
PERSPECTIVE

The emergence of human-evolutionary medical genomics
Bernard J. Crespi

Department of Biosciences, Simon Fraser University, Burnaby, BC, Canada

Introduction

Analyzing the causes of phenotypic adaptation and mal-

adaptation represents a central goal in evolutionary biol-

ogy (Williams 1966, 1992). This goal is usually pursued

using organisms and clades well suited to the measure-

ment of fundamental population-genetic processes and

phylogenetic patterns, and experimental testing among

alternative causal hypotheses. It is difficult to conceive of

a species less amenable to the study of adaptive signifi-

cance than humans, because of their long generation

times, low fecundity, regulation of behavior, and physiol-

ogy by hugely complex brains, acceleratingly novel envi-

ronments, and general experimental intractability. Indeed,

studies of human adaptation seldom deploy measure-

ments of phenotypic selection as an analytic approach;

more frequently, comparative methods are utilized, across

human groups, or across primates, to infer the selective

pressures that have mediated evolution along the human

lineage. Neither of these methods – measurement of selec-

tion and comparative analysis – lacks severe limitations

on the rigor of strong-inference hypothesis testing, given

the problematic nature of reconstructing thousands or

millions of years in history from snapshots of present-day

variation and scraps in the fossil record. Demonstrating

the presence and causes of deviation from maladaptation

(Crespi 2000a; Nesse 2005), in the myriad forms of

human disease risk, is even more challenging, because

hypotheses of adaptation and adaptive tradeoff must be

contrasted with hypotheses based on processes, such as

drift, mutation, and gene flow, that can constrain or delay

optimization by selection (Arnold 1992).

The primary goals of medicine are the prevention,

alleviation, or repair of phenotypes that humans con-

sider maladaptive, via well-substantiated therapies. As

such, the uncertainties of most purported evolutionary

insights into human health concerns usually preclude

consideration serious enough to warrant clinical evalua-

tion, and the practice of medicine defaults to the per-

spective of body and mind as organic machines subject

to forms of physical, physiological, and psychological

breakdown (Williams and Nesse 1991; Nesse and Wil-

liams 1994). Understanding how such a machine works

requires deterministic dissection of component parts and
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Abstract

In this review, I describe how evolutionary genomics is uniquely suited to

spearhead advances in understanding human disease risk, owing to the privi-

leged position of genes as fundamental causes of phenotypic variation, and the

ability of population genetic and phylogenetic methods to robustly infer pro-

cesses of natural selection, drift, and mutation from genetic variation at the

levels of family, population, species, and clade. I first provide an overview of

models for the origins and maintenance of genetically based disease risk in

humans. I then discuss how analyses of genetic disease risk can be dovetailed

with studies of positive and balancing selection, to evaluate the degree to which

the ‘genes that make us human’ also represent the genes that mediate risk of

polygenic disease. Finally, I present four basic principles for the nascent field of

human evolutionary medical genomics, each of which represents a process that

is nonintuitive from a proximate perspective. Joint consideration of these prin-

ciples compels novel forms of interdisciplinary analyses, most notably studies

that (i) analyze tradeoffs at the level of molecular genetics, and (ii) identify

genetic variants that are derived in the human lineage or in specific popula-

tions, and then compare individuals with derived versus ancestral alleles.
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their interactions, with medical interventions structured

by delineation of disease states, and therapy development

based on substantiated causes and patterns of deviation

from optimal function.

The blueprints for our human machine reside, or

course, in the genome, and accelerating progress in geno-

mic technology, and deciphering the genomic bases of

disease risks, has put genetics at the forefront of recent

studies in the etiology of polygenic disease. Genes under-

lying disease have, like all other genes, evolved under the

influence of natural selection and other population

genetic processes. What role, then, should evolutionary

biology play in the design and interpretation of geneti-

cally based studies of disease risk?

In this paper, I describe conceptual frameworks for

integrating two fields, the genetics of polygenic disease

risk, and the genetic evolution of modern humans, that

have developed in considerable isolation despite their reli-

ance on the same forms of genomic data. I first provide

an overview of theory for analyzing and understanding

human polygenic disease risk, and summarize recent

advances that provide the first clear pictures of its gen-

ome-scale landscapes of allelic risk effects. Next, I describe

the development and structure of a parallel research

enterprise, elucidation of the ‘genes that make us human’

through studies of positive Darwinian selection along our

lineage. Third, I discuss how these fields can be dovetailed

to accelerate progress in both endeavors. And finally, I

present four basic yet nonintuitive principles for the nas-

cent field of evolutionary medical genomics, each of

which serves to integrate proximate, mechanistic perspec-

tives with the ultimate evolutionary dynamics of risk

alleles and disease phenotypes, in the origin and diversifi-

cation of modern humans.

The genes that make us sick

Genetically based disease risk poses an apparent paradox,

given that many disorders with notably negative impacts

on survival and reproduction are both relatively common

and highly heritable (Keller and Miller 2006; Blekhman

et al. 2008). A primary motivation of the human genome

project, and projects that characterize genetic variation

across the genome (e.g. Manolio and Collins 2009), has

been the discovery and characterization of disease risk

alleles, to account for heritable risk, infer the causes of

polygenic disease at the levels of development, physiology,

and pathways, and guide strategies for treatment and pre-

vention. Vulnerability to disease mediated by such alleles

is usually construed in terms of mistakes and weaknesses

in construction–de novo and segregating alleles that are

each slightly deleterious, in comparison to simple Mende-

lian diseases of large negative effect.

Ongoing searches for the ‘disease genes’ and ‘risk

alleles’ that underly human dysfunction are conceptually

structured, and empirically focussed, by five main axes of

genetic disease risk (Altshuler et al. 2008; Manolio et al.

2009):

1 Disease frequency, between vanishingly rare and com-

mon, with high frequencies mediated by genetic factors

that may be dependent on environmental variation;

2 Disease severity, in the context of effects on age-specific

survival, with earlier-onset and high mortality rates, or

effects on reproduction, indicating more severe;

3 De novo versus segregating variation – how much of

disease risk is attributable to new, necessarily rare muta-

tions, detectable only by comparing affected offspring

with parents, compared to segregating variation, with risk

alleles having successfully passed through at least one gen-

eration;

4 Common versus rare allelic variants. For sites with

segregating variation, are disease risk alleles relatively

common (e.g. with minor alleles at frequencies of 1%, or

5%, or above) or more rare?

5 Penetrant versus nonpenetrant effects of risk alleles.

How likely is someone harboring a risk allele to exhibit

the disease – between 100%, as in some monogenic dis-

eases, and several percent, at the threshold of statistical

estimation that increased risk exists?

These five axes are inter-related by the expectation that

mutation–selection balance, and purifying selection gener-

ally, will more rapidly remove relatively more highly dele-

terious alleles from populations. As a result, more

common diseases should tend to be less severe, more

likely due to segregating compared to de novo variation,

and less penetrant in the effects of risk alleles. A simple

graphical model showing effects of de novo and segregat-

ing variants is presented in Fig. 1, and the expected

inverse relationship between effect size of a disease risk

allele, and its expected frequency in a population, is

depicted in Fig. 2.

The idea that more common diseases should be medi-

ated by effects from large numbers of common, low-pen-

etrance disease risk alleles was originally framed as the

‘common-disease common-variants’ hypothesis (Reich

and Lander 2001; Pritchard and Cox 2002). This hypothe-

sis has recently become subject to robust tests via the

availability of technology for measuring relatively com-

mon allelic variants across the entire human genome –

so-called GWAS (genome-wide association studies)

(Corvin et al. 2010). A large suite of GWA investigations,

over the past 4 years, has successfully identified common

risk variants for diseases of high heritability, such as

schizophrenia, cancer and type 2 diabetes (Stratton and

Rahman 2008; Psychiatric GWAS Consortium Coordinat-

ing Committee 2009; Stolerman and Florez 2009; Cazier
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and Tomlinson 2010). The results of these studies, and

comparable GWA analyses of height (McEvoy and Vis-

scher 2009) and intelligence (Deary et al. 2009), conver-

gently indicate that very large numbers – hundreds,

thousands, or tens of thousands – of relatively common

allelic variants with small effects mediate variation in

polygenic human traits, but cumulatively account for

<50% of estimated heritability (Goldstein 2009; Ku et al.

2010; Yang et al. 2010). The keys of ‘missing’ heritability

may be hiding in any number of places (Weiss 2008;

Manolio et al. 2009), with the street lamps of genomic

technology now shining on rare variants of moderate to

large effect (Fearnhead et al. 2004; Zhao et al. 2007;

Bodmer and Bonilla 2008). Indeed, rare genomic copy

number variants have been identified as penetrant risk

factors for schizophrenia, autism, and intellectual disabil-

ity, although they appear to account for only a small per-

centage of known risk (Wain et al. 2009).

Under the disease risk paradigms that guide GWA and

rare variant investigations, mutation and purifying selec-

tion are normally considered, either implicitly or explic-

itly, as the primary population genetic and evolutionary

genetic forces that modify the frequencies of disease risk

alleles. But if thousands of alleles modify risk, for exam-

ple, of schizophrenia – are they actually alleles ‘for’ this

condition (Kendler 2005), or might they be better con-

ceived as alleles ‘for’, say, the neurodevelopment of social

cognition? More importantly, must such alleles, for any

common disease, represent slightly malfunctional cogs

in our human machine with respect to its functioning

Figure 1 Polygenic disease risk for a given individual can be depicted as a combination of risk owing to alleles inherited from parents (inherited

polygenic liability), and risk owing to new mutations (de novo germline mutation). Somatic mutation during development is also likely to be

important, but has yet to be studied in detail.

Figure 2 The frequency spectrum of human disease risk alleles includes alleles at all frequencies from rare to common, with effect sizes from

high to low, with the relative importance in risk of different variants yet to be ascertained. From Manolio et al. (2009).
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overall, or might they also be advantageous, at least in

some contexts?

The primary population-genetic processes that influ-

ence allele frequencies, in addition to mutation and puri-

fying selection against deleterious alleles, or drift, are

forms of positive selection and balancing selection. An

additional, nonexclusive model for the generation and

maintenance of genetic variation underlying polygenic

disease risk, in addition to models based on some mixture

of myriad segregating deleterious variants of small effect

and rare deleterious mutations of larger effect (Fig. 2), is

thus predicated on advantages, now or in the past, from

alleles that influence such risk (Keller and Miller 2006;

Kryukov et al. 2007). Variation can be maintained under

this model by two main processes, ongoing positive selec-

tion and balancing selection, that can keep risk alleles at

nontrivial frequencies either transiently as selection pro-

ceeds or at more or less stable equilibria. Support for the

model comes from several recent studies that have dem-

onstrated enrichments of positive selection on polygenic

disease genes, compared to other genes, in human

populations (Nielsen et al. 2007; Blekhman et al. 2008;

Lappalainen et al. 2010); similarly, Amato et al. (2009)

demonstrated higher levels of among-population differen-

tiation, which can be indicative of divergent positive

selection, in complex-disease genes than in a set of con-

trol genes.

Several evolutionary genetic hypotheses may plausibly

explain enrichments of positive selection on polygenic

disease genes.

First, common alleles that were advantageous in ances-

tral environments (for example, ‘thrifty’ genes affecting

regulation of metabolism) are deleterious in current envi-

ronments, and derived, formerly-maladapted alleles are

now selected for (Di Rienzo and Hudson 2005; Di Rienzo

2006). This ‘ancestral-susceptibility’ model has been sup-

ported by data from molecular evolutionary, geographic

and physiological analyses of genes involved in risk of

hypertension, type 2 diabetes, and several other common

human diseases (e.g. Di Rienzo and Hudson 2005; Young

et al. 2005; Helgason et al. 2007), and it provides a robust

predictive framework for testing hypotheses on the

dynamics of disease-related alleles. Positive selection in

this context may involve phenotypes that are more or less

fixed in humans, and adaptations because of geographi-

cally varying selective pressures that generate population

differentiation (e.g. Novembre and Di Rienzo 2009; Adey-

emo and Rotimi 2010). In humans, such selection should

be recent, in the past thousands and tens of thousands of

years (Hawks et al. 2007), and should involve strong

selective pressures given that humans originated in equa-

torial Africa but spread worldwide across all climatic and

ecological zones.

Strong, well-replicated patterns of positive selection on

skin pigmentation and lactose tolerance genes represent

paradigmatic examples of local adaptation (e.g. Harris

and Meyer 2006), with additional examples of population

differentiation apparently mediated by selection including

sodium homeostasis (Young et al. 2005), body mass and

shape (Katzmarzyk and Leonard 1998; Wu and Zhang

2010), and metabolic rate (Snodgrass et al. 2005). This

suite of phenotypes subject to population differentiation

and selection corresponds closely to the set of traits dys-

regulated in human metabolic disorders, including hyper-

tension, obesity, dyslipidemia, and type 2 diabetes, that

jointly define the human ‘metabolic syndrome’. Hancock

et al. (2008) indeed demonstrate strongly-enriched signals

of population differentiation in 82 candidate genes for

common human metabolic disorders, which they inter-

pret primarily in terms of local selection from heat and

cold stress. Selective pressures due to transitions from

hunting and gathering to farming are also expected to

strongly mediate susceptibility to polygenic disease, as

suggested by signals of positive selection on celiac disease

risk alleles (Barreiro and Quintana-Murci 2010), and the

inferred time of origin for a positively-selected allele of

TCF7L2, a gene that underlies risk of type 2 diabetes,

near to the origin of agriculture (Helgason et al. 2007).

The ancestral-susceptibility model is generally con-

ceived to apply to ecological factors, such as climate and

diet, that are subject to selection for unidirectional tran-

sitions, at different scales of environmental variation in

time and space from local to global. This model can,

however, be generalized to other forms of selective pres-

sures that generate evolutionary disequilibria, including

genomic conflict situations where antagonistic coevolu-

tion generates more or less constant states of disequilib-

rial change (Crespi 2010a). The primary limitation of

such models is the general lack of direct evidence

regarding the targets and agents of selection – for exam-

ple, do individuals bearing alternative alleles, for genes

that show strong latitudinal allele frequency clines (Han-

cock et al. 2008), differ in both heat or cold tolerance,

and risk of metabolic diseases? For loci showing evi-

dence of genomic conflicts, what phenotypes are

selected, and how do they benefit one party at a cost to

the other? The striking among-population differences in

patterns of positive selection, across the genome, shown

by analysis of the human Hapmap data (e.g. Voight

et al. 2006) suggest that local, recent selective pressures

have substantially impacted human phenotypes and risk

of disease. The pervasiveness of temporal and spatial vari-

ation in selective pressures, because of both ecological and

non-ecological factors, also underscores the central impor-

tance of gene by environment interaction effects in the

phenotypic expression and genomic analysis of human
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disease risks (e.g. Andreasen and Andersen 2009; Wermter

et al. 2010).

A second genetic process that may help to explain an

enrichment of positive selection on polygenic disease

genes is balancing selection mediated by antagonistic plei-

otropy, or other processes including overdominance or

frequency-dependent selection. Extensive pleiotropy is

well documented as a universal mode of gene action (e.g.

Knight et al. 2006; Barreiro et al. 2008), and a role for

this process in patterns of positive selection and disease

was suggested by Nielsen et al. (2005) in the context of

‘selfish’ mutations of tumor suppressor genes to increased

rates of spermatogenesis that pleiotropically increase risks

of cancer. More generally, under antagonistic pleiotropy,

alleles exert positive effects in one developmental, physio-

logical, of behavioral context, or at one time in the life-

span, that are stronger than, or balanced by, negative

effects, expressed in some other context or later in life

(Keller and Miller 2006; Kryukov et al. 2007), that mani-

fest as risk of disease. Stronger advantages in one selective

situation, such as one tissue or one life stage, can support

stronger deleterious effects. Such deleterious effects are

expected to be selected against (see e.g. Pavard and Met-

calf 2007; Drenos and Kirkwood 2010), especially to the

extent that they occur before reproduction and alloparen-

tal care-giving have largely ceased, they can be dissociated

genetically via recombination, or they can be alleviated by

selection and response at interacting loci. Antagonistically

pleiotropic effects should thus often be evolutionarily

transient.

A more fundamental, long-term form of pleiotropy

involves intrinsic tradeoffs between opposing selective

pressures, based ultimately on the necessity that energy,

time, or molecular processes devoted to one biological

function, such as some aspects of growth, reproduction,

or defense and maintenance, must take away from others

(Roff 2007). Tradeoffs are fundamental to life history the-

ory in evolutionary ecology and can apparently maintain

substantial levels of genetic and phenotypic variation in

such contexts (Roff and Fairbairn 2006; Kruuk et al.

2008). At the levels of genes, proteins and developmen-

tal–physiological pathways, tradeoffs are expected to be

no less pervasive, with alternative allocation of cellular

resources to different functions, and degrees of low versus

high pathway activation, mediating risk of alternative dis-

ease states (e.g. Stearns 2005; Caricasole et al. 2005; van

Heemst et al. 2005; Reddy et al. 2009; Crespi 2010a).

Tradeoffs associated with polygenic disease risk manifest

in several important contexts, including the following: (i)

associations of traits that are expected to be beneficial,

such as higher birth weight, with diseases such as cancer

(e.g. Maehle et al. 2010) that plausibly represent late-life

pleiotropic effects of the favored phenotype; (ii) negative

associations between diseases, such as genetically based

inverse risk alleles, across multiple loci, for different auto-

immune diseases (Sirota et al. 2009; Wang et al. 2010),

and lower rates of cancer in individuals with schizophre-

nia (Dalton et al. 2005; Goldacre et al. 2005; Torrey 2006;

Levav et al. 2007), Parkinson’s disease (West et al. 2005),

and Alzheimer’s (Roe et al. 2010) than in matched con-

trols.

Polymorphisms in several well-studied human genes

provide putative examples of evolutionary genetic trade-

offs involving risk of polygenic disease. For example, (i)

the Arg72Pro polymorphism in the tumor suppressor

gene TP53 engenders lower fertility, but enhanced sur-

vival of individuals with the Pro allele (Ørsted et al. 2007;

Kang et al. 2009); (ii) APOE gene E4 carriers have been

shown in replicated studies to exhibit better verbal skills

than individuals with alleles E3 or E2 when young, but

higher risk of Alzheimer’s and schizophrenia when older

(Xu et al. 2006; Alexander et al. 2007; Akanji et al. 2009);

and (iii) antagonistically pleiotropic, age-related effects of

the Arg16Gly and Gln27Glu polymorphisms of the

ADRB2 gene have been demonstrated for measures of

cognition and age-related disease (Bochdanovits et al.

2009; Cagliani et al. 2009; Kulminski et al. 2010). These

studies suggest that balanced polymorphisms may com-

monly be maintained under life history tradeoffs, with

each allele providing benefits in the context of one com-

ponent of fitness but costs, often expressed as disease, in

the context of another. Such tradeoffs are also recogniz-

able as negative genetic correlations between traits in

quantitative genetic studies (e.g. brain size and gyrifica-

tion in humans and baboons; Rogers et al. 2010), and as

negative phenotypic correlations when potentially con-

founding effects are controlled. In contrast to selective

sweeps, which may sometimes focus upon a specific trait

undergoing adaptive change, balanced polymorphisms are

expected to commonly involve multiple traits and trade-

offs between them. Balancing selection and antagonistic

pleiotropy are commonly dismissed as population genetic

forces that maintain variation across many loci, because

of a perceived lack of evidence, but studies drawing on

human genomic variation have uncovered a large suite of

apparent cases over the past 10 years (Andrés et al. 2009;

Table 1).

To the extent that changing environments, positive

selection, antagonistic pleiotropy, and other forms of

selection mediate risk of human disease, as well as gener-

ate and maintain genetic variation in risk, the evolution

of human disease risk becomes inextricably linked with

the evolution of modern humans. Similarly, the accumu-

lation of human-specific and human-concentrated pheno-

types along our lineage (e.g. Harris and Meyer 2006;

Crespi 2010a) generates novel mutational targets for
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Table 1. Examples of loci showing evidence for allele maintenance by long-term balancing selection and/or antagonistic pleiotropy, with alleles

that affect medically relevant human phenotypes. HLA-locus genes other than HLA-G and C4B are not included (see Solberg et al. 2008 for these

data). Disease risk alleles and alleles under balancing selection need not coincide. Andrés et al. (2009) list results from a genome-wide analysis of

balancing selection.

Gene Physiological function Phenotypes References, comments

ACE Cardiovascular Cardiovascular diseases Cagliani et al. 2010

ADRB2 Catecholamine metabolism Intelligence, autism, age-related

diseases

Bochdanovits et al. 2009; Cagliani

et al. 2009; Kulminski et al. 2010;

antagonistic pleiotropy

APOE Lipoprotein transport Enhanced verbal skills in childhood,

higher risk of Alzheimers,

schizophrenia

Xu et al. 2006; Alexander et al.

2007 Akanji et al. 2009;

antagonistic pleiotropy

APOL1 Cholesterol transport Kidney disease, protection against

trypanosomes

Genovese et al. 2010

AVPR1B Neurohormone HPA regulation, depression Cagliani et al. 2009

BSG, CD55,

CD151,

SLC14A1

Blood group antigens Infectious disease Fumagalli et al. 2009a

CAPN10 Insulin signaling Type 2 diabetes Vander Molen et al. 2005;

Harris et al. 2006

CCR5 Immunity, inflammation Resistance to HIV Bamshad et al. 2002

CPB2 Blood coagulation, fibrinolysis,

inflammation

Cardiovascular, blood diseases Cagliani et al. 2010

FMO3 Metabolism of xenobiotics Unclear Allerston et al. 2007

FSHB Female reproduction Female fertility Grigorova et al. 2007

G6PD Glucose metabolism Malaria risk and G6PD deficiency Verrelli et al. 2002

HBB Hemoglobin chain Malaria, anemia Williams 2006

hCH Reproduction Miscarriage Rull et al. 2008

HLA-G Reproduction Miscarriage Tan et al. 2005

Interleukin genes Immunity Infectious disease, inflammatory

diseases

Fumagalli et al. 2009b

IL10 Immunity, inflammation Infectious disease, inflammatory

diseases

Wilson et al. 2006

KIR locus genes Immunity, inflammation Infectious disease Norman et al. 2004; Parham 2008

LMBR1 Limb, skeletal system development Polydactyly He et al. 2008

MEFV Inflammatory system Autoinflammatory disease Fumagalli et al. 2009c

OAZ3 Polyamine synthesis Male infertility Christensen et al. 2006

Olfactory

Receptors

Olfaction Functional significance unclear Alonso et al. 2008

PDYN Neuropeptides Epilepsy, schizophrenia Babbitt et al. 2010

PKDREJ Sperm–egg interaction Fertility? Hamm et al. 2007

PCDH genes Protocadherins; brain development Bipolar disorder Noonan et al. 2003; Pedrosa

et al. 2008

PTC Bitter taste perception Ingestion of bitter, toxic plants? Kim et al. 2004

SDHA Mitochondrial metabolism Leigh’s disease (mitochondrial) Baysal et al. 2007

TLR genes CD14,

others

Immate immunity Infectious disease Ferrer-Admetlla et al. 2008

TP53 pathway

genes

Tumor suppressor, senescence Fertility, survival, cancer risk Kang et al. 2009; antagonistic

pleiotropy

ZAN Fertilization Unclear Gasper and Swanson 2006

Cases involving null alleles

ABO blood

group

Unclear Infectious disease risk? Greenwell 1997; Calafell et al. 2008

C4B Immunity Null alleles influence survival,

autoimmune disease risk

Brai et al. 1994; Arason et al. 2003

FUT2 Blood antigen synthesis Infectious disease, vitamin

metabolism

Koda et al. 2000; Hazra et al. 2008

Carlsson et al. 2009

GJB2 Gap junction gene Hearing loss, dysentery resistance D’Adamo et al. 2009

LILRA3 Immunity Autoimmune disease risk? Hirayasu et al. 2006
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human-specific and human-concentrated disease. How,

then, might the spectrum and genetic causes of human

disease risk be related to the genetic evolution of

humans?

The genes that make us human

In a landmark paper, Clark et al. (2003) performed the

first analysis, via comparisons of sequence data from

humans, chimps, and mice, that allowed inference of the

positively-selected genetic changes that have taken place

along the human lineage. A plethora of subsequent stud-

ies, using diverse methods and datasets, has extended and

refined the identification and analysis of putatively posi-

tively selected genes and other genomic elements, and

gene expression differences, along the human lineage (e.g.

Kelley and Swanson 2008; Oleksyk et al. 2008; Grossman

et al. 2010; Sholtis and Noonan 2010). The primary out-

come of these studies has been lists of genes, SNPs, genic

regions, and enriched functional categories of gene, statis-

tically inferred as candidates for positive selection – but

virtually no information on causation, targets of pheno-

typic selection, or evolutionary trajectories (Hughes

2007).

For a small set of positively-selected ‘microcephaly’

genes, including ASPM, MCPH1, CENPJ, and

CDK5RAP2, genetic data converges, and causally links,

with data from developmental and medical genetics, phy-

logenetics, and paleontology: humans evolved greatly

enlarged brains in part because of adaptive mutations

across this suite of genes, most of which are involved in

centrosomal function during neural development (e.g.

Cox et al. 2006; Tang 2006; Kaindl et al. 2010). By con-

trast, for virtually all other genes and phenotypes, the

causal nature of associations of positive selection at the

gene level, with adaptation along the human lineage,

remains almost entirely obscure. Part of this problem is

some function of complexity in genotype–phenotype

mapping, because of pervasive pleiotropy and epistasis in

developmental pathways (Weiss 2008). But our ignorance

regarding functional effects of the ‘genes that make us

human’ may also arise, in part, from a ‘genes-up’ view of

the evolutionary process, rather than ‘phenotype-down’ –

how we know selection actually operates.

Evolutionary change along the human lineage can be

depicted as a series of nested and overlapping allele fre-

quency alterations, some of which are undergoing recent

selective sweeps at local or global levels, some of which

have become fixed by positive selection or other pro-

cesses, and some of which involve recent or ongoing

accelerated change in some region, compared to other

primates. Each of these processes and forms of genetic

variation, either within Homo sapiens or between Homo

sapiens and our common ancestor with related species

including chimps, Neanderthals, or other hominins

(Green et al. 2010), can be exploited to infer the pheno-

typic effects of the substitutions, which provides insight

into their potential roles in human phenotypic evolution

and evolved risk of disease.

Selective sweeps and accelerated evolution

Recent selective sweeps provide opportunities for the

most direct tests of correspondence between phenotypic

and genomic adaptation: individuals with the putatively

selected, derived haplotype or allele can be compared to

individuals with ancestral haplotypes or alleles, either for

a single trait (e.g, Mekel-Bobrov et al. 2007) for or a suite

of traits that are hypothesized, based on gene functions,

pathways, and tissue expression patterns, to represent

potential targets of phenotypic selection (e.g. Grossman

et al. 2004). Such studies rely on the rapidly developing

field of phenomics – the quantitative analysis of pheno-

typic trait-space variation and covariation with the same

comprehensive rigor as genomes (Houle 2010; Lanktree

et al. 2010). Phenomic analyses coupled with inferences

of selection turn a GWAS on its head, into what might

be called a Phenotype Wide Association Study (PWAS),

to determine the best phenotypic correlates of derived

versus ancestral haplotypes. PWAS represents a logical

extension of a much simpler application of positive selec-

tion data – using signatures of selection to identify puta-

tively functional sites and variants – in the study of

human disease risk (e.g. Ding et al. 2008; Atwal et al.

2009). The relationship of derived versus ancestral allele

status to disease risk should depend upon the contexts

and timing of positive selection: derived alleles may be

expected to engender lower risk if the disease itself (or

its subthreshold effects) represents a selective agent (e.g.

Pavard and Metcalf 2007), or higher risk if disease repre-

sents a byproduct of strong, recent selection on some

other component of survival or reproduction (Crespi

2010a). Most generally, PWA studies across the human

genome can identify joint ongoing trajectories of recent

human genetic and phenotypic evolution and evaluate the

contributions of positive selection, compared to purifying

selection and other processes, in risk of polygenic disease.

Indeed, developmental and physiological phenomic tar-

gets of selection may provide more direct clues to gene

and haplotype functions than do associations with dis-

ease, as they help to specify nonpathological and pleiotro-

pic effects of genetic variation for common alleles.

The so-called human-accelerated regions represent

DNA sequences that have evolved (and may still be evolv-

ing) especially quickly along the human lineage, com-

pared to related lineages (Pollard et al. 2006; Prabhakar
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et al. 2006). Such regions need not exhibit evidence of

ongoing selective sweeps (which requires that certain con-

ditions be met), but they can be inferred to exhibit func-

tionality based on their genomic locations or regulatory

features, which can serve to exclude hypotheses of rapid

nonadaptive evolution. Accelerated evolution in the

human lineage is expected to mediate risk of human-spe-

cific disease, as suggested by apparent associations of

SNPs in the RNA gene HAR1A with auditory hallucina-

tions in schizophrenia (Tolosa et al. 2008).

Fixed differences

Human-specific, derived alleles can be recognized via

comparisons with related species (e.g. Nahon 2003; Kit-

ano et al. 2004; Prabhakar et al. 2006; Green et al. 2010);

analogously, human populations may also harbor unique,

derived alleles (e.g. Baye et al. 2009). Fixed, human-spe-

cific alleles at sites that are otherwise highly conserved

across primates are expected to subserve aspects of

human-specific or human-concentrated phenotypes, such

as the two amino acid substitutions in FOXP2 with effects

on articulation and language via altered expression of a

suite of target genes (Konopka et al. 2009). Analyzing

adaptive functions of fixed differences relies on genotype–

phenotype correlations involving natural mutational vari-

ation, or experimental, effects at the sites or gene of inter-

est. For example, the transcription factor GTF2I shows

evidence of strong upregulation in humans compared to

chimps and other primates (Preuss et al. 2004), and dele-

tion mapping of individuals with Williams syndrome, as

well as mouse models, indicates a role for this gene in

modulating social–behavioral interactions (Dai et al.

2009). Remarkably, this gene also shows genomic

imprinting effects with preferential expression from the

maternal chromosome (Collette et al. 2009), suggesting

selective effects from mother-offspring social interactions

that modulate maternal investment (Haig 2010). These

diverse lines of evidence implicate GTF2I in human social

evolution, and should motivate studies of its human-spe-

cific transcriptional targets and the social-behavioral

effects of natural variation in expression levels. The degree

to which natural or experimentally induced genetic varia-

tion recapitulates the context within which selection has

acted over evolutionary time must remain more or less

unclear. For humans, the best evidence should come from

genome sequencing of archaic H. sapiens fossil DNA

along our recent lineage, over the last few tens of thou-

sands of years, and from study of genetic changes that

involve bidirectionally altered gene dosages (Crespi et al.

2009).

In principle, human-specific derived alleles should

underly some proportion of human-specific or human-

concentrated disease risk (Crespi 2010a), with ancestral

alleles, losses of function, or pleiotropic effects of derived

alleles, associated with higher risk of disease. Such studies

may also usefully consider the roles in disease of human-

specific genes or isoforms (e.g. Nahon 2003; Kitano et al.

2004), as these may provide more substantial targets than

SNPs or amino acids for both dysregulation and selec-

tion.

Do the genes that make us human also make us
sick?

The relevance to human disease risk of positive Darwin-

ian selection, and balancing selection, along the human

lineage is an empirical problem that can be attacked with

increasing power and precision as advances in genomic

technology proceed. This question can be addressed by

cross-referencing data on the status of haplotypes or

amino acids as selected or derived and fixed in the

human lineage (or in specific populations), with data

from GWA studies on polygenic disease risk (e.g. Loe-

Mie et al. 2010). Studies of positive selection can indeed

be easily dovetailed with GWAS of disease, given that that

same data – high-density SNP information, or whole-gen-

ome sequences – can be used for both. Answering this

question, however, requires causal scaffolding from genes,

to pathways, to human adaptations, and to risks of

disease, because genetic variation exerts its effects on

phenotypic variation, manifest in adaptation and mal-

adaptation, via highly interactive pathways of develop-

ment and physiology (Weiss 2008; Luo et al. 2010). In the

study of human disease risk, such scaffolds have been built

in two main ways. First, once enough disease risk genes are

identified, concentration of genes in particular pathways

can be statistically assessed, to ascertain which systems are

most commonly dysregulated in disease, and which can

serve as targets for drug development. Second, ‘intermedi-

ate phenotypes’ or ‘endophenotypes’ (e.g. Prasad and

Keshavan 2008; Tan et al. 2008) – traits that are closely

associated with disease states – represent intermediaries

between genes, pathways, and disease risk, because they

can causally link in both directions; for example, a subset

of idiopathic autism has been associated with large head

size, a suite of autism-related genes and copy number vari-

ants also influence head size, and several pathways have

been recognized whereby these genes exert their effects

(Crespi and Badcock 2008; Crespi et al. 2010).

In the study of positive selection, concentration of

genes in particular, apparently selected pathways is com-

monly tested. Indeed, some pathways with concentrations

of positive selection, such as NRG1-ERBB4 signaling

(Voight et al. 2006) also appear to be targets of polygenic

disease risk (e.g. in schizophrenia, Banerjee et al. 2010);

Crespi Evolutionary health

ª 2010 Blackwell Publishing Ltd 4 (2011) 292–314 299



more generally, immune system genes demonstrate

among the strongest overall patterns of positive selection

in humans (e.g. Barreiro and Quintana-Murci 2010),

attesting to the powerful selective role of infectious dis-

eases in human evolution. However, as described above,

the actual phenotypic targets of selection, which ulti-

mately generate the signatures of selection in the genome,

have almost never been investigated through comparing

phenotypes of individuals with selected versus ancestral

haplotypes, or individuals with fixed-derived versus

mutated alleles. Similarly, the suites of traits associated

with alternative genotypes at balanced polymorphisms

have seldom been investigated in detail, despite increasing

evidence from detailed genetic studies that balancing

selection is considerably more pervasive than commonly

presumed.

Three examples may illustrate the potential usefulness

of jointly analyzing positive selection and disease risk.

First, the well-known ‘breast cancer’ gene BRCA1 has

been demonstrated as subject to positive selection in sev-

eral studies (Fleming et al. 2003; Pavlicek et al. 2004), but

more generally, the entire BRCA-FANC pathway in

humans, which orchestrates DNA damage–repair

responses, shows an apparent concentration of positive

selection, with 6 of 13 pathway genes, ATM, BRCA1,

CHEK2, FANCA, FANCE, RAD51, showing evidence of

selective sweeps at 0.05 in one or more populations of

the phase II human HapMap data (Voight et al. 2006);

four other genes show significance at the 0.10 level. How

do humans with derived and ancestral haplotypes differ

for these genes? Second, a network that includes eight

interacting schizophrenia-associated genes, recently identi-

fied by GWA studies, shows evidence of a remarkable

concentration of positive selection and human-derived

alleles (Loe-Mie et al. 2010). How do individuals that

vary in their ‘schizophrenia-risk’ haplotypes, and patterns

of pathway activation, differ in affect and cognition? Can

ancestral/derived differences be used to help develop

novel therapies, based on how natural selection has

apparently dealt with disease risks in the past (e.g. Moalic

et al. 2010)?

Associations between the recent genetic evolution of

modern humans, and human genetic disease risks, can be

assessed more or less directly by evaluating the roles in

different forms of disease, and associated phenotypes, for

genes inferred as positively selected in the human lineage.

As a third example, I determined disease risk associations

(both polygenic and monogenic) for genes inferred as

positively selected from two recent analyses: (i) the Com-

posite Multiple Signals test, a new, high-resolution test

for alleles undergoing recent selective sweeps, over the

past few tens of thousands of years (Grossman et al.

2010), and (ii) the tests for selective sweeps deployed by

Green et al. (2010), which use the draft Neanderthal gen-

ome to localize inferred selective signals for the early evo-

lution of Homo sapiens sapiens, on the order of 400 000

to 600 000 years ago with apparent, more recent gene

flow. There was no evidence for concentrations of

increased disease association for selected loci across all

diseases for either data set. However, for the Green et al.

(2010) data set, and for both data sets overall, the

inferred, positively selected genes were significantly more

frequently associated with neurological diseases (including

schizophrenia, bipolar disorder, depression, dyslexia, aut-

ism, Alzheimers, Parkinson’s and epilepsy) than were

control genes (Table 2). These results suggest that recent

Table 2. Associations with disease, for genes inferred as positively selected via selective sweeps in Grossman et al. (2010, Table S5) or Green

et al. (2010, Table S37), compared to sets of control genes. For selected genes, only single genes (or haplotypes associated with disease) were

included, to avoid ambiguity regarding which gene was the apparent focus of selection. Disease and phenotype associations were obtained from

PubMed searches (as of 31 May 2010) using gene names. As the goal is to compare selected vs control genes for frequency and nature of disease

association, all associations are included, even if reported in a single study. Control genes were ascertained as the genes closest to 4 Mb from the

focal selected gene, centromeric and telomeric.

Numbers of genes shown, for each category (%)

Grossman et al. 2010

(recent sweeps)

Green et al. 2010 (sweeps

after Neanderthal split)

Selected Control Selected Control

No association with disease 35 (53%) 77 (64%) 42 (59%) 76 (62%)

Association with non-neurological disease 14 (21%) 26 (21%) 10 (15%) 30 (25%)

Association with neurological disease 11 (17%) 12 (10%) 15 (21%) 14 (11%)

Association with other phenotypes 6 (9%) 6 (5%) 4 (6%) 2 (2%) Pooled analyses

Disease vs not disease, selected vs control v2 = 0.8, P = 0.37 v2 = 0.01, P = 0.91 v2 = 0.29, P = 0.59

Neurological disease genes vs other genes v2 = 1.8, P = 0.18 v2 = 3.17, P = 0.075 v2 = 5.08, P = 0.024*

Percent of disease genes neurological v2 = 1.0, P = 0.31 v2 = 5.20, P = 0.022* v2 = 3.94, P = 0.047*
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human evolution has been dominated by selection on

cognitive–affective phenotypes, with direct implications

for risk of neurological disease. The latter data set (Green

et al. 2010) includes evidence for selection on several

genes that mediate other phenotypes that may have been

important in human evolution since our split with Nean-

derthals, such as craniofacial morphology (the ENPP1,

TRPS1 genes) and the timing of tooth eruption (MSRB3)

and puberty (DLK1). Disease-related, putatively selected

genes represent excellent candidates for detailed phenomic

and deep-sequencing studies, to more clearly infer the

apparent phenotypic targets of selection, their genomic

bases, and how disease risks relate to pleiotropy and

human adaptations.

Principles of human evolutionary disease
genomics

A key benefit from bridging between human medical ge-

nomics and human evolutionary genomics is reciprocal

illumination of answers to two of the major unresolved

questions in biology: how we evolved, and why we fall

victim to cancer, schizophrenia, type 2 diabetes, and a

suite of other polygenic, human-concentrated diseases.

The primary challenges in constructing the required links

are lack of in-depth background knowledge among evolu-

tionary geneticists regarding causes of particular geneti-

cally based diseases, and lack of background among

medical geneticists regarding the nuanced causes of evolu-

tionary processes. The latter can be addressed with four

straightforward, yet nonintuitive, principles of human

evolutionary medical genomics, based within the larger

field of evolutionary medicine (Nesse and Stearns 2008;

Stearns and Koella 2008; Gluckman et al. 2011).

Human adaptations and disease risks have evolved

together

Evolution along the human lineage is characterized by a

suite of phenotypic changes including, for example, larger

brain size, more advanced social cognition, more invasive

placentation, continuous female receptivity, lower fertility

per cycle, physical altriciality, neurological precociality

and high levels of subcutaneous fat in infants, shorter in-

terbirth intervals, longer childhood, and a peaked female

age-specific fecundity distribution, with elongated post-

menopausal lifespan in females (Crespi 2010a; Hawkes

2010). Each of these recently evolved human adaptations

is expected to generate increased opportunity and scope

for maladaptive dysregulation, with forms of disease

reflecting human trajectories of evolution (Crespi 2010a).

Evolutionary trajectories of genomic and phenotypic

change can provide guidance concerning mechanisms of

disease because they indicate how genes, genomes and

traits that make up the human ‘machine’ have been mod-

ified and assembled, step by step, via selection and other

processes along the human lineage. For example,

advanced social cognition and emotionality have evolved

along the human lineage via a series of nested genetic

changes involving neurodevelopmental ‘social-brain

genes’, so the genetic regions that have undergone, and

are undergoing, such evolutionary changes should, as

noted above, represent prime candidates in the etiology

of autism and schizophrenia.

Most generally, these considerations suggest that the

global landscape of human polygenic diseases, in terms of

form, prevalence, severity, de novo versus segregating alle-

lic etiology, mediation by common and rare alleles, and

penetrance of alleles, should correspond, in part, to the

landscape of recent human evolutionary genetic and envi-

ronmental changes; for example, metabolic syndrome

phenotypes appear to reflect, in part, dysregulated adapta-

tions subsequent to human dispersal from Africa (Han-

cock et al. 2008) as well as more recent dietary changes.

Disease genetic studies of hunter–gatherer and traditional

horticultural human populations can be used to help

parse recent environmental change effects from older

adaptations (e.g. Gurven et al. 2008, 2009).

An important implication of such evolutionary per-

spectives on disease is that some so-called diseases may

represent adaptations that increase reproductive success

but decrease ‘health’, some may represent maladaptation

because of recently altered environments (Nesse and Wil-

liams 1994), some may represent side effects of genomic

conflicts (Haig 1993, 2006; Ubeda and Wilkins 2008;

Crespi 2010a,b), and others may represent maladaptive,

genetically based extremes of adaptations (e.g. Nesse

2004a). For example, mental health is often conflated

with happiness, yet natural selection is expected to maxi-

mize not happiness, but striving for resources that have

led, over recent evolutionary time, to increased reproduc-

tive success (Nesse 2004b; Nettle 2006). From this per-

spective, depression, or at least its mild manifestations in

low mood, can be considered to subserve adaptive emo-

tional functions that regulate motivation and modulate

seeking of goals (Keller and Nesse 2006). Similarly, a cen-

tral phenotype of bipolar disorder – mania – involves

euphoria, racing thoughts, talkativeness, and high levels

of sociability, mainly focussed around extreme, dysregu-

lated pursuit of two proximately reproductive goals:

money and sex (e.g. Johnson 2005). Does mania repre-

sent, in part, human striving for reproductive success run

amok? Is hypomania (mild mania), in subclinical form, a

behavioral target of selection in humans? Associations of

bipolar disorder with high socioeconomic status (Coryell

et al. 1989), high marks in school (MacCabe et al. 2010),
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and aspects of creativity (Jamison 1993) support this

hypothesis. Moreover, a recent study has demonstrated a

significantly lower genome-wide ‘burden’ of presumably

deleterious copy number deletions in bipolar patients

compared to controls (Grozeva et al. 2010), which con-

trasts markedly with studies showing significantly higher

burdens of copy number variants in two conditions,

schizophrenia (ISC 2008; Kirov et al. 2009) and autism

(Sebat et al. 2007), with less-direct links to fitness-related

phenotypes. Such convergent findings should motivate

studies that evaluate the cognitive, affective, and behav-

ioral effects of bipolar genetic ‘risk’ variants in nonclinical

populations, test for positive selection on such variants,

and measure copy number burdens with regard to other

heritable conditions involving exceptional human perfor-

mance, such as high ‘intelligence’.

Alleles, the primary units of natural selection, mediate

the evolution of adaptation and disease risk via complex

mixtures of conflict and cooperation, within and between

loci and individuals

Explanations for adaptation based on the ‘good of the

group’ or species were purged from evolution, ecology,

and behavior in the 1960s and 70s, when it was demon-

strated that alleles are the only entities in the hierarchy of

biological life that persist long enough to have their fre-

quencies adjusted or maintained by selection (Williams

1992; Keller 1999; Crespi 2000b). ‘Good of the species’

arguments persist, however, where one might least expect

them – among geneticists, where the generation of vari-

ants is often seen as beneficial because it facilitates the

efficacy of evolution. This viewpoint is intellectually per-

nicious because it blinds researchers to the processes that

actually drive molecular evolutionary change and to well-

established consequences of gene-level selection, such as

genomic conflicts, that mediate a substantial proportion

of human disease risk.

The sequelae to alleles as the primary units of selec-

tion, and consequent genomic confluence and conflicts

of interest within and between individuals, are funda-

mental to understanding adaptation and disease in two

central ways. First, from an evolutionary perspective, a

‘gene’ represents a haplotype variant of indeterminate

size, with larger haplotypes more likely to exert greater

phenotypic effects (that may be selected for or against)

but less likely to avoid being broken apart by recombi-

nation. A positively selected haplotype may increase in

frequency as a result of a single base-pair change along

a megabase length, with linked, neutral, or deleterious

variants dragged along until recombination happens to

separate them. This hitch-hiking process has long been

recognized in genetics, but its roles in adaptation and

disease remain virtually unstudied. For example, a small

section of chromosome 15 includes the eye-color gene

OCA2, directly adjacent to the brain receptor gene GAB-

RG3. Strong, recent positive selection has been reported

for a blue-eyed haplotype of OCA2 (McEvoy et al.

2006), a series of studies has demonstrated associations

of blue eyes with timid, inhibited behavior in children

(e.g. Rosenberg and Kagan 1987; Coplan et al. 1998),

and alleles of GABRG3 have been associated with autism

(Menold et al. 2001). Has linkage disequilibrium

between OCA2 and GABRG3, coupled with selection for

blue eyes, generated associations of eye color with per-

sonality traits, autism, or both? Of course, the region of

the human genome with among the strongest signals of

selection, and the highest levels of linkage disequilib-

rium, is perhaps the most important for disease: the

3.6-Mb MHC region on chromosome six.

Second, genomically based conflicts are a fundamental

outcome of gene-level selection, because different alleles

at a locus, and alleles at loci with different patterns of

inheritance and different patterns of genetic relatedness to

interactants, can be selected for effects that ‘benefit’ the

focal allele (increase its frequency) even at a replication

cost to other alleles, or a fitness cost to individuals. Geno-

mic conflicts come in two main types: (i) intragenomic

(within-genome) conflicts include genomic imprinting,

forms of drive (meiotic, meiotic stem cell, gestational,

and centrosomal), sex–chromosomal interactions, and

mitochondrial–nuclear relationships; and (ii) intergenomic

conflicts involve competition between categories of indi-

vidual, such as parent–offspring, maternal–fetal, sib–sib,

male–female, female–female and male–male (Burt and

Trivers 2006; Rice et al. 2008; Crespi 2010a). Costs of

genomic conflicts may themselves manifest as disease, and

more generally, evolved systems of conflict represent

mechanisms that can become dysregulated via one party

(allele, genomic element, or class of individual) ‘winning’

(reaching its optimum, while the other party suffers a fre-

quency or fitness reduction), physiological costliness from

dynamic tug of war (Haig and Graham 1991), new muta-

tional targets from evolved conflict systems, and long-

term, ongoing antagonistic coevolution. In each form of

conflict, fitness differentials between competing parties

are expected to be extremely strong (as for host–parasite

interactions), also increasing the scope for deleterious

pleiotropic effects of conflictually driven allele frequency

change.

Genomic conflicts appear to be especially pervasive in

the contexts of competition over reproductive resources

that mediate differential survival and growth, such as

maternal–fetal interactions (Haig 1993, 1996a,b, 1999,

2007), and meiotic and gestational drive (Zollner et al.

2004; Haig 1996a,b, 1997). For example, Haig (1993,
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1996a,b, 2007) and Crespi (2010a) describe how the pri-

mary disorders of human reproduction, including infertil-

ity, early pregnancy loss, gestational diabetes, pre-

eclampsia, and intrauterine growth restriction and show

evidence of strong effects from genomic conflicts, as well

as human-specific adaptation. Genomic imprinting effects

in particular appear to play central roles in a suite of dis-

orders including disrupted placentation (Fowden et al.

2006), cancer (Jelinic and Shaw 2007), altered metabolism

of glucose and lipids, key currencies for fetal development

(e.g. Chen et al. 2005; Haig 2008), and neurodevelop-

mental disorders (Crespi 2008; Crespi and Badcock 2008),

as deleterious side effects of their roles in orchestrating

prenatal and postnatal growth, and neurodevelopment

(Ubeda and Wilkins 2008; Das et al. 2009; Crespi 2010b).

Indeed, Kong et al. (2009) estimate from pedigree-based

GWA data that 13–15% of the genetic risk for type 2 dia-

betes involves parent of origin effects (see also Voight

et al. 2010), and some of the most penetrant and well-

established risk factors for schizophrenia and autism

involve imprinted genes (Crespi 2008; Crespi and

Badcock 2008; Ludwig et al. 2009; Pun et al. 2010). The

incidence of positive selection on imprinted compared to

nonimprinted genes has yet to be systematically evaluated,

but two of the genic regions inferred as positively selected

in Grossman et al. (2010) are imprinted (see also Lo et al.

2007). Positive selection has also been reported in the

imprinted genes C15orf2 (Wawrzik et al. 2010) and

KLF14 (Parker-Katiraee et al. 2007), and alleles of this lat-

ter gene show strong links to carcinoma (Stacey et al.

2009) and plasma lipid concentration (Chasman et al.

2009) in recent GWA studies.

Some direct applications of genomic conflict theory to

health practitioners include: (i) disease-related maternal

or fetal phenotypes expressed in pregnancies that may

be either conditionally adaptive responses of mothers or

fetuses to developmental perturbations, or deleterious

manifestations of pathology; in the former case, treat-

ments to alleviate symptoms are expected to make mat-

ters worse for one or both parties (Haig 2004, 2007);

(ii) diseases in offspring owing to noninherited maternal

haplotypes that negatively impact fetal development

(Haig 1996a,b, 1997; Johnson 2003); (iii) the importance

of family-based studies, which can be used to detect

parent of origin, imprinting effects that case–control

analyses cannot; and (iv) recognition of novel, funda-

mental causes of psychological conditions, such as high

levels of insecure attachment (psychosocial bonding) in

childhood, because of parent–offspring conflicts com-

monly resolved in the parent’s favor, that can reduce

psychological well-being throughout later life (Crespi

2010b; see also Wells 2003). More generally, conflicts

will usually not be observed unless explicitly sought, in

part because they are invisible, senseless, or wasteful

from the perspective of body and mind as coherent,

unitary machines.

Strong natural selection early in life, from infectious

diseases and interacting effects of nutritional status, is

expected to sustain substantial negative effects on health

in later life

Survivorship curves for poor, third-world human popula-

tions, and hunter–gatherer populations, drop precipi-

tously from birth, with about 50% of children lost before

the ages of 10–15 (Gurven et al. 2007; May 2007; see also

Metcalf and Pavard 2007). Most of this mortality occurs

in infancy, or soon after weaning, from infectious diseases

and interactions of disease risk with poor nutrition (Wells

2009). Given that infectious disease risks, birth weight,

and early weight gain show high heritabilities (Demerath

et al. 2007; Kaslow et al. 2008; Beardsall et al. 2009), the

forces of natural selection and genetic response must pre-

sumably have impacted more strongly upon genetic vari-

ants favoring early-life survival (even into the early-fetal

stage) than upon virtually any other alleles or effects. A

primary implication of this simple inference is that extre-

mely strong, early selection can favor alleles that benefit

early survival even if they engender substantial health and

fitness costs later in life, owing to pleiotropy and linkage

disequilibrium.

This is well-established theory, but its implications have

yet to permeate the genetics of polygenic human disease.

Thus, studies of senescence and life history evolution have

focussed much more on laboratory demonstrations of

antagonistic pleiotropy, and deciphering physiological

mechanisms of age-related diseases, than on testing for

pleiotropic, age-specific effects from specific, health-

related alleles or developmental–physiological systems

(Rose 2009). Similarly, GWA studies of common diseases

sensibly compare cases and controls, for most diseases in

adults, to identify ‘risk’ alleles. To the extent, however,

that strong early-life effects and antagonistic pleiotropy

actually operate, many so-called disease-risk alleles, espe-

cially common ones like the APOE, ADRB2, and TP53

variants in Table 1 are expected to also be alleles ‘for’

phenotypes that confer higher survival or other benefits

in childhood. Similar considerations apply to gene by

environment interactions, which may harbor much of the

‘missing’ heritability of polygenic disease (Manolio et al.

2009; Wermter et al. 2010); earlier environments, even

into the fetal stage, are expected to impose stronger

effects.

Several interesting implications follow from considering

the demographics of ancestral and current third-world

disease risks:
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1) To the extent that early-childhood survival depends

on resisting infectious diseases, alleles that enhance early

infectious disease resistance should also frequently

increase risk from later-life noninfectious disease; such

processes may help to explain associations of HLA and

other immune loci with human longevity (e.g. Naumova

et al. 2007; Listı̀ et al. 2010), and genetically-based trade-

offs between risks from infectious versus autoimmune

and late-life disease (Sanjeevi et al. 2000; Dean et al.

2002; Correa et al. 2005; Fernández-Real and Pickup

2008; Van Bodegom et al. 2007; Mathieu et al. 2008;

Wang et al. 2010). Indeed, it is only among polygenic

autoimmune diseases such as rheumatoid arthritis and

type 1 diabetes that a substantial proportion of genetically

based disease liability has been accounted for (e.g.

Hakonarson and Grant 2009; Imboden 2009), perhaps

because of infectious diseases maintaining variation at the

immune-related loci that underly risk.

2) To the extent that early survival has historically

depended on relatively high birth weight, this phenotype

should engender late-life costs underlain by pleiotropic

alleles. For example, higher birth weight and large size

have been associated with increased risk of some forms of

cancer, at least in part because of alleles that enhance cell

proliferation (Cnattingius et al. 2009; Oberg et al. 2009;

Maehle et al. 2010). Similarly, the 8.1 ‘ancestral’ HLA

haplotype, found in about 10% of northern Europeans

and apparently subject to strong, ongoing positive selec-

tion (Aly et al. 2006), is associated with both higher birth

weight (Capittini et al. 2009) and increased risk from a

large suite of autoimmune and other disorders (e.g. Price

et al. 1999; Candore et al. 2002);

3) Under prenatal and early postnatal growth restriction,

offspring should be under strong selection to partition

available resources across different components of body

organ and tissue growth to even more directly maximize

early survival. Fetal ‘programming’ of adult disease was

discovered by David Barker in the context of spatial epi-

demiological associations of low infant survival and low

birth weight with increased rates of death from cardio-

vascular diseases and type 2 diabetes many years later

(Barker 1998). A simple hypothesis for helping to explain

this pattern involves a history of strong selection for

genetically based, environmentally induced growth alloca-

tion patterns (e.g. relative allocation to brain, vascular

system, insulin system function, immune function, etc.)

that maximize early postnatal survival under adverse pre-

natal conditions, at a cost in later-life reproduction and

survival. This hypothesis can help to explain genetically

based associations of low birth weight with type 2 diabe-

tes risk alleles (for the genes ADCY5, CDKAL1, GCK, and

HHEX-IDE; Weedon et al. 2006; Freathy et al. 2009,

2010; Zhao et al. 2010) where such alleles mediate varia-

tion in tradeoff structure, in the additional context of

birth weight benefits to offspring from such T2D risk

alleles when present in the mother (Freathy et al. 2007,

2009; Lauenborg et al. 2009). Positive selection along the

human lineage has been reported on alleles of the T2D

risk genes TCF7L2 (Helgason et al. 2007), CDKAL1 (Teo

et al. 2009), and ALMS1 (Scheinfeldt et al. 2009), but the

relationships of selected versus ancestral alleles with rele-

vant phenotypes remain largely unexplored. Such genetic

effects are expected to be mediated in large part via con-

ditionally adaptive responses to environmental variation,

which involve epigenetic alterations that modify gene

expression and developmental phenotypes (e.g. Bruce and

Hanson 2010).

Compensatory childhood growth, which is known to

likewise engender late-life costs (e.g. Ong and Loos 2006),

should also be favoured by early-life selection under this

tradeoff framework, and transgenerational effects of early-

life adversity on birth weight and health (e.g. Kuzawa

2007; Kuzawa and Quinn 2009) may be explained in part

by selection on early survival that is generally stronger

than selection on investment in traits promoting female

fecundity, leading via both genetic and plasticity effects to

transgenerationally reduced investment in fecundity and

late-life health.

Strong selection for early-childhood survival in humans

may have important implications beyond genetically

based health risks: thus, early-childhood survival and

health have been strongly associated, in replicated studies

among traditional and other societies, with measures of

intelligence and education of the mother (Sandiford et al.

1997; Martin and Kubzansky 2005; Wachs et al. 2005;

Čvorović et al. 2008; Webb et al. 2010). Was the recent

evolution of brain development and intelligence in

humans driven by selection on mothers for cognitive,

affective, and behavioral phenotypes that enhance early-

childhood survival? In turn, how much of the precocial

neurological development of humans, coupled with physi-

cal altriciality, might be related to attracting early invest-

ment and health benefits from the mother (e.g. Hrdy

1999)?

Tradeoffs are molecular genetic as well as phenotypic,

and uncovering the tradeoff structures of pleiotropic

alleles should provide novel insights into both human

evolution and disease risk

Tradeoffs between aspects of growth, maintenance, and

reproduction have most frequently been analyzed at the

levels of genetic and phenotypic correlations, but genetic

correlations must be underlain by pleiotropy and linkage

disequilibrium owing to genomic variation and molecu-

lar genetic mechanisms expressed in physiological and
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developmental pathways. Indeed, tradeoffs are expected to

exhibit hierarchical structure, and causal connections,

from organisms to pathways to loci, at the following

levels:

1 whole-body, life history tradeoffs involve differential

allocation to growth, maintenance and reproduction, with

lifetime inclusive fitness maximized under different

regimes of total available time and energy and strength of

tradeoffs (e.g. Jasienska 2009);

2 among-tissue tradeoffs involve differential growth of

organs during development, and differential allocation to

high-cost functions such as immunity and reproduction

in adulthood (e.g. Fig. 3), with the brain retaining a priv-

ileged position as master controller subject to high costs

from reduced allocation (Peters et al. 2004; Kuzawa 2010;

Straub et al. 2010);

3 within-tissue tradeoffs involve differential specialized

functions of specific tissues, such as fast-twitch versus

slow-twitch muscles (MacArthur et al. 2007; North 2008),

or brains relatively specialized for verbal versus visual-

spatial task performance (Johnson and Bouchard 2007);

4 within-pathway tradeoffs, whereby upregulation, for

example, of a growth-signaling pathway, enhances some

physiological–developmental functions but decreases oth-

ers, with consequent effects on disease risk in each case

(e.g. Caricasole et al. 2005; Reddy et al. 2009; Crespi

2010a); and

5 within-locus tradeoffs, whereby alternative genotypes

engender different sets of benefits and costs; such trade-

offs should be mediated by mechanisms such as gene dos-

ages, enzyme activities, and affinities for binding, and

should involve risks of different diseases.

Within-locus genetic variation provides some of the

best-known examples of molecular genetic tradeoffs, orig-

inally discovered because of their strong effects on disease

risks; thus, the HBB locus mediates tradeoffs between risk

of malaria and sickle-cell anemia, and TP53 mediates bal-

ances between reproduction, cancer, and senescence

(Kang et al. 2009). One of the most interesting aspects of

the data in Table 1 is that a substantial number of bal-

ancing selection cases involve losses of function for one

of the alleles; loss of function alleles are expected to arise

readily (given a larger set of mutational targets generating

null phenotypes than differently functional ones) but

increase disease risk because of deleterious effects in null

homozygotes (see also Barreiro and Quintana-Murci

2010). Of course, not all cases of balancing selection need

involve tradeoffs, as high allelic diversity can evolve for

other reasons, but the role of this process in maintaining

common alleles underlying disease risk deserves closer

scrutiny. Indeed, the Val158Met polymorphism of an

important schizophrenia-risk allele, COMT, has recently

been shown to be subject to balancing selection effects,

with heterozygotes demonstrating lower risk (Costas et al.

2010); do such effects generalize to other genes? Evidence

for benefits from increased heterozygosity across many

loci has been reported with regard to heart disease

(Govindaraju et al. 2009); heterozygosity at a number of

specific non-HLA loci has been shown to enhance

survival of infectious or age-related disease (e.g. Kerlin

et al. 2003; Dossou-Yovo et al. 2007; Gochhait et al. 2007;

Hellemann et al. 2007; Catano et al. 2008; Livadas et al.

2009) and even low levels of inbreeding or homozygosity

from other causes in humans lead to elevated risks from

polygenic disease or death from infection (e.g. Lencz et al.

2007; Bacolod et al. 2008; Lyons et al. 2009a,b; Bittles and

Black 2010; Mansour et al. 2010). Indeed, on a larger

scale, increased homozygosity owing to founder effects in

dispersal from Africa appears to account for a higher inci-

dence of deleterious alleles in Europeans than Africans

(Lohmueller et al. 2008).

Under life history theory, tradeoffs can be alleviated in

part among a subset of individuals with high levels of fit-

ness-enhancing resources (Reznick et al. 2000). With

regard to human disease, high heterozygosity, low levels of

de novo or rare deleterious, segregating mutations, high

levels of developmental resources, and benign environmen-

tal conditions (e.g. Gurven et al. 2009) may each reduce

the strength of tradeoffs involving components of fitness

and disease risks. For example, tradeoffs between verbal

Figure 3 Storage and expenditure of resources for human growth,

maintenance, and reproduction involve tradeoffs at multiple levels,

from whole body to organs and tissues (shown here), and ultimately

to cells and alleles. Such tradeoffs are expected to structure the evolu-

tion, development and expression of polygenic disease risks, just as

they structure the evolution of human life history traits. From Wells

(2009), with permission.
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and visual-spatial skills are uncovered in ‘normal’ humans

only after controlling for general intelligence (Ando et al.

2001; Johnson and Bouchard 2007), and a variety of neu-

rogenetic conditions, including Turner syndrome, Kline-

felter syndrome, and absence of the corpus callosum,

involve tradeoffs between this pair of cognitive phenotypes

(Brown and Paul 2000; Geschwind et al. 2000).

Conclusions

Evolutionary medicine represents one of the major con-

ceptual advances in the health sciences over the past

25 years (Gluckman et al. 2011), but its penetration into

the practice of medical research has been limited by: (i)

inherent difficulties in developing and testing evolutionary

hypotheses for human phenotypic adaptation and malad-

aptation, (ii) increasing specialization required for evolu-

tionary biologists to contribute within any given medical

research area, and (iii) ignorance and misunderstanding of

how evolutionary approaches can inform the study of

proximate mechanisms, and vice versa. These limitations

can be overcome relatively effectively by studying the joint

evolutionary genomic bases of human evolution and dis-

ease risk, which allows direct connections to be drawn

between selection, adaptation, and maladaptive traits.

Emergence of a robust, interdisciplinary human evolu-

tionary medical genomics will require integration of

human disease genetics with conceptual and analytic

approaches from evolutionary medicine, phylogenetics,

molecular genetics, life history theory, and study of the

genetic and phenotypic changes underlying modern

human origins. The most directly useful insights should

come from functionality of positively-selected and bal-

anced haplotypes and human-specific fixed differences,

increased focus on mechanisms of genomic conflict and

their maladaptive sequelae, direct dovetailing of disease

risk and positive selection phenomic studies, and consid-

ering the genomic landscape of common polygenic dis-

ease as a spectrum of multi-level, timing-dependent and

tissue-dependent tradeoffs punctuated by deleterious

mutations. Indeed, under this perspective much, if not

most, of the common variants implicated thus far as dis-

ease risk alleles by GWAS may actually be beneficial over-

all or in many contexts – to fitness if not health. Human

disease risks have evolved, and the nascent field of evolu-

tionary medical genomics offers unique and powerful

opportunities to bring proximate and ultimate approaches

together, for discovering how and why.
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