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1 Introduction

In the digital age, concepts like ‘open source’ and ‘open
access’ are gaining more and more attentiveness. Owning
information or data does no longer guarantee commercial
success. It is the way to use these data and to combine
them with available knowledge that makes the difference
and provides a competitive edge.[1,2] In this context, a busi-
ness concept which tries to maximize data exploitation by
creating and making use of synergies between internal and
external knowledge is most promising. This concept,
termed ‘open innovation’, is one strategy by which phar-
maceutical industry may overcome the current crisis caused
by declining productivity, patent expiries and a downward
trend in drug pricing by acknowledging and actively involv-
ing the creative capacity outside the traditional pharma-
ceutical R&D units. In parallel, with the growth of academic
drug discovery research, translational biology and biologi-
cal data explosion, the data analysis activities in industry
are shifting to benefit from the high-quality, open and ac-
cessible data out in the world wide web.[3,4]

It is obvious that also academia benefits from the matu-
ration of the public-domain and from strong public-private
partnerships with industry. For example, nowadays re-
searchers have the ability to access patent databases as
well as databases of clinical candidates. This paves the way
for repurposing of drugs for activity in unexpected indica-
tions[5] and fosters efforts from non-profit organizations to-
wards rare diseases.[6,7]

The ‘democratization’[8] of data, where academic teams
can access large scale resources previously only accessible
inside large organisations, gives an unprecedented oppor-
tunity to tackle difficult research problems related to
human health. There remain many diseases with poorly
met medical need and where fundamental understanding
of disease mechanisms is needed. Similarly, in the field of
medicinal chemistry there are many areas where an invest-
ment in basic research is required to understand how we
effectively target the protein-protein interactions funda-
mental to cellular regulation,[9] enzyme regulation (e.g. AMP
kinase activators),[10] or modulating highly complex cellular
networks.[11] Similarly, the increasing applicability of high
content biology and multiplexed assays coupled with sys-

tems analysis and molecular intervention[12] offers new op-
portunities for medicinal chemistry to change and possibly
reverse disease processes.

However, data organization, integration and manage-
ment are far from being trivial. Proper usage for drug dis-
covery can only be assured by a thorough investigation of
data quality and integrity. Herein, we want to draw the at-
tention to the opportunities offered by semantic web tech-
nologies for flexible integration of databases and we are
discussing strengths and weaknesses of open innovation
when it comes to the molecular level, exemplified by
a case study on ABC transporters and respective assays.

2 A New Era of Open Innovation

2.1 Data Sources for Drug Discovery and Design

Traditionally, pharmaceutical companies were relying on
their in house repositories of compound bioactivity data for
the purpose of finding new lead candidates in the drug dis-
covery process. Historically, the pharmaceutical industry
and related academic fields sought to protect and confine
ideas and data inside the organisation. Such ‘intellectual
mercantilism’ or ‘closed innovation’ is driven by the motiva-
tion to prevent your intellectual property being exploited
by rivals.

During the last decade, however, things have changed
fundamentally, and much as free trade has fuelled growth
and fundamentally changed patterns of economic activity,
we are now experiencing increased scientific collaboration
between academia, industry and governmental institutions.
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The increase in external research, innovation scouting (e.g.
Eli Lilly’s Innocentive) and public private partnerships is
driving new, open, models of drug discovery research. An
important driver for this change has been large scale initia-
tives such as the NIH Molecular Libraries programme. As
a consequence, an unprecedented body of data on com-

pound bioactivities has been entering the public domain.
For instance, the PubChem BioAssay database currently
contains 500 000 descriptions of assay protocols, covering
5000 protein targets, 30 000 gene targets and providing
over 130 million bioactivity outcomes. It hosts mainly
screening data generated by the NIH Molecular Libraries
and Imaging Program (MLP; http://commonfund.nih.gov/
molecularlibraries/).[13]

ChemBank is a small-molecule database which stores
screening data coming from the Broad Institute of Harvard
and MIT,[14] and the DrugBank database contains more than
4100 drug entries including FDA approved small molecule
and biotech drugs as well as 3200 experimental drugs.[15]

Complementary to these efforts, in 2010 the ChEMBL da-
tabase (ChEMBLdb) was transferred from the private into
the public sector. Being funded for five years, ChEMBLdb
and related tools are being developed by the group of J.
Overington at the European Bioinformatics Institute. In con-
trast to others, data in there are manually curated, and
thus of higher quality. However, data from patents is so far
not included.[16,17]

One should also not forget about the more specialized
data sources serving the needs of specific research com-
munities, such as the transporter database TPsearch
(http://125.206.112.67/tp-search/login.php), or the IUPHAR
database containing data from G-Protein-Coupled Recep-
tors, Voltage-Gated Ion Channels, Ligand-Gated Ion Chan-
nels and Nuclear Hormone Receptors (http://www.iuphar-
db.org/).[18]

The ever pressing need to organize, catalogue and rate
these data resources, so that the information they contain
can be most effectively exploited, is reflected by the exis-
tence of a special wiki for databases termed MetaBase (MB)
(http://metadatabase.org/wiki/Main_Page). It is a communi-
ty-curated database containing more than 2000 commonly
used biological databases.[19] Even more Nucleic Acids Re-
search releases every year a special database issue, recently
featuring descriptions of 92 new online databases covering
various areas of molecular biology and 100 papers describ-
ing recent updates to the databases previously de-
scribed.[20]

The ever increasing availability of large-scale open data
and most notably its maturation – which refers to the exis-
tence of stable and reliable platforms as well as clear terms
of usage – is having a significant impact on industrial drug-
discovery, as well as on academic and non-profit research.
Moreover, as industry is changing to an ‘open innovation’
business concept, pre-competitive initiatives including aca-
demic research cooperation partners, such as the Innova-
tive Medicines Initative (IMI; http://www.imi.europa.eu/),
are gaining more and more importance. Of course, the
question of which part of the drug discovery process is
pre-competitive, always depends on the project and contri-
buting scientists and lawyers. In general, it includes infor-
mation that can be shared without conferring a commercial
advantage.[3]
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There is a great chance also for academia to benefit from
these developments. In silico models built upon such huge
data sources span a much larger chemical space than the
models traditionally built using academic in house databas-
es.[21] This makes it much easier to build up reliable models
and it facilitates data mining. In addition, it will encourage
the development of novel tools and predictive algorithms
within the public domain which will further academic as
well as industry-based drug design.[17]

A classical use case for this is the depositing of more
than 13 500 compound structures of possible drugs against
malaria by GlaxoSmithKline (GSK) into the public domain in
May 2010.[22] It is called the Tres Cantos Antimalarial
(TCAMS) dataset, and full compound assay data and struc-
tures are available at ChEMBL – Neglected Tropical Disease
Archive (ChEMBL-NTD; http://www.ebi.ac.uk/chemblntd).
This further led to the identification of 47 putative starting
points for lead optimization in the search for new antima-
larial drugs.[23]

2.2 Integration of Databases

Due to public data freely available and strong public-pri-
vate partnerships, suddenly all scientists involved in a proj-
ect have (more or less) the same sort of information avail-
able. However, the outcome of a data search still will never
be the same. It depends on the type of database(s) and the
search queries used in the data retrieval process, as well as
on the knowledge and scientific background of the persons
involved.

Diversification of results by more than one person work-
ing on a project can never be avoided completely, and it
also might give valuable input to the others. However, the
preparatory parts of the work process which deal with lo-
gistics such as updating, cleaning and connecting different
data sources (often across multiple domains) can be opti-
mized not only, avoiding duplication of effort but, perhaps
more importantly, offers an opportunity to increase consis-
tence and transparency of these critical steps. In the in-
creasingly complex and sophisticated scientific data-envi-
ronments this is a major challenge and significant cost.

Data integration is the promising answer to this task. Se-
mantic Web Technology (SWT) makes it possible to inte-
grate and search the large volume of life science datasets
in the public domain[24] and it is able to provide data in
computer-readable formats – which is needed in today’s
data intensive science.[25,26] By using the tools such as Re-
source Description Framework (RDF) metadata model,
which describes relationships in the form of subject-predi-
cate-object expressions (or so called ‘triples’), statements
about data resources are made. This allows building up ef-
fective connections between such data sources. A prerequi-
site, however, is the assignment of unique identifiers to en-
tities in the databases (e.g. compounds) and also to con-
cepts (e.g. “binds”, “hydrolyses” or “antagonize”).[21]

There are some prominent data projects which are using
a semantic web approach for data (or knowledge) integra-
tion. First of all, there is Linked Life Data (LLD; http://linked-
lifedata.com/) – an aggregation of more than 25 popular
biomedical data sources. Second, Bio2RDF (http://bio2-
rdf.org/)[27] integrates publicly available data from some of
the most popular databases in bioinformatics. Last but not
least, Chem2Bio2RDF[28] is a prominent example of data-
linkage across domains and has proven useful in specific
examples of polypharmacology, multiple pathway inhibi-
tion and adverse drug reaction-pathway mapping. It inte-
grates six categories of data based on the nature of biolog-
ical/chemical concepts and their relationships, such as
chemical & drug, or protein & gene. A potential draw-back
is the lack of a formal ontology which increases the com-
plexity of some queries.[24]

As a consequence, the bio- and cheminformatics com-
munities are now seeking for data exploitation tools which
allow the user to retrieve the required data easily, quickly,
correctly (meaning of high-quality), and, of course, this
system should be freely available and open to everyone.
Additionally, such tools should be able to combine data/in-
formation in a way that one complex research query gives
the desired answer(s). The ideal system should be able to
answer research questions like: “Give me all compounds
which have been associated with liver toxicity and list their
interaction profiles with the transporters expressed in the
liver”. By that, the researcher would be able to spend his
time on using his/her real special expertise to foster drug-
discovery output, and not being occupied with mere data
retrieval, cleaning, duplicate filtering, and combination.
Nevertheless, those complex web approaches are still in its
childhood.

Recently, there has been a call of the Innovative Medi-
cines Initiative (IMI) for the development of an Open Phar-
macological Space (OPS), an open innovative platform for
knowledge discovery and verification, freely accessible for
the drug-discovery community. The winning consortium
‘Open PHACTS’ (the Open Pharmacological Concepts Triple
Store; http://www.openphacts.org/) is a partnership be-
tween the European Community and the European Federa-
tion of Pharmaceutical Industries and Associations (EFPIA)
and started to work in March 2011. The consortium com-
prises 14 European academic and SME (Small and Medium
Enterprises) partners and 8 EFPIA members. The main goal
is the alignment and multiscale integration of proprietary
and public data sources into a single system by the use of
semantic triples. It should include e.g. data on small mole-
cules, their pharmacological profiles, pharmacokinetics,
ADMET data, biological targets and pathways. It is impor-
tant to mention that the Open PHACTS web service will be
tailored to the particular needs of the drug-discovery com-
munity. So called ‘research questions’ or ‘business ques-
tions’ are being defined by the consortium members
(either being from academia or EFPIA members), prioritized,
and analysed. This forms the basis for deciding on which
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databases, software, and web tools are being integrated in
the final release of the platform. For a first demo of the
Open PHACTS pilot see http://www.youtube.com/Open-
PHACTS.

Despite the technical challenges of connecting databases
with completely different content and architecture, Open
PHACTS faces also a substantial legal challenge. Every
public data source is provided under a slightly different li-
cense. Although mostly based on Creative Commons, nu-
merous slight modifications have been implemented by
the different data provider. A platform connecting a set of
data sources and allowing the public to query across all
these sources needs to take also the legal issues into ac-
count. One possible solution might be that all data provid-
er agree to a unified license model for the RDF version of
their sources. This will not harm the original data source
and allows setting up a large semantically enriched infra-
structure, which can then be provided under a suitable
open license model.

2.3 Introducing Standards to Assure Data Quality

As data repositories are growing at an exponential rate due
to the huge amount of data coming from high-throughput
screening initiatives, such as PubChem and EU-OPEN-
SCREEN (http://www.eu-openscreen.de/), concerns about
data quality and demands for setting standards are getting
louder. Looking at integrated platforms for data retrieval,
these issues are getting even more urgent to be addressed
and finally solved.

Regarding quality of the data, we have to be aware that,
for example, data from high throughput screens suffer usu-
ally from a high false positive rate and normally is validated
through a series of confirmatory assays. Most often this is
not captured in public data-sources and thus leaves users
of the data exposed to assay artefacts and screening bias.
Also compound structures may be depicted or named in-
correctly in the sources and the high degree of cross-link-
ing and circular references makes it very hard to ascertain
compound provenance.[17]

In addition, as already mentioned before, there is also
a strong need for unique identifiers. This is quite a difficult
issue, as there is not a common agreement on when one
thing equals to another. Is the identifier ‘gene sequence’
equal to ‘protein’? Additionally, synonyms are also wide-
spread in the context of compound names, target names,
or protein families. ABCB1, for instance, may be termed P-
glycoprotein, P-gp, MDR1, and most probably some more.

Especially when integration of various data sources is
performed, redundancy might present a nasty problem be-
cause it leads to very time consuming database cleaning
processes.

On the other hand, giving a guarantee for data com-
pleteness will always stay a challenging and even unrealis-
tic issue to fulfil in biology. For example, drug-target net-
works which serve to detect cross-pharmacology relation-

ships among targets and to identify new targets for known
drugs have to deal with this current limitation. As Vogt and
Mestres pointed out, it happens that such public available
drug-target interaction data is largely incomplete, and that
the portion accessible is often inhomogeneous and biased
towards targets of common therapeutic interest.[29]

Last but not least, the big diversity of available assays
and screening results represents a tremendous problem as
to the organisation, standardisation, integration, and analy-
sis of the datasets. There have been efforts in order to ad-
dress this problem, resulting in e.g. the first (beta) version
of a free available webservice for semantic description of
bioassays and HTS results, named BioAssay Ontology (BAO).
The ontology is available online at the NCBO bioportal
(http://bioportal.bioontology.org/ontologies/44531).[30]

In summary, setting standards is an important milestone
one has to take in data integration processes. However, it
should be stated that semantic web technology is only
a tool that alleviates the data integration and is not de-
signed for solving all the issues mentioned above. This will
be the exercise of the whole community, and starts where
biological/chemical data are generated and stored. Lately,
the MIABE (Minimum information about a bioactive entity)
guidelines were published, presenting a list of the items of
information that should be provided when describing the
synthesis and subsequent analysis of bioactive entities.[31]

2.4 A Versatile World of Chemical Compounds

Stepping aside the very complex and demanding process
of data integration with all the challenges it possesses, the
situation we are facing with respect to the amplitude of
today’s chemical compound libraries itself is assigning fur-
ther exercises to pharmaceutical R&D activities.

Analysing the distribution of the chemical features mo-
lecular weight (MW) and logP(o/w) (descriptors calculated
with MOE) of the about 640 000 unique compounds in
ChEMBL database revealed that around 490 000 com-
pounds (76 %) fulfil the molecular weight (MW) criterion as
stated in the rule of five (RO5).[32] The same percentage of
compounds does possess logP (o/w) values below 5. How-
ever, taking both important features into account around
63 % of all the unique compounds in ChEMBL fulfil these
relevant criteria of drug-likeness. Thus, the possibility of
using integrated data retrieval platforms synchronous with
private in house data might present a prosperous strategy
in the future.

As already mentioned in the section about standards
that are needed when it comes to the integration of differ-
ent databases, in the data exploitation process redundancy
should be kept low on one hand, but most entire data
(compound) collections are desired on the other hand.
Thus – in addition to other identifiers – there is a need for
unique canonical molecular identifiers for chemical com-
pounds. However, the exact definition of compound
uniqueness presents one of the major challenges in this
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huge world of chemical entities as it strongly depends on
the type of chemical identifier used. Prominent examples
for chemical notation systems are the SMILES strings,[33] the
CACTVS hash code[34] and the new IUPAC InChIKeys (Inter-
national Chemical Identifier).[35] Hashed representations of
such chemical graph identifiers do possess the additional
advantage of masking the structural features of the mole-
cules. Thus, they can be used for a secure data sharing pro-
cess which is of very high priority when it comes to public-
private partnerships.

Coming back to compound uniqueness, it should be
stressed that the determination whether two or more com-
pounds are unique or not always depends on the chemical
characteristics we are looking for. How to take tautomer-
ism, stereoisomerism, or salt composition into account will
depend on the questions asked, and unfortunately to
a large extent, how these issues are handled by the under-
lying source data. Recognising that this issue has in fact
been solved many times in corporate chemical registration
systems, EBI and the EBI Industry Programme recently
hosted a workshop with contributions from chemical and
pharmaceutical industry, informaticians and major public
dataprovider (http://www.ebi.ac.uk/industry/Workshops/
workshops.html). A similar initiative has been launched by
FDA with a recently published guidance document on han-
dling of chemical structures in databases and submissions
(FDAs “Food and Drug Administration Substance Registration
System Standard Operating Procedure”, available at http://
1.usa.gov/snNNdn).

2.5 Case Study: Data Retrieval from ChEMBL for Human
ABCB1 – Studying Bioassay Ontologies

In academia a major source for data retrieval in order to
build up regression models, is the ChEMBL databank. It in-
cludes assay data of all different types available, including
binding assays (measuring the interaction of the compound
with the target directly), functional assays (often measuring
indirect effects of the compound on a pathway, system or
whole organism) and ADMET assays (measuring pharmaco-
kinetic properties of the compound, interaction with key
metabolic enzymes or toxic effects on cells/tissues). There
has been an effort in order to standardize, where possible,
the activity values to a preferred unit of measurement for
a given activity type (e.g. IC50 values are displayed in nM,
rather than mM/mM/M, half-life is reported in hours rather
than minutes/days/weeks) which makes it easier to com-
pare data across different assays.[17]

However, the problem of integrating activity measures
coming from different assays persists. Basically, there are
four different scenarios a researcher might face when
searching for compound activities:

1) For one unique compound there might exist different
activity values coming from different assays.

2) For one unique compound there might exist different
activity values coming from the same kind of assay (but
under slightly different conditions).

3) For one unique compound (reported to be targeting
a certain protein) there might not be any activity value
available which could be used for building up the de-
sired model.

4) The data (activity values) do not unambiguously tell the
user if the compound is a substrate or inhibitor of the
target under investigation.

The use case we are describing in this section deals with
human ABCB1 (human P-glycoprotein; CHEMBL4302).
Figure 1 shows the different bioactivity types and different
assays available for this transporter in ChEMBLdb.

As an example, Figure 1 shows that for ligands of human
P-glycoprotein there are 393 IC50 activity values available. In
some cases, there is more than one activity value for the
same compound displayed. This is exemplified in Figure 2
for compound CHEMBL104.

In both cases the inhibition of human P-glycoprotein has
been measured, but by the use of different bioassays. By
the use of a ‘calcein-AM assay transfected in porcine
PBCEC’ an IC50 value of 1300 nM was obtained. By also
making use of a ‘calcein-AM polarisation assay’, but ‘ex-

Figure 1. Bioactiovity and Assay Summary as depicted in
ChEMBLdb for human ABCB1.
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pressed in LLC-PK1 epithelial cells’, the authors report an
IC50 value of 6700 nm. This situation corresponds to scenar-
io 1, as described before. Similar examples can be given for
scenario 2, where the same assay produced different out-
comes (data not shown).

Scenario 3 and 4 describe phenomena where the user’s
knowledge is needed to decide whether a certain activity
measure may serve as an input for model development. In
scenario 3 it depends very much on the nature of the
model that should be built (e.g. ‘Ratio’ values can only be
used to build up binary models, i.e. linear or non-linear
classification). Thus, the number of available compounds
with activity values for the protein under investigation (e.g.
in ChEMBLdb) may be somehow misleading, because not
all the activity data can be used for model building.

Scenario 4 points towards a major issue in ABC transport-
er research. Deciding if a certain ligand of ABCB1 is either
a substrate or an inhibitor might be a difficult task, depend-
ing on the kind of assay data available. Measures which dis-
play IC50 values, Ki values, or fall within the category ‘Inhibi-
tion’ in e.g. the ChEMBLdb ‘Bioactivity Summary’ (see
Figure 1) should allow unequivocal assignment. However,
categories like ‘Activity‘ or ‘Ratio’ (see Figure 1) might in-
clude both, substrates and inhibitors. In those cases, a com-
pound series spanning a whole range of activity values
might be classified into substrates or inhibitors according
to certain thresholds which are defined on basis of expert
knowledge. Finally, even more complicated, the pharmaco-
logical profile of a compound might change depending on
the assay used. Thus, verapamil, cyclosporine A, and also
propafenone analogs are inhibiting daunomycin efflux out
of ABCB1 overexpressing tumour cells (i.e. act as inhibitors
of ABCB1), but also act as substrates in polarized transport
assays or ATPase activation assays. Thus, there is clear evi-
dence that a P-gp inhibitor can at the same time also be
a substrate.

The same is true for other targets. For instance, selective
estrogen receptor modulators (SERMs) are reported to ex-
hibit tissue-selective estrogen receptor (ER) agonist/antago-
nist properties.[36] Thus, it is important that assays are able

to encode the mode of action of the respective compound,
which is, however, not always the case.

A deep knowledge about the outcome, strengths and
limitations of each individual assay is therefore a basic re-
quirement needed when performing a search of this kind.
Thus, a sustainable infrastructure for complex data retrieval
must certainly also include an appropriate bioassay ontolo-
gy, alleviating researchers’ daily life.

3 Outlook

Being aware of the advantages that huge integrated data
retrieval platforms will have for the drug-discovery com-
munity, stable, reliable, and sustainable web services of this
kind – open to everyone – will increase in quantity and
hopefully also in quality during the next years.

The latter may be achieved by addressing all the issues
concerning quality control and setting standards – chal-
lenges that developers have to face now and in the near
future.

Still, there are some kinds of data where there is only
limited amount of public information available, thus it is
a more delicate task to integrate such information. Data on
ADMET properties of compounds, information on patents,
and assay ontologies are only a few examples of pieces of
information which are also needed to be integrated. Only
by getting the most entire picture of the relationship be-
tween biological/pharmacological concepts, drug-discovery
output will increase, which might finally also lead to better
drugs.
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gramme (FP7/2007-2013) and EFPIA companies’ in kind con-
tribution.
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