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Abstract

Background: Missing values are a frequent issue in human studies. In many situations, multiple imputation (MI) is an
appropriate missing data handling strategy, whereby missing values are imputed multiple times, the analysis is
performed in every imputed data set, and the obtained estimates are pooled. If the aim is to estimate (added)
predictive performance measures, such as (change in) the area under the receiver-operating characteristic curve
(AUC), internal validation strategies become desirable in order to correct for optimism. It is not fully understood how
internal validation should be combined with multiple imputation.

Methods: In a comprehensive simulation study and in a real data set based on blood markers as predictors for
mortality, we compare three combination strategies: Val-MI, internal validation followed by MI on the training and test
parts separately,MI-Val, MI on the full data set followed by internal validation, andMI(-y)-Val, MI on the full data set
omitting the outcome followed by internal validation. Different validation strategies, including bootstrap und
cross-validation, different (added) performance measures, and various data characteristics are considered, and the
strategies are evaluated with regard to bias and mean squared error of the obtained performance estimates. In
addition, we elaborate on the number of resamples and imputations to be used, and adopt a strategy for confidence
interval construction to incomplete data.

Results: Internal validation is essential in order to avoid optimism, with the bootstrap 0.632+ estimate representing a
reliable method to correct for optimism. While estimates obtained byMI-Val are optimistically biased, those obtained
byMI(-y)-Val tend to be pessimistic in the presence of a true underlying effect. Val-MI provides largely unbiased
estimates, with a slight pessimistic bias with increasing true effect size, number of covariates and decreasing sample
size. In Val-MI, accuracy of the estimate is more strongly improved by increasing the number of bootstrap draws rather
than the number of imputations. With a simple integrated approach, valid confidence intervals for performance
estimates can be obtained.

Conclusions: When prognostic models are developed on incomplete data, Val-MI represents a valid strategy to
obtain estimates of predictive performance measures.
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Background
The aim of a prognostic study is to develop a classifica-
tion model from an available data set and to estimate the
performance it would have in future independent data,
i.e., its predictive performance. This cannot be achieved
by fitting the model on the whole data set and evaluating
performance in the same data set, since a model gener-
ally performs better for the data used to fit the model
than for new data (“overfitting”) and performance would
thus be overestimated. This can be observed already in
low-dimensional situations and is especially pronounced
in relatively small data sets [1, 2]. Instead, the available
data have to be split in order to allow performance assess-
ment in a part of the data that has not been involved
in model fitting [3, 4]. For efficient sample usage, this is
often achieved by internal validation strategies such as
bootstrapping (BS), subsampling (SS) or cross-validation
(CV).
The task of assessing predictive performance is made

even more complicated when the data set is incom-
plete. Missing values occur frequently in epidemiologi-
cal and clinical studies, for reasons such as incomplete
questionnaire response, lack of biological samples, or
resource-based selection of samples for expensive labora-
tory measurements. The majority of statistical methods,
including logistic regression models, assume a complete
data matrix, so that some action is required prior to
or during data analysis to allow usage of incomplete
data. Since ad hoc strategies such as complete-case anal-
ysis and single imputation often provide inefficient or
invalid results, and model-based strategies require often
sophisticated problem-specific implementation, multiple
imputation (MI) is becoming increasingly popular among
researchers of different fields [5, 6]. It is a flexible strategy
that typically assumes missing at random (MAR) miss-
ingness, that is, missingness depending on observed but
not unobserved data, which is often, at least approxi-
mately, given in practice [5]. MI involves three steps [7]: (i)
missing values are imputed multiple (M) times, i.e., miss-
ing values are replaced by plausible values, for instance
derived as predicted values from a sequence of regression
models including other variables, (ii) statistical analysis is
performed on each of the resulting completed data sets,
and (iii) the M obtained parameter estimates and their
variances are pooled, taking into account the uncertainty
about the imputed values [8].
When the estimate of interest is a measure of predic-

tive performance of a classification model, or a measure
of incremental predictive performance of an extended
model as compared to a baseline model, the appli-
cation of MI is not straightforward. Specifically, it is
unclear how internal validation and MI should be com-
bined in order to obtain unbiased estimates of predictive
performance.

Previous strategies combining internal validation with
MImostly focused on application without the aim to com-
pare their chosen strategy against others or to assess their
validity [9–11]. Musoro et al. [12] studied the combina-
tion of BS and MI in the situation of a nearly continuous
outcome using LASSO regression, essentially reporting
that the strategy of conducting MI first followed by BS
on the imputed data yielded overoptimistic mean squared
errors, whereas conducting BS first on the incomplete
data followed by MI yielded slightly pessimistic results in
the studied settings. Wood et al. [13] presented a num-
ber of strategies for performance assessment in multiply
imputed data, leaving, however, the necessity of validating
the model in independent data to future studies. Hornung
et al. [14] examined the consequence of conducting a sin-
gle imputation on the whole data set as compared to the
training data set on cross-validated performance of classi-
fication methods, observing a negligible influence. Their
investigation was restricted to one type of imputation that
did not include the outcome in the imputation process.
In this paper, we present results of a comprehensive

simulation study and results of a real data-based simu-
lation study comparing various strategies of combining
internal validation with MI, with and without including
the outcome in the imputation models. Our study extends
upon previous work with regard to several aspects: (1) We
consider different internal validation strategies and differ-
ent ways to correct for optimism, we (2) study measures
of discrimination, calibration and overall performance as
well as incremental performance of an extended model,
and we (3) closely examine the sensitivity of the results
towards characteristics of the data set, including sample
size, number of covariates, true effect size and degree and
mechanism of missingness. Furthermore, we (4) elabo-
rate on the number of imputations and resamples to be
used and (5) provide an approach for the construction of
confidence intervals for predictive performance estimates.
Finally, we (6) translate our results into recommendations
for practice, considering the applicability of the proposed
methods for epidemiologists with limited analytical and
computational resources.

Methods
Study data
Two simulation studies were conducted: In the first,
incomplete data were generated de novo with different
(known) effect sizes, facilitating the comparison of pre-
dictive performance estimates of different combined val-
idation/imputation strategies against the respective true
performance measure. The second simulation study was
based on the complete observations of a real incomplete
data set, in which we introduced missing values in a pat-
tern mirroring that of the whole incomplete data set,
aiming to compare strategies in a realistic data situation.
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Simulation study 1: de novo simulation
Data generation Data were generated according to a
variety of settings, covering a large spectrum of practically
occurring data characteristics (Table 1). For each setting,
250 data sets were randomly generated. Two situations
were investigated. In situation 1, only one set of covari-
ates was considered (the number of which is denoted as p),
with the aim being the estimation of predictive per-
formance of a model comprising this set of covari-
ates. In situation 2, two sets of covariates were con-
sidered (with p0 the number of baseline covariates and
p1 the number of additional covariates), in order to
study the estimation of added predictive performance
of the model comprising both sets of covariates as
compared to a model containing only the p0 baseline
covariates.
For each simulated data set, a binary outcome vector

y = (y1, y2, . . . , yn)was created with the pre-specified case
probability frac. A covariate matrix X = (x1, x2, . . . , xn)
was simulated by drawing n times from a p or p0 +
p1-dimensional (in situations 1 and 2, respectively) mul-
tivariate normal distribution with mean vector 0 and
variance-covariance matrix � with variances equal to 1
and covariances specified by the correlation among vari-
ables (ρ in situation 1, ρ0 and ρ1 for the baseline and
additional covariates, respectively, in situation 2) as pro-
vided in Table 1. Then, effect sizes were introduced in a

way that each set of covariates achieved an (added) perfor-
mance approximately in the magnitude of a pre-specified
area under the receiver-operating characteristic (ROC)
curve (AUC) value. As a reference we used the theoretical
relationship [15]:

AUC = �

(
1
2

√
�μT�−1�μ

)
, (1)

where �μ denotes the vector of mean differences in
covariate values to be introduced between both out-
come classes, i.e., �μ = E (xi|yi = 1) − E (xi|yi = 0),
and � the standard normal cumulative distribution func-
tion. We used a simplified scenario with a unique
effect size chosen for all covariates within each set, i.e.,
�μ = (�μ,�μ, . . . ,�μ) in situation 1, and �μ =
(�μ0,�μ0, . . . ,�μ0, . . . ,�μ1,�μ1, . . . ,�μ1) in situa-
tion 2, and found �μ by solving Eq. (1) numerically using
the R function uniroot. Then, we added �μ/2 to the
cases’ covariate values, and substracted �μ/2 from the
controls’ covariate values, in order to achieve an aver-
age difference of �μ in covariate values between cases
and controls. Using this procedure, we implicitly model
the outcome yi as follows: P (yi = 1|xi) = logistic (γ · xi),
where xi denotes the vector of covariate values for obser-
vation i, i = 1, . . . , n, γ = �−1 · �μ a p-dimensional

Table 1 Simulation settings

Parameter Notation Values

Predictive performance

Sample size n 100, 200, 500, 1000

Number of covariates p 1, 5, 10, 20

Correlation among covariates ρ 0, 0.25

Outcome case frequency frac 0.5, 0.25

Theoretical AUC auc 0.5, 0.58, 0.66, 0.74, 0.82

Proportion of missing values among covariates miss 0.125, 0.25, 0.375, 0.5, 0.625, 0.75

Missingness mechanism MCAR, MAR, MARblock

Added predictive performance

Baseline covariates Additional covariates

Sample size n 100, 200, 500, 1000

Number of covariates p0, p1 1, 5, 10 1,5,10,20

Correlation among covariates ρ0, ρ1 0 0, 0.25

Outcome case frequency frac 0.5, 0.25

Theoretical (change in) AUC auc0, �auc 0.6 0, 0.04, 0.08, 0.12, 0.16

Proportion of missing values among covariates miss0,miss1 0, 0.5 0.125, 0.25, 0.375, 0.5,
0.625, 0.75

Missingness mechanism MCAR, MAR, MARblock

AUC area under the receiver-operating characteristic (ROC) curve,MARmissing at random,MARblock blockwise missing at random,MCARmissing completely at random
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(situation 1) or p0 + p1-dimensional (situation 2) vec-
tor of coefficients, and logistic(x) = ex

1+ex the logistic
function.

Imposing missingness Different degrees of missingness
(see Table 1) were introduced separately to the sets of
covariates (one set in situation 1 with proportion of miss-
ing values denoted as miss; two sets in situation 2 with
proportion of missing values in the baseline and addi-
tional covariates denoted asmiss0 andmiss1, respectively;
to improve readability, we use the parameter notations
of situation 1 below) according to three different mech-
anisms frequently occurring in practice: missing com-
pletely at random (MCAR), where missingness occurs
independently of any observed or missing values, miss-
ing at random (MAR), where missingness of variables
depends on observed values including outcome values
but not on the unknown values of the missing data, and
blockwise missing at random (MARblock), where blocks
of variables share their missingness pattern. We did not
consider missingness in the outcome.
MCAR missingness was created by randomly introduc-

ing the pre-specified proportion miss of missing values
into the covariates. To achieveMARmissingness, we used
an approach similar to that applied by Marshall et al. [16].
Let Xij denote the jth covariate for observation i, with
i = 1, . . . , n and j = 1, . . . , p, and Mij the indicator for its
missingness. Then, the probability of missingness for each
covariate value was modeled as a function of the value of
one other covariate, of missingness of another covariate,
and of the outcome value.

P
(
Xij missing

) = P
(
Mij = 1

)
= logistic

(
β0j + β1j · Mi,j−1 + β2j · Xikj + 2 · yi

)

where Xikj denotes the observation of a randomly chosen
other covariate and yi the binary outcome value. With-
out loss of generality, missingness of the previous (j −
1th) covariate was used for technical reasons (missingness
available). β1j was defined as

β1j =
{
0, if j = 1
1;−1 with probability 0.5, if j > 1

and β2j as

β2j =
{
0, if j = 0
2, if j > 1.

The intercepts β0j were estimated by numerically solv-
ing the equation

1
n

n∑
i=1

P
(
Mij = 1

) = miss

for each j. To achieve the proportion of missing values
miss exactly, values were set tomissing by drawing n×miss

times from a multinomial distribution with probability
vector

(
P

(
Mij = 1

))
i=1,...,n.

Finally, we created a missingness structure similar to
that observed in our application data, that is, a block
structure of missingness (MARblock). In practice, such a
structure can occur when groups of laboratory parame-
ters are measured for certain groups of subjects defined
by other variables (see below). Approximate blockwise
missingness was simulated with missingness of variables
assigned to each block depending on covariates outside
the block. Variables were randomly assigned to three
blocks, and probability of missingness modified as follows
for the covariates j in each block b, b = 1, . . . , 3:

P
(
Mij = 1

) = logistic
(
β0j + 10 · Xikb + 2 · yi

)
where for each covariate j within block b the same covari-
ate Xkb was chosen among covariates outside the block,
leading to similarly high/low probabilities for all covari-
ates in the respective block. The exact proportion of
missing values miss was again achieved by drawing from
a multinomial distribution, as described for MAR above.
Example R code for simulation study 1 is available in
Additional file 2.

Simulation study 2: real data-based simulation
Data set Data were obtained from the population-based
research platform MONICA (MONItoring of trends and
determinants in CArdiovascular disease)/ KORA (COop-
erative health research in the Region of Augsburg),
surveys S1 (1984/85), S2 (1989/90) and S3 (1994/95), com-
prising individuals of German nationality aged 25 to 74
years. The study design and data collection have been
described in detail elsewhere [17]. Written informed con-
sent was obtained from all participants and the studies
were approved by the local ethics committee.
In a random subcohort comprising 2225 participants

aged 35 to 74 years, blood concentrations of 15 inflam-
matory markers were measured [18–20] as part of a
case-cohort study assessing potential risk factors for car-
diovascular diseases and type 2 diabetes. In the present
analysis, all-cause mortality was used as the outcome. To
achieve a largely healthy population at baseline, subjects
with a history of stroke, myocardial infarction, cancer or
diabetes at baseline were excluded. Among the remaining
2012 subjects, 294 (14.6 %) died during the 15-year follow-
up period. Average survival time among the deceased
participants was 9.0 years (range 0.2 to 15.0 years), and
three participants were censored at 2.7, 6.9 and 7.9 years.
See Additional file 1: Table S1 for a description of baseline
phenotypes including the inflammatory markers.
Whereas all other variables were almost completely

observed (less than 0.4 % missing entries for each vari-
able), missingness among the 15 inflammation-related
markers was 7.2 % on average (range 0.2 – 26.4 %, see
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Additional file 1: Table S1), 37.2 % of observations had
missing entries in inflammation-related markers, with
missingness ranging from 0 to 93.3 %. The missingness
pattern showed a block structure (Fig. 1), owing to the
fact that measurement of inflammatory markers was con-
ducted in different laboratory runs – for which samples
were selected based on sample availability at the time of
measurement. Five blocks of covariates could be roughly
distinguished: Block 1, comprising CRP, without miss-
ings, block 2, conprising ICAM, E-Selectin, IL-6, MCP-
1, IL-18,IP-10 and IL-8, block 3, comprising RANTES
and MIF, block 4, comprising leptin, MPO, TGF-β1 and
Adiponectin, and block 5, comprising 25(OH)D. Similarly,
observations could be assigned to five patterns of missing-
ness: pattern 1, comprising observations with a missing
entry only for block 2, 3, 4 and 5 variables, pattern 2, only
for block 4 and 5 variables, pattern 3, only for block 4
variables, pattern 4, only for block 3 and 5 variables, and
pattern 5, only for the block 5 variable 25(OH)D.

Imposing missingness To use the MONICA/KORA
subcohort as the basis for the real data-based simulation
study, we first investigated determinants of missingness in
inflammation-related markers in the full subcohort, fol-
lowed by imposing missingness on the data set consisting
of the complete observations only (n = 1258) in a way
that yielded a missingness pattern closely resembling the
block structure and the relations in the original data set. In
detail, we used the five patterns of missingness described

Observation

0 500 1000 1500 2000
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Adiponectin

TGF−beta1
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MIF

RANTES

IL−8

IP−10
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MCP−1

IL−6
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CRP

Variable

Observed
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Fig. 1Missingness pattern among inflammation-related markers in
the application data set. Plot of missingness indicators (black = entry
observed; red = entry missing) for the 2012 observations against the
15 inflammation-related markers, both sorted by missingness

above as a basis, and, for each pattern, identified other
variables in the data set correlated (Kendall’s τ ) with the
respective pattern indicator (1 for observations that are
part of the respective pattern; 0 else). Consequently, we
selected those variables showing an absolute correlation
above 0.1: sex and survey 1 for pattern 1, survey 1 for
pattern 2, sex, survey 1 and alcohol intake for pattern 3,
and no covariates for pattern 4 and 5. 250 simulations
were conducted. In each simulation, a proportion of com-
plete observations was assigned to each pattern identical
to the proportion observed in the original data set. This
was achieved by modeling pattern indicators as a function
of the respective correlated variable(s) in the full incom-
plete data set in a logistic regressionmodel, and predicting
pattern membership probability of the respective pattern
for the observations in the complete-observation data set.
To achieve the aspired proportion of observations newly
assigned to each pattern exactly, we drew the required
number of times from a multinomial distribution with
the predicted probability vector. Finally, for observations
assigned to pattern 1, all variables of blocks 2, 3, 4 and
5 were set to missing, for pattern 2, variables of blocks 4
and 5, and so on, according to the definitions above. The
resulting data sets showed a missingness pattern closely
resembling that of the original data set (shown for the first
12 simulation runs in Additional file 1: Figure S1).

Imputation
We used the multiple imputation by chained equations
(MICE) framework [7, 21]. It is based on the princi-
ple of a repeated chain of regression equations through
the incomplete variables, where in each imputation
model, the respective incomplete variable is modeled as
a function of the remaining variables. Arbitrary regres-
sion models can be used. We applied predictive mean
matching for all incomplete (continuous) variables. It is
based on Bayesian linear regression, where after mod-
eling, the posterior predictive distribution of the data
is specified and used to draw predicted values [22].
Then, missing values are replaced by a random draw
of observed values of that variable from other observa-
tions with the closest predicted values (default: the five
closest values). In each imputation model, all other vari-
ables (and, in the data-based simulation study, quadratic
terms of continuous variables, passively imputed them-
selves) were included as covariates. Before imputa-
tion, to improve normality of the continuous incom-
plete variables, distributions of raw, natural logarithm,
cubic root and square root transformed variables were
tested for normality using Shapiro-Wilk tests, and the
transformation yielding the maximum test statistic was
applied.
Depending on the strategy used (see below), the out-

come was included (strategyMI) or not included (strategy
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MI(-y)) in the imputation models. If MI was not combined
with internal validation, a pooled performance estimate
was obtained by averaging the performance estimates
θ̂ (m), m = 1, . . . ,M, from the M imputed data sets,
according to Rubin [8]. Example R code for the conduction
of MICE is available in Additional file 2.

Internal validation strategies
Three internal validation strategies were considered:
bootstrapping (BS), subsampling (SS) and K-fold cross-
validation (CV). The principles underlying the three
strategies are visualized for complete data in Fig. 2a (BS)
and in Additional file 1: Figure S2 (SS, CV).

…
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Bootstrap sample 1 Bootstrap sample 2 Bootstrap sample B
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,

Performance measures

. . = , − ,where = , − ,

= ,

. = ( − ) , + , with weight =
.

.
and 

relative overfitting rate =
, ,

,

. = . , + . ,

b   Strategy Val-MI

Fig. 2 Combination of internal validation (Val), using the example of bootstrap (BS), and multiple imputation (MI). a Val: Visualization of BS in
complete data. θ̂Dat1,Dat2 denotes performance when the model was fitted on Dat1 and evaluated on Dat2, where Orig denotes the original data set,
BS(b) the bth BS set, OOB(b) the bth out-of-bag (OOB) set, b = 1, . . . , B. Average performance values across the B sets are denoted by θ̂BS,BS , θ̂BS, OOB

and θ̂BS, Orig . θ̂noinfo denotes the average performance in the absence of an effect (see text). Performancemeasures: θ̂opt.corr. , ordinary optimism-corrected
BS estimate [3]; θ̂OOB , OOB performance estimate; θ̂0.632+ , BS 0.632+ estimate [23]. In the specific case of w = 0.632, the BS 0.632 estimate (θ̂0.632) is
obtained. b Val-MI: Combination of BS andMI by drawing BS samples followed by MI separately on the BS samples and on the OOB samples not
contained in the respective BS draw. cMI-Val andMI(-y)-Val: Combination ofMI and BS by conducting MI followed by drawing BS samples from the
imputed data sets. For b and c, performance measures are derived similarly as for complete data (a), this time averaging across the B · M sets, and
deriving apparent performance θ̂Orig,Orig as the average performance across theM imputed data sets
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Briefly, in BS, B bootstrap samples are drawn with
replacement from the original sample, so that each BS
sample will contain certain observations more than once,
and others not at all. The average proportion of indepen-
dent observations included in each BS sample is asymp-
totically 63.2 % [23]. The approx. 36.8 % remaining obser-
vations are frequently referred to as the out-of-bag (OOB)
sample. To get an estimate for predictive performance
from BS, several strategies were proposed (Fig. 2). First,
the optimism of the apparent performance θ̂Orig,Orig (i.e.,
the performance of the model in the original data after
using the whole original data set for model fitting), can
be estimated as difference between average apparent per-
formance in the BS samples and average performance of
models fitted in each BS sample evaluated in the origi-
nal sample [3]: ̂optimism= θ̂BS,BS − θ̂BS,Orig . Accordingly,
an “optimism-corrected” (opt.corr.) measure for predictive
performance, sometimes referred to as ordinary bootstrap
estimate, can be obtained by subtracting the estimated
optimism from apparent performance in the original data:
θ̂opt.corr. = θ̂Orig,Orig− ̂optimism. Second, the model can be
fitted on the BS samples and evaluated on the OOB sam-
ples (θ̂OOB). The resulting performance estimate tends
to underestimate performance since less information was
used in the model fitting step than provided in the full
data [24]. Thus, the BS 0.632+ estimate (θ̂0.632+) has been
proposed as a weighted average of apparent and OOB
performance:

θ̂0.632+ = (1 − w) · θ̂Orig,Orig + w · θ̂OOB

with weightsw = 0.632
1−0.368·R depending on the relative over-

fitting rate R = θ̂OOB−θ̂Orig,Orig

θ̂noinfo−θ̂Orig,Orig (Fig. 2, [23]). This requires
that we know the performance of themodel in the absence
of an effect (θ̂noinfo), which is either known (e.g., 0.5 in
the case of the AUC, and 0 in the case of added predic-
tive performancemeasures) or can be approximated as the
average performance measure with randomly permuted
outcome prediction.We used 1000 permutations to assess
θ̂noinfo for the Brier score. In addition, we considered the
BS 0.632 estimate θ̂0.632 = 0.368 · θ̂Orig,Orig + 0.632 · θ̂OOB

[25].
SS and CV involve drawing without replacement. For

SS, we sampled a proportion 63.2 % of samples for model
fitting, leaving again 36.8 % for evaluation. The optimism
correction methods described for the BS can be directly
translated to SS. For K-fold CV, the sample is split in K
equally sized parts, and for each of the parts, the remain-
ing K − 1 parts are used for model fitting and the left-out
part for evaluation of the model, followed by averaging
the performance estimates obtained from the K runs. We
used K = 3 and K = 10, with the former being com-
parable to BS in terms of the proportion of independent
observations in the training sets, and the latter being a

popular choice in the literature. Repeating K-fold CV B
times and averaging the resulting performance estimates
might improve stability of performance evaluation [2].
Thus, both simple (CV3, CV10) and repeated (CV3rep,
CV10rep) CV with K = 3 and K = 10, respectively, were
included in the investigation.

Combination of internal validation with multiple
imputation
Simulated and real incomplete data were analyzed accord-
ing to three combination strategies: Internal validation
data splits followed by MI of the training/fitting and
testing/evaluation data parts separately (Val-MI), and per-
forming the internal validation on multiply imputed data
with (MI-Val) and without (MI(-y)-Val) having included
the outcome in the imputation models. Thereby Val rep-
resents the different validation strategies used, i.e., BS, SS,
CVK and CVKrep. A visualization is provided for BS in
Fig. 2. When performing MI, it is generally recommended
to use the outcome data y in the imputation models for
missing covariates (i.e., methodMI-Val) [26]. However, in
the present context, where we split the imputed data into a
training and an evaluation set (Val), we may want to con-
sider removing y from the imputationmodels (i.e., method
MI(-y)-Val) because these models are fit to the whole data
set, including the data that will become part of the evalua-
tion set (i.e., the OOB or testing set). Dropping y from the
imputation models keeps the evaluation set blind to the
outcome-covariate relationship in the training set. This is
by default the case for Val-MI, where training and testing
parts of the data set are imputed separately, so we did not
consider Val-MI(-y).
For comparison, we also analyzed data using simple

MI and MI(-y) without internal validation. In addition,
strategies were compared to internal validation (Val) in
complete data, where possible. Since we did not observe
changes in variability across the simulations when values
were increased beyond B = 10 and M = 5,B = 10 vali-
dation samples and M = 5 imputations were used for BS
and SS for incomplete data, and B = 50 for complete data
in the simulation studies. For CV, none (B = 1) or B = 5
repetitions and M = 5 were used for incomplete, and
B = 1 or 25 repetitions for complete data. Note that these
do not represent choices for B andM in practice, but that
lower numbers can be used for simulation where variabil-
ity across the 250 simulated data sets exceeds resampling
and imputation variability within each data set.

Modeling and performance measures
There is no unique definition for the performance of a
prediction model. Three types of performance measures
can be distinguished: measures of model discrimination,
the ability of a model to separate outcome classes, i.e.,
to assign cases a higher risk than controls, measures of
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calibration, the unbiasedness of outcome predictions, in
a way that of the observations with a predicted out-
come probability of pr, about a fraction pr are cases, and
measures of overall performance, the distance between
observed and predicted outcome [3, 4].
We considered selected measures of each type for the

binary (logistic) prediction model in the de novo sim-
ulation study. Of note, the focus was not on assessing
the appropriateness of the different performance criteria
in general, but rather to evaluate their estimation in the
presence of missing values as compared to complete data.
As a discrimination measure, we considered the area

under the ROC curve (AUC), which determines the prob-
ability that the model assigns a randomly chosen case (or,
in more general terms, observation with outcome y = 1)
a higher predicted outcome probability than a randomly
chosen control (observation with outcome y = 0) and
is equal to the concordance (c) statistic in the case of
a binary outcome [4, 27]. As calibration measures, we
used intercept and slope of a logistic regression model
of observed against predicted outcomes, with deviation
from 0 and 1, respectively, indicating suboptimal calibra-
tion [11, 28]. Finally, as overall performance measures we
considered the Brier score, i.e., the average squared differ-
ence between observed and predicted outcomes, Brier =
1
n

∑n
i=1

(
yi − ŷi

)2 [4, 29].
To assess added predictive performance of an extended

as compared to a baseline model, we considered change in
discrimination (�AUC) and three measures based on risk
categories. These included, first, the net reclassification
improvement (NRI), i.e., the difference between the pro-
portion of observations moving into a ‘more correct’ risk
category (i.e., cases moving up, controls moving down)
and the proportion of observationsmoving into a ‘less cor-
rect’ risk category with the extended as compared to the
baseline model [30]. This requires the definition of risk
categories, where a single cutoff below the disease risk in
the study population renders NRI by trend a measure for
improvement in the classification of controls, and a sin-
gle cutoff above the disease risk makes it a measure for
improvement in the classification of cases [31]. In order
to capture both, we chose three categories, [0, 1

2 frac],
[ 12 frac,

3
2 frac], [

3
2 frac,1], where frac (≤ 0.5, without loss

of generality, since the NRI is not sensitive towards class
label assignment) denotes the outcome case frequency
in the data set (see Table 1 for simulation study). Sec-
ond, we used the continuous NRI, a category-free version
of the NRI [32], and lastly, the integrated discrimination
improvement (IDI), which equals the integrated NRI over
all possible risk cutoffs [30].
In the data-driven simulation study, the ability of

inflammation-related markers to predict all-cause mortal-
ity was assessed using a Cox proportional hazards model,
with and without additional inclusion of covariates known

to be relevant for mortality prediction (age, sex, sur-
vey, BMI, systolic blood pressure, total to high density
lipoprotein (HDL) cholesterol ratio, smoking status, alco-
hol intake and physical activity). To acknowledge poten-
tial non-linear effects, quadratic terms were additionally
included for all continuous variables. We focused on one
measure of discriminative model performance, namely
time-dependent AUC at 10 years of follow-up accord-
ing to the Kaplan-Meier method by Heagerty et al. [33].
Accordingly �AUC(10 years) was used as a measure
of added predictive performance of the inflammation-
related markers beyond the known predictors.

Evaluation of competing strategies
In the de novo simulation study, the performance of
the competing strategies of combining internal valida-
tion with imputation was assessed in terms of absolute
bias, variance and mean squared error (MSE) of estimated
performance criteria as compared to ‘true’ performance,
defined as the average performance obtained when the
model was fitted on the full (complete) data sets and eval-
uated on large (n = 10, 000) independent data sets with
same underlying simulated effect sizes. Note that we did
not compare (�)AUC estimates against the theoretical
(�)AUC from which effect sizes were derived for sim-
ulation (see above), since these are often not achieved
with small samples. In the data-driven simulation study,
true effects were unknown. There, results of the compet-
ing strategies were compared against those from complete
data.

Construction of confidence intervals for performance
estimates
Jiang et al. [34] proposed a simple concept to estimate con-
fidence intervals for prediction errors in complete data. It
is based on the numerical finding that the cross-validated
prediction error asymptotically has the same variability as
the apparent error. Thus, they suggest to construct con-
fidence intervals for the prediction error by generating
a percentile interval based on resampling for the appar-
ent error and centering this interval at the prediction
error. The underlying theory extends to other perfor-
mance/precision measures [35]. Using the notation of the
present manuscript, their proposed procedure follows the
steps:

(1) Estimate the prediction error (point estimate) based
on cross-validation (i.e. θ̂Train,Test ).

(2) Conduct resampling (they suggest perturbation
resampling, where random weights are assigned to
the observations in each resampling step; for details
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we refer to their manuscript): For b = 1, . . . ,B,
determine the resampling apparent error resulting
from the resampled data (i.e. θ̂BS(b),BS(b) ). Substract
the original apparent error from the resampled one:
wb = θ̂BS(b),BS(b) − θ̂Orig,Orig .

(3) Obtain the α/2 and 1 − α/2 percentiles ξ̂α/2 and
ξ̂1−α/2 from the resampling distribution of the wb,
b = 1, . . . ,B.

(4) Define the confidence interval for the prediction
error as

[
θ̂Train,Test − ξ̂1−α/2, θ̂Train,Test + ξ̂α/2

]
.

We modified the methodology with regard to several
aspects. In step (2), we first used standard non-parametric
bootstrapping as described above, and second, allowed
for incomplete data by means of one of the combina-
tion strategies described above and in Fig. 2. That is,
we obtained estimates θ̂BS(b,m),BS(b,m), b = 1, . . . ,B,m =
1, . . . ,M, by fitting and evaluating the model in each
(imputed) BS sample (i.e., in each BS sample that was
imputed when strategy Val-MI was applied, or in each
BS sample drawn from imputed data when strategy MI-
Val was applied). For each b and m, we defined wb,m =
θ̂BS(b,m),BS(b,m) − θ̂Orig,Orig . In step (3), we obtained the
α/2 and 1 − α/2 percentiles from the empirical distribu-
tion of the wb,m, i.e. across all B × M estimates obtained.
In step (4), we centered this interval at the BS 0.632+
estimate (θ̂0.632+) rather than the CV estimate θ̂Train,Test :[
θ̂0.632+ − ξ1−α/2, θ̂0.632+ − ξα/2

]
, with α = 0.05. The

modified methodology can be integrated with perfor-
mance estimation using the strategies described above
within the same resampling (BS) scheme. For Val-MI, we
performed B = 100 bootstrap draws followed by M = 1
imputation; for MI(-y)-Val, M = 100 imputations were
conducted followed by B = 1 bootstrap draw. For com-
plete data, B = 100 was chosen. For comparison, we
also constructed confidence intervals for apparent per-
formance based on analytical test concepts, i.e., using
DeLong’s test for AUC and �AUC. In the presence of
missing values (strategies MI and MI(-y)), Rubin’s rules
were applied to the AUC estimates and variances obtained
from DeLong’s test [8].

Software
All calculations were performed using R, version 3.0.1
[36]. Data generation involved use of the R package mvt-
norm, version 0.9-9995 [37]. MICE was performed using
the package mice, version 2.17 [6]. Internal validation
was performed using custom code. For predictive perfor-
mance measures, the R packages pROC, version 1.7.3 [38],
PredictABEL, version 1.2-2 [39], and survivalROC, ver-
sion 1.0.3 [40], were used. Example R code is available in
Additional file 2.

Results
Importance of validation and comparative performance of
validation strategies
In the de novo simulation experiment, complete and
incomplete data were generated with varying data set
characteristics, followed by applying the competing com-
bined validation/imputation strategies. For comparison,
we also assessed apparent performance, i.e., the per-
formance in the original data in the case of complete
data, and the performance estimates pooled using Rubin’s
rules from MI in the case of incomplete data. Results
are shown in Fig. 3 (for AUC, at n = 200, p =
10 covariates) and in Additional file 1: Figures S3
to S8 (for other performance measures and choices of
parameters).
The apparent performance estimates were generally

optimistic – even in the case of large sample size and
small number of variables (Additional file 1: Figure S3;
n = 2000, p = 1). Optimism was particularly strongly
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missingness (miss = 25 % of values missing), balanced outcome class
distribution (frac = 0.5) and uncorrelated covariates (ρ = 0) in the
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pronounced for imputed data when the outcome had been
included in the imputation models (strategyMI).
Among the investigated ways to correct for optimism,

the ordinary optimism correction and the 0.632 estimate
tended to achieve less effective optimism control as com-
pared to the BS/SS 0.632+ estimate, the BS/SS OOB esti-
mate and CV estimates. This was most strongly observed
in the absence of a true effect and with increasing num-
ber of covariates (Fig. 3 and in Additional file 1: Figures S4
to S8).

Comparison of strategies of combining internal validation
andmultiple imputation
The MI-Val strategy, i.e., conducting MI followed by
internal validation (i.e., BS, SS, CVK or CVKrep) on the
imputed data sets, generally yielded optimistically biased
performance estimates and large mean squared errors in
almost all settings, and more severely with an increasing
number of variables, decreasing sample size, increasing
degree of missingness, and decreasing true effect (shown
for the AUC in Fig. 4 and in Additional file 1: Figure S9).
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MI(-y)-Val was largely unbiased in the absence of a true
effect, but gave pessimistic results when the covariates
truely affected the outcome (Fig. 4), largely independent
of the number of covariates and the sample size. A likely
explanation is that omitting the outcome from the impu-
tation disrupts the correlation structure among covari-
ates and outcome, leading to underestimation of effect
sizes. The pessimistic bias becamemore pronounced with
increasing degree of missingness and increasing effect
size.
Val-MI produced mostly unbiased AUC estimates;

however, in the presence of a large number of missing val-
ues, a pessimistic bias was observed in the presence of
a true underlying effect (Fig. 4). This trend was mostly
weaker than for the MI(-y)-Val strategy and depended
also on sample size, number of covariates and true
effect size.
Varying other data set characteristics, such as missing-

ness mechanism, outcome class frequencies, correlation
among the variables, number of baseline covariates and
degree of missingness among baseline covariates, did not
greatly influence results (Additional file 1: Figures S10
and S15).

Trends observed for different model performance
measures
Although focusing on the AUC as a discrimination mea-
sure, the above described trends were largely similar
across the model performance measures investigated
(Additional file 1: Figures S11 to S21). Of note, biases that
were already present in complete data were found to be
mirrored, and sometimes augmented, in incomplete data.
Examples include the negative bias of �AUC (Additional
file 1: Figures S13 and S15) and the positive bias of cate-
gorical NRI (Additional file 1: Figure S16) in the absence
of a true effect, specifically with increasing number of
covariates and decreasing sample size. Another example
is the pessimistic bias of the Brier score that was most
strongly observed for Val-MI with increasing degree of
missingness, number of covariates and decreasing sample
size. Importantly, both Val-MI and MI(-y)-Val strategies
generally did not produce (optimistic) bias that was not
already (at least to a weaker extent) observed in complete
data results.
In terms of calibration, models tended to be miscali-

brated in test (OOB) data for most strategies in both com-
plete and incomplete data (Additional file 1: Figures S22
to S27). This trend became worse with decreasing number
of covariates and was often observed such that calibra-
tion lines were too steep (i.e., intercept < 0; slope > 1),
rendering recalibration of prediction models a desirable
step. Although not influencing discriminative test perfor-
mance, this might improve overall test performance (as
measured e.g. by the Brier score).

Extension to a real-data situation
In order to assess how the competing strategies of com-
bining internal validation and MI performed in a realistic
situation, we based another simulation experiment on a
real data set. In the population-based MONICA/KORA
subcohort, the aim was to assess the ability of blood
concentrations of inflammatory markers for predicting
all-cause mortality over a follow-up time of 15 years in
n = 2012 healthy adults. We used the 1258 complete
observations as a basis for a data-driven simulation study,
where we imposed missingness on these data in a way that
reflected the missingness structure in the original incom-
plete data set (Additional file 1: Figure S1), followed by
applying the competing combined validation/imputation
strategies to obtain time-dependent (change) in AUC.
Results are shown in Fig. 5. Without validation, perfor-

mance estimates were much higher than those obtained
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with validation, confirming the importance of validation
for assessment of predictive performance. With ordi-
nary optimism correction, performance estimates were
still higher than for the other estimates, in line with
the assumption that it may achieve insufficient correc-
tion for optimism. The lowest values were observed for
the OOB, CV3 and CV3rep estimates, suggesting a pes-
simistic bias, which seemed to be improved by the 0.632+
estimates.
Differences between the strategies of combining valida-

tion and imputation were less pronounced, presumably
due to the large sample size and small proportion of
missing values (7.2 % on average among the inflammation-
related markers). Val-MI yielded lower �AUC estimates
on average as compared to Val on complete data. This was
consistent with our observation of a slight pessimism of
Val-MI in the de novo simulation study in the presence
of a true effect, and was even more strongly observed for
CV10 and CV10rep. Val-MI also appeared more variable
as compared to the other strategies. This is likely due to
the fact that at the given low proportion of missing val-
ues, e.g. performing B = 10 BS first followed by M = 5

imputations on each yields less distinct data sets than
performing M = 5 imputations first followed by B = 10
random BS runs or performing B = 50 BS runs on the
complete data.

Choice of number of resamples and number of
imputations in practice
We addressed the question of how large the number of
resamples B and the number of imputations M should
be chosen in practice, for two of the best-performing
strategies, Val-MI andMI(-y)-Val based on bootstrapping
with the 0.632+ estimate. Therefore, we repeated the de
novo simulation study for selected parameter settings with
varying B andM.
For Val-MI, we observed a steep decline of variability of

performance estimates with increasing B, where as decline
was weaker with increasing M (Fig. 6). This is expected,
especially in the settings with lower degree of missingness,
where the imputed data sets are not expected to differ
strongly from each other. At constant total number B · M,
the best option seems to be to choose the largest possible
value of B (withM = 1). This is also not unexpected, given
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that imputation variability is added on top of resampling
variability in each sample.
In contrast, for MI(-y)-Val, M seemed to be the num-

ber that mostly determined variability, with variability
decreasing with increasing M even at constant B · M
(Fig. 6). Furthermore, variability of performance estimates
was generally larger in Val-MI as compared toMI(-y)-Val,
even with the least variable combination of B and M at
constant total number B · M.
Thus, it is recommendable to choose B and M as large

as possible if applying Val-MI and MI(-y)-Val, respec-
tively. An analytic relationship can be utilized in order to
assess variability of performance estimates with increas-
ing B and M, respectively: The standard deviation of the
mean is generally equal to the population standard devi-
ation divided by the square root of the sample size, given
that values are independent. Since the B performance esti-
mates obtained with e.g. Val-MI are independent with
regard to the BS, we can assume that the following rela-
tionship holds:

SD
(
θ̂B

)
= 1√

B
SD

(
θ̂1

)
, (2)

whereby SD denotes the standard deviation, and θ̂B the
performance estimate when B resamples were conducted
(and M = 1 imputations). Empirical evidence con-
firms this assumption for both Val-MI and MI(-y)-Val
(Additional file 1: Figures S28 and S29). Thus, we provide
standard deviation estimates at B = 1 and M = 1 for
various parameter settings in Additional file 1: Tables S2
and S23. This may allow the reader to approximate the
standard deviation for their situations at larger values of
B or M using Eq. (2) and to choose B or M such that the
required accuracy is obtained.

Incomplete future patient data
In the context of building prediction models in the pres-
ence of missing values, it has been noted earlier that future
patients, to which the prediction model will be applied,
might not have complete data for all covariates in the
model [13]. To still allow application of the model, the
missing values might be imputed using a set of patient
data, whereby, notably, the outcome variable is not avail-
able. Thus, a relevant question that arises is whether and
how predictive performance suffers from missingness in
the evaluation data. Therefore, we evaluated models fit-
ted to simulated complete data in large independent data
sets with the same underlying simulated effect sizes and
varying degrees of missingness, imputed usingMI(-y). We
observed a clear decrease of predictive performance when
the proportion of missing values in the test data increased
(Additional file 1: Figure S30). This was observed most
severely (in absolute terms) with larger true performance.

An approach towards confidence intervals for performance
estimates
As an outlook, we considered an approach of constructing
resampling-based confidence intervals for performance
estimates that is based on the work by Jiang et al. [34].
Figure 7 shows type 1 error and power for AUC and
�AUC estimates for the competing strategies. Thereby,
type 1 error was defined as the proportion of simula-
tions with true AUC= 0.5 or �AUC = 0, where a test
with the null hypothesis AUC= 0.5 or �AUC = 0 was
rejected (i.e., confidence interval above 0.5 and 0, respec-
tively). In the presence of a true effect (AUC >0.5 or
�AUC > 0), this proportion specified power. In a low-
dimensional situation (p = 1), the nominal type 1 error
rate of 5 % was kept on average for all strategies (Fig. 7a,
c, e, g). However, at p = 10 severely inflated type 1 error
rates were observed for the strategies without validation
(i.e., based on DeLong’s test) and for the MI-Val 0.632+
estimate, while in complete data, Val-MI and MI(-y)-Val,
the 0.632+ estimate kept the nominal type 1 error rate
(Fig. 7b, d, f, h). As expected, the presence of missing
values diminished power, as observed for Val-MI as com-
pared to Val on complete data, and to an even stronger
extent for MI(-y)-Val. Together, the proposed approach
proposes to be a way of obtaining valid confidence inter-
vals for both Val-MI and MI(-y)-Val 0.632+ estimates
without additional computational costs.

Discussion
Using simulated and real data we have compared strate-
gies of combining internal validation with multiple impu-
tation in order to obtain unbiased estimates of various
(added) predictive performance measures. Our investi-
gation covered a wide range of data set characteristics,
validation strategies and performance measures, and also
dealt with practical questions such as the numbers of
imputations and bootstrap samples to be chosen in a given
data set, and the aspects of incomplete future patient data
and the construction of confidence intervals for perfor-
mance estimates.
Throughout the investigated simulation settings, we

observed an optimistic bias for apparent performance
estimates, which was insufficiently corrected by ordinary
optimism correction and the BS (and SS) 0.632 estimate,
whereas the OOB estimate tended to be pessimistic and
the 0.632+ tended to provide unbiased estimates. CV esti-
mates were more variable than BS estimates (although
this comparison might not be completely fair since the
total number of training/test set pairs was not always
the same in BS/SS as in CV or CVrep). These trends
were similarly observed for complete and incomplete
data and are consistent with previous observations for
complete data. For instance, Wehberg and Schumacher
[41] reported the 0.632+ method to outperform ordinary
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Fig. 7 Type 1 error and power of resampling-based confidence intervals for AUC and �AUC estimates. Percentage of rejected null hypotheses (i.e.,
confidence interval above 0.5 and 0 for AUC (a, b, c, d) and �AUC, (e, f, g, h) respectively) among 250 simulations plotted against the underlying
true (theoretical) value. In the absence of a true effect (true auc = 0.5; �auc = 0), percentage of rejected null hypotheses equals type 1 error,
otherwise power. Parameters were chosen as denoted in the figure titles, n = 200, p0 = 0, 1 and otherwise as in Fig. 3

optimism correction and 0.632, while the OOB estimate
was pessimistic. Also, Smith et al. [1] and Braga-Neto
et al. [42] observed insufficient optimism correction for
the ordinary method and the 0.632 estimate, respectively,
and both reported increased variability of CV estimates.
Another publication focused on AUC estimation and
found the BS 0.632+ estimate to be the least biased and
variable one among the BS estimates [43].

When we investigated strategies of combining valida-
tion with imputation, we observed an optimistic bias for
the strategy of imputing first and then resampling on
the imputed data (MI-Val), whereas imputing training
and test sets separately (Val-MI) provided largely unbi-
ased and sometimes pessimistic results. The question of
in which order bootstrapping and imputation should be
combined has been studied before from a theoretical [44]
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and empirical [12] perspective. In MI-Val, all observa-
tions, which are later on repeatedly separated into training
(BS) and test (OOB) sets, are imputed in one imputa-
tion process. Since values are imputed using predictions
based on multivariate models including all observations,
it is evident that future test observations do not remain
completely blind to future training observations. Still, the
severity of the expected optimism of theMI-Val approach
given different data characteristics, validation strategies
and performance estimates has not been intensively stud-
ied. In practice, both MI-Val and Val-MI have been
applied before [9, 10, 45].
Val-MI tended to be pessimistically biased in the pres-

ence of a true underlying effect in our and others’ [12]
work. Specifically, when sample size is low and number
of covariates large, the model overfits the training (BS)
part of the data set, resulting in a worse fit to the test
(OOB) data. In the presence of missing values, training
and test data are imputed separately. It can be assumed
that overfitting also occurs at the stage of imputation
(where imputation models might become overfitted to the
observed data both in the training and in the test set). This
may result in a more severe difference in the observed
covariate-outcome relationships between training and test
data, and consequently worse fit of the model fitted to the
training data to the test data, yielding an underestimation
of predictive performance that apparently cannot be fully
corrected using the 0.632+ estimate.
MI(-y)-Val produced mostly pessimistic results in the

presence of an underlying true effect, mostly independent
of sample size and number of covariates. In general MI
literature, it is not recommended to omit the outcome
from the imputation models [26, 46]. Omitting the out-
come equals making the assumption that it is not related
with the covariates, as stated by von Hippel [26]. This
assumption is wrong in the case of a true underlying effect,
resulting in misspecified imputation models, and, in turn,
in an underestimation of effect estimates [46]. Of note, the
same study reported no difference between the MI and
MI(-y) methods as far as inference is concerned. To our
knowledge, the issue has not been investigated in the con-
text of predictive performance estimation. In their study
of ‘incomplete’ CV, Hornung et al. [14] investigated the
effect of – amongst other preprocessing steps – imputing
the whole data set prior to CV as compared to basing the
imputation on the training data only. They used a single
imputation method that omitted the outcome, and found
only little impact on CV error estimation.
For measures of added predictive performance we made

the observation that even in complete data, estimates
were sometimes biased in the absence of a true effect.
For instance, �AUC and categorical NRI were pessimisti-
cally and optimistically biased, respectively. The opti-
mistic bias of NRI has lead to critical discussion [47].

It is not unexpected that such bias is not eliminated
when the respective validation method is combined with
imputation.
Our study focused on treating missing values and deriv-

ing reasonable estimates for predictive performance mea-
sures in the presence of incomplete data in the model
development phase, i.e., in the phase where complete
outcome data are available and one aims to derive a
prediction model for use in future data.
Our study focused on treating missing values and deriv-

ing reasonable estimates for predictive performance mea-
sures in the presence of incomplete data in the research
stage, i.e. in the situation where data sets with com-
plete outcome data are available from studies/cohorts
and one aims to develop a prediction model for use in
future patient data (as opposed to the application stage
where the model is applied to predict patients’ outcome).
Thus, when we evaluated estimates, they were compared
against average performance in large complete data sets.
An important question is how missing values in future
patient data impair the performance of a developed pre-
diction model, and whether such impairment would have
to be considered already when developing the model. It
has been suggested that data in the research stage should
be imputed omitting the outcome from the imputation
process, at least in the test sets, to get close to the situa-
tion in future real-world clinical data, where no outcome
would be available for imputation either [13]. Accord-
ing to this suggestion, the strategy Val-MI should be
avoided. However, how close a predictive performance
estimate obtained through any strategy on the research
data approximates the actual performance in future clin-
ical data, depends strongly on the similarity in the pro-
portion (and putatively, in the pattern) of missing values
in both situations. Our and others’ [48] results suggest
that – irregardless of how missing values in future clin-
ical data are treated – accuracy is lost with increasing
missingness in future data at a given proportion of miss-
ingness in the research data. We expect the proportion
of missing values in future patient data to be lower than
that in study data in many cases. Specifically, epidemi-
ological study data are subject to additional missingness
attributable to design, sample availability and question-
naire response. Since the precise missingness patterns in
both study data and future patient data in clinical prac-
tice may vary between studies and the outcome of interest,
no general rule can be developed for estimating predic-
tive performance of a model when future patient data are
expected to contain missing values.
We propose a simple integrated approach for the con-

struction of confidence intervals for performance esti-
mates. The resulting intervals kept the nominal type 1
error rate for both Val-MI and MI(-y)-Val, although a
severe loss in power as compared to complete data could



Wahl et al. BMCMedical ResearchMethodology  (2016) 16:144 Page 16 of 18

be observed. The chosen approach relies on the numeri-
cal finding that prediction error estimates have the same
variability as apparent error estimates and thus, bootstrap
intervals for apparent error can be centered at prediction
error estimate [34]. The strategy has a major compu-
tational advantage over alternative strategies of con-
structing confidence intervals for estimates of prediction
error/performance measures that use resampling in order
to estimate the distribution of e.g. CV errors [49]. The
latter require nesting the whole validation (and imputa-
tion) procedure within an outer resampling loop. Other
alternatives that do not require a double resampling loop
might rely on tests applied to the test data. An exam-
ple is the median P rule suggested by van de Wiel
et al. [50], where a nonparametric test is conducted on the
test parts of a subsampling scheme, resulting in a collec-
tion of P values of which the median is a valid summary
that controls the type 1 error under fairly general con-
ditions. The methodology could be generalized to other
(parametric or nonparametric) tests conducted on the
test observations, such as DeLong’s test for (�)AUC, and
extension to incomplete data is possible with the help of
Rubin’s combination rules. However, this strategy might
lack power, because tests are conducted on the small
test sets.
Together, our findings allow the careful formulation of

recommendations for practice. First, if one aims to assess
predictive performance of a model, validation is of utmost
importance to avoid overoptimism. As for complete data,
bootstrap with the 0.632+ estimate, turned out to be a
preferable validation strategy also in the case of incom-
plete data. When combining internal validation and MI,
one should not impute the full data set including the out-
come in the imputation followed by resampling (strategy
MI-Val) due to its optimistic bias. Instead, we can rec-
ommend nesting the MI in the resampling (Val-MI) or
performing MI first, but without including the outcome
variable (MI(-y)-Val). The number of resamples (B) and
imputations (M) should bemaximized inVal-MI andMI(-
y)-Val, respectively. The choice of exact number of resam-
ples and imputations for a given data set can be guided by
the variability data we provide. In many situations and for
many performance criteria, Val-MI might be preferable,
although this choice may also depend on computational
capacity, which is lower for MI(-y)-Val, where variability
of the 0.632+ estimate is lower at the same number of
resamples and only half the number of imputation runs
is required. One should also be aware of (complete-data)
biases of specific performance criteria, which may be aug-
mented in the presence of missing values. Finally, one
possible way of constructing valid confidence intervals
for predictive performance estimates may be to center
the bootstrap interval of the apparent performance esti-
mate at the predictive performance estimate. This strategy

can be easily embedded in the Val-MI and MI(-y)-Val
strategies.
Strengths of this study include its comprehensiveness

with regard to different data characteristics, validation
strategies and performance measures, and the use of
both simulated and real data. Our investigation may be
extended with regard to several aspects. For instance,
we did not vary effect strengths between the covariates.
The relationship between effect strengths and missing-
ness in covariates may influence the extent of potential
bias in e.g. Val-MI. Furthermore, it will be interesting
to extend the study on confidence intervals by adopting
alternative approaches to incomplete data, with a focus
on searching for a strategy that improves power. In addi-
tion, one might explore the role of the obtained findings
in a higher-dimensional situation where variable selection
and parameter tuning often requires an inner validation
loop. Of note, while in our study results were very similar
for BS and SS, in an extended situation involving model
selection, or hypothesis tests following [50], SS should be
preferred due to known flaws of the BS methodology [51].

Conclusions
In the presence of missing values, our most recommend-
able strategy to obtain estimates of predictive perfor-
mance measures is to perform bootstrap for internal
validation, with separate imputation of training and test
parts and to determine the 0.632+ estimate. For this
strategy, at given computational capacity, the number of
resamples should be maximized. The strategy allows for
the integrated calculation of confidence intervals for the
performance estimate.
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