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Abstract: The COVID-19 pandemic has caused a devastating impact on the social activity, economy
and politics worldwide. Techniques to diagnose COVID-19 cases by examining anomalies in chest
X-ray images are urgently needed. Inspired by the success of deep learning in various tasks, this
paper evaluates the performance of four deep neural networks in detecting COVID-19 patients from
their chest radiographs. The deep neural networks studied include VGG16, MobileNet, ResNet50
and DenseNet201. Preliminary experiments show that all deep neural networks perform promisingly,
while DenseNet201 outshines other models. Nevertheless, the sensitivity rates of the models are
below expectations, which can be attributed to several factors: limited publicly available COVID-19
images, imbalanced sample size for the COVID-19 class and non-COVID-19 class, overfitting or
underfitting of the deep neural networks and that the feature extraction of pre-trained models does
not adapt well to the COVID-19 detection task. To address these factors, several enhancements are
proposed, including data augmentation, adjusted class weights, early stopping and fine-tuning, to
improve the performance. Empirical results on DenseNet201 with these enhancements demonstrate
outstanding performance with an accuracy of 0.999%, precision of 0.9899%, sensitivity of 0.98%,
specificity of 0.9997% and Fl-score of 0.9849% on the COVID-Xray-5k dataset.

Keywords: COVID-19; deep neural networks; chest X-ray; chest radiograph; DenseNet; fine-tuning;
pre-trained; CNN

1. Introduction

Since 2019, the SARS-CoV-2 virus has caused severe outbreaks of COVID-19 disease
to the whole world. The virus is highly infectious; therefore, early detection of COVID-19
symptoms is of real significance to enable immediate isolation and prevention of the
virus spreading to the healthy population. Due to the scarcity of publicly available chest
radiographs (also known as chest X-rays) of COVID-19 patients, studies on COVID-19
detection from chest radiographs are still limited. Recently, a COVID-Xray-5k dataset with
5000 chest radiographs was compiled by Minaee et al. (2020) [1].

The dataset is challenging as it is highly imbalanced with 184 COVID-19 images
and 5000 non-COVID-19 images. Not only that, the signs in the lungs that indicate the
infection by the SARS-CoV-2 virus are hardly perceivable and diversified. Some sample
COVID-19 and non-COVID-19 images are shown in Figure 1. In light of this, conventional
machine-learning methods that require manual feature engineering to describe the images
are ineffective. Therefore, the deep neural networks that are able to autonomously learn the
prominent features and perform recognition are preferred in this COVID-19 diagnosis task.

In this work, four deep neural networks are examined, including VGG16, MobileNetV2,
ResNet50 and DenseNet201, for COVID-19 diagnosis. The performance of these models
was evaluated on the COVID-Xray-5k dataset [1] for COVID-19 diagnosis. Since the
COVID-19 chest radiographs are limited, the research faces the challenges of data scarcity
and imbalanced class distribution.
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Not only that, the mechanism to decide when to stop the training of deep neural
networks is essential as it is a determining factor for the generalization capability of the
model. Too many training epochs makes the model overfit the training data, while too few
epochs lead to underfitting. Although the deep neural networks were pre-trained on the
ImageNet, re-training the model on the COVID-19 chest radiograph dataset enables the
model to better adapt to the downstream task, particularly COVID-19 diagnosis. In view of
this, the following contributions are proposed to address the challenges:

*  Due to the limited number of COVID-19 chest radiographs, data augmentation is used
to synthesize more samples for model learning. Different variations of COVID-19
chest radiographs, such as random cropping and intensity normalization, increase
the number of samples of the COVID-19 chest radiographs. The random cropping
and intensity normalization are appropriate as they are intuitively analogous to the
different settings in radiography examinations.

¢ As the sample distributions of COVID-19 and non-COVID-19 classes are highly imbal-
anced, the class weights are adjusted to be inversely proportional to the sample size in
each class. The adjusted class weights reduce the bias and place more emphasis on the
minority class, thus, mitigating the imbalanced class distribution issues.

*  To circumvent the overfitting and underfitting problems of the deep neural networks,
the early stopping mechanism is implemented to terminate the training of deep
neural networks after the validation accuracy stops improving for a certain number of
epochs. The weights with the highest validation accuracy are then restored and used
for testing.

¢  Training the entire deep neural networks requires large datasets, while training only
the final classification layer has the risk of inferior feature representation specific to the
downstream task. In light of this, the fine-tuning is performed on the last few layers of
deep neural networks to better represent the visual cues of chest radiographs. This is
a trade-off between end-to-end training and training only the final classification layer.

COVID-19 CoviID-19 Non-COVID-19 Non-COVID-19

Figure 1. Some sample COVID-19 and non-COVID-19 images from the COVID-Xray-5k dataset.
2. Related Works

This section reviews some existing works that deploy deep-learning models on chest
radiographs for COVID-19 diagnosis [2-5].

Narin et al. (2020) [6] evaluated five deep neural networks—namely, InceptionV3,
ResNet50, ResNet101, ResNet152 and Inception-ResNetV2—for the diagnosis of COVID-19
cases using chest radiographs. The authors collected 341 COVID-19 and 2800 healthy chest
radiographs from different sources and conducted five-fold cross validation. Among the
deep neural networks, ResNet50 achieved the highest accuracy of 96.1%.

Basu et al. (2020) [7] performed domain extension transfer learning on three deep
neural networks, which were AlexNet, VGG16 and ResNet50, for COVID-19 diagnosis.
The deep neural networks were first trained on a dataset with 108,948 images from the
normal and diseased classes to let the model learn to classify two classes. The trained deep
neural networks were then fine-tuned on the second dataset that comprised 305 COVID-19,
322 pneumonia, 350 normal and 50 other disease images. The VGG16 model recorded the
best performance on the second dataset with 90.13%.
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In Jain et al. (2021) [8], three deep neural networks, including Inception V3, Xception
and ResNeXt, were evaluated for COVID-19 detection. The dataset was collected from
Kaggle with 576 COVID-19, 1583 normal and 4273 pneumonia images. The activation
function in the deep neural networks was changed from ReLU to LeakyReLU to avoid
inactive neurons. The experimental results suggested that the Xception model obtained the
highest F1-score of 0.97.

Five deep neural networks—namely, VGG16, VGG19, ResNet18, ResNet50 and ResNet101
—were adopted in Ismael et al. (2021) [9]. The deep neural networks were utilized as the
deep feature extractor. Subsequently, the deep features were fed into the Support Vector Ma-
chines (SVM) for classification. The experiments included 180 COVID-19 and 200 normal
chest X-ray images. Among the deep neural networks, the combination of ResNet50 and
SVM produced the highest accuracy of 94.7%.

Wang et al. (2020) [10] introduced a lightweight COVID-Net with projection-expansion-
projection-extension (PEPX) architecture for COVID-19 diagnosis. The network utilized
convolution operations of different kernel sizes to extract the features from the chest radio-
graph images, project the input features into a lower dimension, followed by expansion
into a higher dimension, the learning of spatial properties, projecting the features back to a
lower dimension and lastly extending the features channel-wise into a higher dimension as
the final features. The COVID-Net recorded 93.3% accuracy on the COVIDx dataset with
13,975 chest X-ray images, out of which 358 images belong to COVID-19 class.

An attention-based VGG16 was proposed in Sitaula and Hossain (2020) [11]. The
VGG16 was adopted as the backbone with the integration of an attention module in the
fourth pooling layer. In the attention module, both the max pooling and average pooling
outputs were concatenated to encode the spatial relationship between the regions of interest.
The model achieved accuracy of 79.58% on dataset 1 with 1125 images, 85.43% on dataset
2 with 1638 images and 87.49% on dataset 3 with 2138 images.

VGG16 was similarly employed in Ahsan et al. (2021) [12] for COVID-19 diagnosis.
The chest X-ray images were filtered by a modified anisotropic diffusion technique to
preserve the edges and clean the noise in the images. The cleaned images were then
represented by histograms of oriented gradients and CNN. The extracted features were
then fused and passed into the VGG16 for classification. The experiments on the dataset
consisted of 1979 COVID-19 and 3111 normal images and recorded an accuracy of 99.49%.

Another modified pre-trained Convolutional Neural Network (CNN) was presented
in Abbas et al. (2021) [13]. A class decomposition layer that consists of a Decompose,
Transfer and Compose (DeTraC) model was added to the pre-trained CNN. Specifically, the
class decomposition layer used k-means clustering to partition each class in the dataset into
several subclasses with new labels. Every subclass was then treated as an independent class,
and the predicted labels of these subclasses were fused to produce the final predictions. An
accuracy of 93.1% was achieved on a self-collected dataset with 80 normal, 105 COVID-19
and 15 SARS images.

A novel deep neural network known as Corona-Nidaan was proposed in Chakraborty
et al. (2021) [14]. The Corona-Nidaan was built of 91 layers with depth-wise separable
convolutional layers, batch normalization layers, a global average pooling layer, resid-
ual connection as the uniqueness. A two-phase oversampling method was leveraged to
produce more samples for the minority classes, thus, addressing the imbalanced class prob-
lem. The model achieved 95% accuracy on the self-collected dataset with 245 COVID-19,
5551 pneumonia and 8066 normal images.

Sharifrazi et al. (2021) [15] combined a sobel filter, CNN and SVM for COVID-19
diagnosis. The chest X-ray images were subjected to the sobel filter to extract the edges in
the image. The resulting images were then fed into CNN for feature extraction, followed by
SVM for classification. Experiments on the self-collected dataset comprising 77 COVID-19
images and 256 normal images yielded an accuracy of 99.02%.

Aslan et al. (2022) [16] extracted the features of chest X-ray images using pre-trained
models—namely, AlexNet, ResNet18, ResNet50, Inceptionv3, Densenet201, Inceptionres-
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netv2, MobileNetv2 and GoogleNet. The extracted features were then passed into k-Nearest
Neighbors, Decision Tree, SVM and Naive Bayes for classification. The hyperparameter
tuning of the classifiers was done by Bayesian optimization. The experiments were con-
ducted on a self-collected dataset that contains 219 COVID-19, 1341 normal and 1345 viral
pneumonia images. The Densenet201 with SVM obtained the highest accuracy of 96.29%
on the dataset.

Tangudu et al. (2022) [17] utilized pre-trained MobileNet enhanced with the residual
separable convolution (RSC) block. The separable convolution layers in the RSC block were
equipped with residual connections to reiterate the gradients flow. The experiments were
conducted on the COVID-Xray-5k dataset and recorded an accuracy of 99.71%.

The COVID-Xray-5k dataset was also utilized in Rehman et al. (2022) [18]. The chest
X-ray images were first enhanced by the cloud balance contrast enhancement technique.
The pre-processed images were then represented as textural and shape features and went
through feature selection based on gain ration. The selected features were passed into
a bootstrap aggregated extreme learning machine (BA-ELM) for final classification. The
experiments on the subset of COVID-Xray-5k dataset with 184 COVID-19 and 3000 healthy
images achieved 95.7% accuracy. Table 1 summarizes the existing works with their method,
dataset and performance.

Table 1. The summary of the existing works on COVID-19 diagnosis.

Reference Method Dataset Accuracy (%)
Narin et al. (2020) [6] ResNet50 341 COVID-19, 2800 normal 96.1
Basu et al. (2020) [7] VGG16 305 COVID-19, 322 pneumonia, 350 normal, 50 others 90.13
Jain et al. (2021) [8] Xception 576 COVID-19, 1583 normal and 4273 pneumonia 97 (F1-score)
Ismael et al. (2021) [9] ResNet50, SVM 180 COVID-19, 200 normal 94.7
Wang et al. (2020) [10] COVID-Net with PEPX 358 COVID-19, 13617 others 93.3
Sitaula and Hossain ~~ VGG16 with attention .

(2020) [11] module 2138 images 87.49
Ahsan et al. (2021) [12] VGG16 1979 COVID-19, 3111 normal 99.49
Abbas et al. (2021) [13] DeTraC model 105 COVID-19, 80 normal, 15 SARS 93.1

Cha(l;gazki())itl)zﬂet al. Corona-Nidaan 245 COVID-19, 5551 pneumonia, 8066 normal 95
Sharifrazi et al. Sobel filter, CNN,

(2021) [15] SVM 77 COVID-19, 256 normal 99.02

Aslan et al. (2022) [16] Densenet201, SVM 219 COVID-19, 1341 normal, 1345 viral pneumonia 96.29
Tangudu et al. . .

(2022) [17] MobileNet with RSC 184 COVID-19, 5000 normal 99.71

Rehman et al. (2022) [18] BA-ELM 184 COVID-19, 3000 normal 95.7

3. Pre-Trained Convolutional Neural Networks

Generally, the deep neural networks require extremely huge training datasets for the
model learning so that the model can perform classification or prediction tasks acceptably.
As the training on huge dataset involves high computational resources, researchers turn to
adopting pre-trained deep neural networks. For image classification tasks, the pre-trained
CNNs are mostly used. Pre-trained CNNs are the CNNs that have been trained on a large
image dataset with annotations, such as ImageNet.

The model architecture and weights are then saved to be used for other downstream
tasks. The downstream tasks first load the architecture and weights of the pre-trained
CNN:s. As the downstream tasks usually have different target classes than the dataset that
the model was trained on, the final classification layer of the pre-trained model will then be
replaced and re-trained with the new target classes of the downstream tasks.

In this study, four pre-trained CNNs are explored for COVID-19 detection using chest ra-
diographs. The pre-trained CNNs include VGG16 [19], MobileNetV2 [20], ResNet50V2 [21]
and DenseNet201 [22]. To adapt to the COVID-19 diagnosis task, the final classification
layer of the pre-trained model is substituted with a new classification layer and re-trained
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on the classes in COVID-Xray-5k dataset, i.e., COVID-19 and non-COVID-19. A quick
overview of each deep neural network is given below:

VGG16 comprises multiple blocks of convolutional and max pooling layers. The
VGGI16 replaces the large size kernels in convolutional layers with smaller 3 x 3 kernels
one after another. The max pooling layer uses 2 x 2 kernel size.

MobileNetV2 is an enhancement on MobileNetV1 with a depthwise convolution layer
that applies a single convolutional kernel for each input channel. The depthwise con-
volution dramatically reduces the complexity and computation cost of convolutional
neural networks.

ResNet152 introduced the concept of residual connections where the original input
is added to the output of the convolution block as the shortcut path. Adding this
connection for gradient flow mitigates the problem of vanishing gradient. ResNet50
is a smaller version of ResNet152 that is frequently used as the starting point for
transfer learning.

DenseNet201 comprises multiple dense blocks. Each layer in the dense block concate-
nates the inputs from the preceding layers with its own feature maps and passes on
to the subsequent layers. This characteristic gives the features richer patterns and
varying complexity levels.

Prior to the new final classification layer, a global average pooling layer and a dropout

layer are added after the pre-trained model. The global average pooling layer flattens
the features from the preceding layers and produces a feature map for each class. As
deep neural networks are prone to overfitting, the dropout layer added for regularization
purposes to improve the generalization capability. The overall architecture of the deep
neural network is depicted in Figure 2.

Input Images

VGG16 / MobileNetV2 /
ResNet50V2 /
DenseNet201

Global Average Pooling

Dropout
Classification

Figure 2. The architecture of the deep neural network for COVID-19 diagnosis.

The performance of these pre-trained models is evaluated on COVID-Xray-5k dataset.

The COVID-Xray-5k dataset is divided into 2084 training and 3100 test images. Out of
2084 training samples, 84 are COVID-19 images, and 2000 are non-COVID-19 images. On
the other hand, there are 100 COVID-19 images and 3000 non-COVID-19 images in the test
set. The distributions of the training and testing sets are presented in Table 2.

Table 2. The number of training and testing samples in the COVID-Xray-5k dataset.

Dataset COVID-19 Non-COVID-19 Total Samples

Train Set 84 2000 2084
Test Set 100 3000 3100
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All chest radiographs are resized to 224 x 224 as the input to the deep neural networks.
The last layer of each model is fine-tuned and trained for 100 epochs, and the batch size
is 16. The learning rate is set to 0.0001, and the Adaptive Moment Estimation (Adam)
optimizer was adopted to optimize the model training. The cross-entropy loss function
was adopted for the training, which is defined as:

N
Lcp = — ) pilogy; 1)
i—1

where p; and g; denote the true and predicted probabilities for each sample, respectively.
The hyperparameter settings of the deep neural networks are presented in Table 3.

Table 3. The hyperparameter settings of the deep neural networks.

Parameter Values
Image size 224 x 224
Batch size 16
Dropout rate 0.2
Training epoch 50
Optimizer Adam
Learning rate 0.0001

Several metrics are used in the performance evaluation of the deep neural networks—
namely, the accuracy, precision, sensitivity (also known as recall), specificity and F1-score.
The evaluation metrics are based on the True Positive (TP), True Negative (TN), False
Positive (FP) and False Negative (FN) as depicted in Figure 3. The evaluation metrics are
defined as:

Accuracy = 57 :FFII; : :rrg +FN @)
Precision = % ®3)
Sensitivity = % (4)
Specificity = % ®)
Fl-score — 2 X Pr?c.ision X Ser.ls‘it%vity ©)

Precision + Sensitivity

Ground Truth
CovVID-19 Non-COVID-19
CoVviD-19 True Positive (TP) False Positive (FP)

Non-COVID-19 False Negative (FN) True Negative (TN)

Predicted Label

Figure 3. True Positive (TP), True Negative (TN), False Positive (FP) and False Negative (FN).

In this work, the Python programming language is engaged for the development
of deep neural networks. Python contains many frameworks, libraries and extensions
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that facilitate the implementation of deep-learning models. The main libraries used are
Tensorflow, Keras and Scikit-Learn.

TensorFlow is an open-source deep learning library developed by Google that is
widely adopted in classification and regression tasks. Tensorflow is built in a modular
manner, making it flexible and easily scalable. Another important library is Keras, where
it provides the fundamental abstractions and building elements for designing and con-
structing the machine learning systems. As for the performance evaluation, various metric
modules provided by Scikit-Learn, such as the accuracy, precision, recall, F1-score and
confusion matrix are leveraged. The experiments were executed on Google Colaboratory
with GPU enabled.

Table 4 demonstrates that all pre-trained deep neural networks achieved promising
results. DenseNet201 yielded the highest accuracy where the model correctly labeled 98.58%
of the COVID-19 and non-COVID-19 images. MobileNetV2 recorded the highest precision
where 100% of the predicted COVID-19 images were correctly labeled. DenseNet201
achieved the highest sensitivity rate of 0.58. The sensitivity indicates the ability of the
model in identifying the actual COVID-19 chest radiographs and is important in COVID-19
screening. MobileNetV2 achieved the highest specificity where it correctly labeled all
non-COVID-19 test images.

DenseNet201 recorded the highest F1-score at 0.725 with a good balance between
precision and sensitivity. The training and testing times of the pre-trained models are also
presented in the table. Figure 4 shows the receiver operating characteristics curve of the
pre-trained models. The DenseNet201 has the highest area under the curve, which indicates
that the model had relatively higher discriminating capability among the models. The
confusion matrices of the pre-trained deep neural networks are presented in Figure 5.

Table 4. The performance of the pre-trained deep neural networks on the COVID-Xray-5k dataset.

Deep Neural . . e s e Training Testing Time
Network Accuracy Precision Sensitivity Specificity F1-Score Time (s) ©
VGGl6 0.9835 0.9298 0.53 0.9987 0.6752 921.21 17.07
MobileNetV2 0.9848 1.0000 0.53 1.0000 0.6928 464.10 6.29
ResNet50V2 0.9832 0.9286 0.52 0.9987 0.6667 503.23 13.03
DenseNet201 0.9858 0.9667 0.58 0.9993 0.7255 935.72 23.09

Among the models in comparison, DenseNet201 generally outshined other models in
comparison. Nevertheless, the models recorded sensitivity rates that are considered low in
COVID-19 detection tasks. In view of this, some enhancements are proposed with the aim
to improve the performance of the DenseNet201 model for COVID-19 diagnosis.

10 -
0.8 1
0.6 1
0.4 1
— VGG16 , AUC=0.9554
0.2 1 MobileNetV2 , AUC=0.9568
ResNet50V2 , AUC=0.9573
00 - —— DenseNet201 , AUC=0.9684
0.0 0.2 0.4 0.6 0.8 10

Figure 4. The receiver operating characteristics curve of the pre-trained models.
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Figure 5. The confusion matrices of the pre-trained models: (a) VGG16, (b) MobileNetV2, (c) ResNet50V2
and (d) DenseNet201.

3.1. Data Augmentation

As COVID-19 is a relatively new disease, the current COVID-19 dataset suffers from
image scarcity and class imbalance problems. In this work, data augmentation is leveraged
to increase the number of training images by producing transformed variations of the
images. Two data augmentation techniques—namely, random cropping and intensity
normalization—were implemented to increase the size of the training set.

Random cropping produces synthetic images of smaller sizes (r —5,c —5) and
(r — 10, ¢ — 10), where (r,c) is the original image size. The small distortions produce
more COVID-19 samples while preserving the prominent region of the chest radiographs.
The output of random cropping is homogeneous to images with different distances between
the focal spot and patient surface in radiography examinations. Figure 6 illustrates the
sample chest X-ray images before and after random cropping.

Original Random Cropping 1 Random Cropping 2

(a) (b) (c)

Figure 6. Sample chest X-ray images: (a) original, (b) random cropping (r — 5,c — 5) and (c) random
cropping (r — 10, ¢ — 10).
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Intensity normalization adjusts the intensity values of the original image I(x, y) into
I'(x,y), as below:
I(xy) = I(x,y) - mean
Vvariance
Three pairs of mean and variance values are used: (mean = 0.485, variance = 0.229),
(mean = 0.456 and variance = 0.224) and (mean = 0.406 and variance = 0.225) [1]. The
output of the intensity normalization is analogous to images with slight illumination variations.
Figure 7 depicts the sample chest X-ray images before and after intensity normalization.

@)

Original Intensity Normalization 1 Intensity Normalization 2 Intensity Normalization 3

(a) (b) (c) (d)

Figure 7. Sample chest X-ray images: (a) original, (b) intensity normalization (mean = 0.485 and
variance = 0.229), (c) intensity normalization (mean = 0.456 and variance = 0.224) and (d) intensity
normalization (mean = 0.406, variance = 0.225).

The data augmentation procedures increase the training set by a factor of 5, which
means the number of COVID-19 chest radiographs increased from 84 to 420.

3.2. Class Weights

The dataset of COVID-Xray-5k dataset is highly imbalanced as there are 184 COVID-
19 images and 5000 non-COVID-19 images. In order to solve class imbalance problems,
several works [23,24] proposed sampling methods, either undersampling or oversampling.
Undersampling reduces the samples from the majority class. In contrast, oversampling
attempts to generate new samples for the minority class. However, sampling methods have
their own drawbacks. Undersampling may cause the loss of representative samples, while
oversampling may cause overfitting. In view of this, class weight is proposed to mitigate
the class imbalance problem. The class weights are adjusted by placing more emphasis on
the minority class, enabling the classifier to learn equally from all classes. The class weight
is calculated as:

n I
wj = samples ®)
Melgss X nsamplesj

where

*  wj denotes the weight for class j,

®  Tsgmples iS the total number of samples,

® s Tepresents the number of class and

* Taamples; denotes the number of samples in class j.

In doing so, the weights are adjusted to be inversely proportional to the data size of
each class, thus, mitigating the class imbalance problem.

3.3. Early Stopping

Another challenge of deep neural networks lies in the choice of the number of training
epochs. The number of epochs affects the generalization capability and the performance
of the deep neural networks. Too many epochs may result in the model overfitting the
training dataset. On the other hand, too few epochs may lead to an underfitted model.
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Both overfitting and underfitting impact the generalization capability and decay the
performance of the model. In view of this, an early stopping strategy is adopted to halt the
training once the model stops improving on the validation accuracy for a certain number
of epochs. Subsequently, the model weights from the epoch with the highest validation
accuracy will be restored.

3.4. Fine-Tuning

In transfer learning, the pre-trained model weights are redeployed to another smaller
dataset by some modifications. In this work, the last five layers of DenseNet201 are
unfrozen, and a new final classification layer is appended. These layers are subsequently
trained on the COVID-Xray-5k dataset to fine-tune the higher-order feature representations,
thus, tailoring the representations for COVID-19 detection.

With these enhancements, the overall process flow of model training and testing is
illustrated in Figure 8.

Ll Adjusted ‘ Early .' Fine
Class Weights | Stopping Tuning
I
W : P
Data Model Trained
Augmentation Training Model
Train Images P
Testing o s
ol
4 ( ] COVID-19
Trained Y Classification )
| Megel Non-COVID-19
‘ .
Test Images

Figure 8. The process flow of the proposed COVID-19 diagnosis with enhanced DenseNet201.

4. Experimental Results

The performance of DenseNet201 with enhancements was evaluated on the COVID-
Xray-5k dataset. The last five layers of DenseNet201 were fine-tuned for 100 epochs, and the
batch size was set to 16. In the training process, the data augmentation was deployed on the
training set to increase the data size by a factor of 5. The training process was terminated
once the validation accuracy stops improving for 15 epochs, and the weights with the
highest validation accuracy were used. Not only that, the class weights were adjusted to be
inversely proportional to the sample size of the COVID-19 and non-COVID-19 classes to
compensate for the imbalanced class distribution. The confusion matrices of DenseNet201
with enhancements are presented in Figure 9.

As observed in Table 5, data augmentation slightly improved the performance of
DenseNet201 in terms of the accuracy, sensitivity and Fl-score. This is attributable to
better discriminating power when more COVID-19 samples are generated for training.
Although the accuracy slightly dropped when the adjusted class weights were added, the
sensitivity improved tremendously. It is worth mentioning that the model sensitivity is
crucial to ensure the early diagnosis of COVID-19 where the model is able to correctly
identify COVID-19 samples.
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The sensitivity of the model greatly increased from 0.69 to 0.91 when the class weights
were adjusted to give more emphasis on the minority class. The improvement corroborates
that adjusted class weights are effective in alleviating the bias caused by the skewed
class distributions.

2500 2500
© 2993 T o 2935 65
2 2000 2 2000
w Y © ¢
g6 1500 E 5 1500
g F I <
1000 -1000
ke 31 69 o 9 91
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Figure 9. The confusion matrices of DensetNet201 with enhancements: (a) DenseNet201 with data
augmentation, (b) DenseNet201 with data augmentation and adjusted class weights, (c) DenseNet201
with data augmentation, adjusted class weights and early stopping and (d) DenseNet201 with data
augmentation, adjusted class weights, early stopping and fine-tuning.

Table 5. The performance of DenseNet201 with different enhancements (DA = data augmentation,
CW = adjusted class weights, ES = early stopping and FT = finetuning).

Enhancement Accuracy Precision Sensitivity Specificity F1-Score
DenseNet201 0.9858 0.9667 0.58 0.9993 0.7250
DenseNet201 + DA 0.9877 0.9079 0.69 0.9977 0.7841
DenseNet201 + DA + CW 0.9761 0.5833 091 0.9783 0.7109
DenseNet201 + DA + CW + ES 0.9810 0.6395 0.94 0.9823 0.7611
DenseNet201 + DA + CW + ES + FT 0.9990 0.9899 0.98 0.9997 0.9849

We also observed that incorporating early stopping avoids the overfitting problem
and improves the overall performance of the model. To further improve the model for
COVID-19 screening, fine-tuning the last few layers of DenseNet201 makes the learned
feature maps more representative towards COVID-19 chest radiographs. The DenseNet201
model with data augmentation, adjusted class weights, early stopping and fine-tuning
demonstrated outstanding classification accuracy, precision and Fl-score despite the fact
that limited COVID-19 samples were available.

The experimental results also exhibited high sensitivity and specificity rates, which
are essential in COVID-19 screening. To further evaluate the performance of the enhanced
DenseNet201 method, comparison with several state-of-the-art deep neural network meth-
ods was conducted as presented in Table 6.
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Since the COVID-Xray-5k dataset is highly imbalanced, sensitivity and specificity are
two important metrics for the comparison. Noticeably, the proposed method outperformed
the state-of-the-art deep neural network methods. This is mainly due to the enhancements
of data augmentation, class weights, early stopping and fine-tuning to the proposed method.
Data augmentation increased the training samples and provided better representation to the
model. In addition, the adjusted class weights help to mitigate the class imbalance problem.
Furthermore, early stopping determined the best performing model and reduced the
overfitting. Moreover, fine-tuning allowed the model to learn more robust representation
towards the dataset.

Table 6. Comparison with the state-of-the-art deep neural network methods.

Method Accuracy Sensitivity Specificity
GoogleNet [17] 0.9971 0.9971 0.9994
InceptionResNet [17] 0.9917 0.9917 0.9984
ResNet50 [17] 0.9986 0.9986 0.9988
MobileNet [17] 0.9932 0.9932 0.9996
MNRSC [17] 0.9971 0.9971 0.9988
BA-ELM [18] 0.9570 0.9870 0.7150
Enhanced DenseNet201 (proposed) 0.9990 0.9900 0.9997

5. Conclusions

Early diagnosis of the SARS-CoV-2 virus has become a challenge for scientists. The
Polymerase Chain Reaction (PCR) test was introduced to detect the COVID-19 [25] patients.
However, the PRC test is time-consuming, and it has an increased risk of false positives
due to its lower specificity compared to culturing and staining [26]. In view of this, this
paper evaluated four pre-trained deep neural networks—namely, VGG16, MobileNetV2,
ResNet50 and DenseNet201—for COVID-19 diagnosis based on chest radiographs. The
classification layer of the pre-trained models was replaced and trained on the COVID-
Xray-5k dataset. DenseNet201 outshined the other models in comparison; however, the
sensitivity rate was still moderate. To improve the robustness in early detection of COVID-
19 cases, a high sensitivity rate is prominent. The sensitivity rate reflects how well the
model can correctly recognize the COVID-19 samples. To this end, some enhancements on
DenseNet201 are proposed.

The DenseNet201 model encourages feature reuse via dense connections among the
layers within a dense block. The dense connections enhance the gradient flow and enable
strong feature propagation through the layers. Furthermore, DenseNet201 uses much
fewer trainable parameters, thus, improving the computational efficiency. In addition
to that, some enhancements were incorporated into the DenseNet201 model. First, data
augmentation was performed to address data scarcity problems due to the limited COVID-
19 samples.

Secondly, the class weights were adjusted proportionally to alleviate the bias and skew-
ness caused by the imbalanced class distribution. Thirdly, early stopping was leveraged to
mitigate the overfitting problem while preserving the generalization capability of deep neu-
ral networks. Fourthly, fine-tuning was performed on the last few layers of DenseNet201 to
better adapt the learned high-level features for the COVID-19 detection task. The empirical
results demonstrate that DenseNet201 with these enhancements performed outstandingly
despite the challenges posed by the dataset and deep neural network architecture.

Inspired by the promising performance of the attention-based models, such as Trans-
formers, future works in COVID-19 diagnosis on chest X-rays could be done using attention-
based models. As the regions in the chest X-rays that show the infections of COVID-19
are hardly perceivable, attention-based models are needed to assign higher significance
to the infected regions, thus, improving the representation learning and classification of
the model.
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