

can women with ovarian cancer. This approach addresses the unique challenges in the use of

TMAs for studying the TIME, such as regions where cells cannot be measured due to the limi-

tation of the sample preparation. The application of this approach also showed that in African

American patients with EOC that not only the abundance but also the level of spatial clustering

of T cells subtypes in the tumor is predictive of survival, where EOC patients with low level of

clustering had better survival compared to patient tumors with high level of spatial clustering.

We also found that co-occurrence of cytotoxic T cells with regulatory T cells conferred the best

overall survival following EOC. The application of this spatial analysis framework to the study

of the TIME could lead to the identification of immune content and spatial architecture that

could aid in the determination of patients that are likely to respond to immunotherapies.

Future research is needed to validate the findings observed in African American women with

ovarian cancer in other racial/ethnic groups, along with replication of these findings in other

cancer types.

Supporting information

S1 Fig. The relationship between the percent of CD3+ cells and degree of spatial clustering

has an exponentially decaying relationship (A). Plots (B) and (D) (colored red in plot A), and

(C) and (E) (colored green in plot A) are two ROIs which have two approximately the same

percent of CD3+ but different levels of spatial clustering.

(PDF)

S2 Fig. Scatter plots showing the cytoplasm intensity, which is used to classify cell positivity,

for FOXP3 (Opal 540) and CD8 (Opal 570). These four plots show varying degree of pheno-

type misclassification and illustrates the challenge of making univariate or bivariate intensity

threshold for classifying higher dimensional spaces.

(PDF)

S3 Fig. Histogram of the difference between the theoretical estimate and the permuted esti-

mate of CSR for the ROIs (A) and TMA core samples (B) for CD3+, CD3+CD8+ (cytotoxic T-

cell), and CD3+FOXP3+ (Regulatory T-cell or Treg). The dashed black line represents zero

and the solid black line represents the mean of distribution. To better visualize the distribu-

tion, the plots were scaled towards x = 0.

(PDF)

S4 Fig. Cumulative event curves from Cox proportional hazard models for the CD3+, CD3

+CD8+, and CD3+FOXP3+ cells where the degree of spatial clustering was based the permuta-

tion-based estimate of Ripley’s K under CSR (i.e., observed Ripley’s K–the mean of the empiri-

cal distribution of Ripley’s K under CSR); (A) results from intra-tumoral ROIs (93 subjects,

260 samples); (B) results from tumor compartment of TMAs (94 subjects, 263 samples).

PLOS COMPUTATIONAL BIOLOGY Spatial clustering of immune cells

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009900 March 2, 2022 14 / 17

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009900.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009900.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009900.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009900.s004
https://doi.org/10.1371/journal.pcbi.1009900


Models adjusted for age at diagnosis and stage within a repeated measures analysis framework.

(PDF)

S5 Fig. Predicted survival curves for patients with high abundance stratified by level of spatial

clustering from Cox proportional hazard models for the CD3+, CD3+CD8+, and CD3

+FOXP3+ cells where the degree of spatial clustering was based the permutation-based esti-

mate of Ripley’s K under CSR (i.e., observed Ripley’s K–the mean of the empirical distribution

of Ripley’s K under CSR); (A) results from intra-tumoral ROIs (B) results from tumor com-

partment of TMAs. Models adjusted for age at diagnosis and stage within a repeated measures

analysis framework.

(PDF)

S1 Table. Summary of the demographics of the African American women with EOC in

AACES included in the study.

(XLSX)
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