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2 Institut de Biologie et Chimie des Proté ines, UMR 5086 BMSSI-CNRS/UCBL, Lyon, France
3 W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of

Public Health, Baltimore, Maryland 21205, USA

Opinion
Bcl-2 family proteins regulate apoptosis in animals. This
protein family includes several homologous proteins
and a collection of other proteins lacking sequence
similarity except for a Bcl-2 homology (BH)3 motif. Thus,
membership in the Bcl-2 family requires only one of the
four BH motifs. On this basis, a growing number of
diverse BH3-only proteins are being reported. Although
compelling cell biological and biophysical evidence vali-
dates many BH3-only proteins, claims of significant BH3
sequence similarity are often unfounded. Computational
and phylogenetic analyses suggest that only some BH3
motifs arose by divergent evolution from a common
ancestor (homology), whereas others arose by conver-
gent evolution or random coincidence (homoplasy),
challenging current assumptions about which proteins
constitute the extended Bcl-2 family.

Spotting diversity in the Bcl-2 portrait gallery
The genome sequence for ancestral species cannot be
gleaned from contemporary databases, analogous to the
limitations in studying early civilizations that lacked a
written language (protohistorical archeology). However,
past evolution of a protein family, such as the Bcl-2 family
of apoptosis regulators, is protohistorically recorded in the
genomes of present-day cells. The lack of ancestral
sequences is only one of many obstacles to tracing the
evolutionary history of genes and their cellular processes.
The chronological order of discovery profoundly influences
nomenclature and the interpretation of evidence. Also,
there are notorious hurdles in obtaining reliable align-
ments of divergent (but homologous) or dissimilar (analo-
gous but not homologous) sequences, such as BH3 motifs,
for use in searching available databases. Despite limita-
tions, comparisons across species have catapulted forward
our understanding of biological processes, exemplified by
Bcl-2 family proteins [1]. Thus, cross-species comparisons
need to be captured and understood to broaden our bio-
logical knowledge of Bcl-2 family members and their
central roles in normal development and in cancer.
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Bcl-2, the founding member of the eponymous protein
family, was discovered more than 20 years ago at the
chromosomal breakpoint of the t(14;18) translocation in
human follicular B cell lymphomas [2] (Figure 1). This led
rapidly to the identification of a family of related proteins
[3–5] defined by four unique sequence motifs, termed BH
domains (more accurately termed BH motifs) and num-
bered BH1–4 in their order of discovery. Bcl-2 homologs are
evolutionarily conserved throughout metazoans, though it
is less clear whether their apoptotic mechanisms (versus
other mechanisms) are conserved beyond mammals [6].

In principle, the Bcl-2 family has been subdivided into
several subfamilies based on their composition of BH motifs
(Figure 2). We took a closer look at the BH nomenclature.
Despite the usefulness of this paradigmatic classification
scheme, close inspection of BH motif sequences indicates
that subfamily classifications draw heavily on prior knowl-
edge of protein functions (for details, see below). Overexten-
sion of computational methods and subjective
interpretations of sequence similarities have expanded
the Bcl-2 family beyond justifiable limits. To gain a better
understanding, we considered the possible origins of BH
motifs by applying bioinformatics and phylogenetic concepts
to more rigorously identify four distinct subfamilies of the
extended Bcl-2 family. Three of these (Bcl2-like, Bax-like,
and Bid-like) form a monophyletic group (share a common
ancestor) (Figures 3 and 4) and a fourth comprises eight
unrelated (or very distantly related) canonical BH3-only
proteins (Figure 2). Inclusion of these specific eight in the
canonical BH3-only subgroup is also heavily dependent on
prior knowledge. Bias in Bcl-2 subfamily nomenclature
extends beyond amino acid sequence analysis. Assignment
to anti-death or pro-death subgroups is challenging for those
family members that lack obvious cell death-related pheno-
types (e.g., Bok and Bcl2L13) and for those that can exhibit
either anti-death or pro-death activity in different condi-
tions or cell types. For example, Drosophila Buffy, mamma-
lian Bcl-xL, and worm CED-9 are all traditionally
categorized as antiapoptotic, but all three have also been
shown to exhibit pro-death activity in vivo [7–9]. Here we
illustrate the methodological and conceptual issues that
have arisen in defining and classifying the various other
BH3-containing proteins reported to date.
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Figure 1. Discovery timeline for the conglomerate Bcl-2 family. First publication year for proteins with documented or predicted structural similarity with Bcl-2 (above line)

and for proteins reported to contain only the Bcl-2 homology (BH)3 motif (below line). (Note that the Bcl-2 protein coding region was published 2 years after the gene was

identified in 1984.) For official and alternative protein names, see Figure 2; antiapoptotic Bcl-2-related proteins (green); Bax-like proapoptotic members (orange); Bid-like

divergent Bcl-2 homologs (red); canonical BH3-only proteins (blue); other reported BH3-containing proteins (black); viral proteins (yellow). Techniques employed are

indicated with superscripts: S, direct sequencing; H, hybridization; P, PCR; E, expressed sequence tag (EST) screen; C, coimmunoprecipitation; I, protein interactive cloning;

Y, yeast two-hybrid; D, differential screening; G, genetic screen; F, functional screen; 3D, structural determination. Experimental identification: blue filled circles.

Bioinformatics-based prediction of Bcl-2 family membership: pink filled circles. Visual inspection: beige filled circles.
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BH motif definitions not etched in stone
To determine cell fate in response to a wide range of
environmental and internal stresses, anti- and pro-death
Bcl-2 family members interact in a regulated series of
events and conformational changes, the details of which
are actively being pursued. 3D structures have been deter-
mined for many Bcl-2 family members, revealing a series of
approximately nine alpha helices with a central helical
hairpin. Although several dimer interfaces have been
identified between Bcl-2 family members, the best charac-
terized is the interaction of BH3-only proteins with anti-
death Bcl-2 proteins. The BH3-containing helix of BH3-
only proteins inserts into a deep elongated binding cleft on
anti-death Bcl-2 proteins, resulting in the inactivation of
either or both binding partners [10–12]. By inhibiting BH3-
only proteins or by directly binding Bax (multi-BH proa-
poptotic Bcl-2 homolog), Bcl-xL can prevent homo-oligo-
merization of Bax that otherwise leads to mitochondrial
outer membrane permeability (MOMP). Through MOMP,
mitochondrial cytochrome c is released to act as a cytosolic
cofactor for assembly of caspase-activating apoptosomes,
and cell death occurs within a few minutes [13]. Because
antiapoptotic Bcl-2 family proteins promote tumor cell
survival, BH3 mimetics have been developed as cancer
therapeutics [14].

The N-terminal helix where the BH4 resides in some
proteins is present in both anti- and pro-death family
proteins and is suggested to mediate interactions with
104
non-Bcl-2 family proteins [15,16]. BH1 and BH2 motifs
are found in both anti- and pro-death Bcl-2 homologs. They
flank the central helical hairpin thought to insert into
membranes to regulate apoptosis. Together, the BH1,
BH2, and BH3 form a binding cleft to capture their own
hydrophobic membrane anchor (helix 9). When the tail is
displaced, this same binding cleft can be occupied by
incoming donor BH3-containing helices from different sub-
classes of Bcl-2 family proteins or unrelated proteins.

N-terminal BH4 motifs lack confirmation
The BH4 motif was originally defined using multiple align-
ments of a subgroup of closely related antiapoptotic pro-
teins (Bcl-2, Bcl-xL, and Bcl-w) [4]. It is widely assumed
that BH4 distinguishes all antiapoptotic Bcl-2 family pro-
teins from pro-death members that lack BH4, but solid
evidence for this delineation is lacking. For instance, most
multiple alignment programs fail to align the BH4 motifs
of the original trio (Bcl-2, Bcl-xL, and Bcl-w) with the
putative BH4 of their antiapoptotic homologs Mcl-1 and
Bfl-1/A1 (Figures 2 and S1a in the supplementary infor-
mation online). Furthermore, when we used InterProScan
(http://www.ebi.ac.uk/Tools/pfa/iprscan/), a popular motif-
prediction tool that searches a given sequence against a
compilation of protein signatures from different databases
(e.g., PROSITE, PFAM), BH4 motifs were not identified in
these latter proteins or in the other antiapoptotic (Bcl-B/
Bcl2L10 and Drosophila Buffy) or more distantly related

http://www.ebi.ac.uk/Tools/pfa/iprscan/
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Figure 2. Evidence for Bcl-2 homology (BH) motif compositions in Bcl-2 family proteins and candidate BH3-containing proteins. Schematic representation of protein size

and BH motif composition for Bcl-2 homologous proteins (including Bcl-2-like, Bid-like, and Bax-like subgroups), canonical BH3-only proteins, and a large category of other

reported BH3-containing proteins. Note that the various depicted BH3 motifs are supported by heterogeneous experimental evidence (Box 2), while BH1, BH2, and BH4

motifs lack experimental validations in most cases. A three-level color coding system indicates BH type (see color key) and predictability: (i) BH motifs predicted by

InterProScan (see color key, meaning BH is predicted); (ii) BH motifs that appear in the NCBI entry for this protein (light shades, meaning BH can be uncertain due to

automatic annotation); and (iii) BH motifs not predicted or annotated as above, but nonetheless reported with experimental evidence (colored circles). Transmembrane

(TM) segments predicted by one (light gray) or both (dark gray) TMHMM Server v. 2.0 and Phobius web server [51,52]. Total amino acid (aa) number is indicated for proteins

not drawn to scale. Abbreviations for non-human proteins: Ce, Caenorhabditis elegans; Dm, Drosophila melanogaster; NDV, Newcastle disease virus; Mm, Mus musculus;

HCV, hepatitis C virus; Pl, Photorhabdus luminescens; Sp, Schizosaccharomyces pombe; SARS-CoV, human severe acute respiratory syndrome (SARS) coronavirus; Sc,

Saccharomyces cerevisiae. Number of BH motif hits (right): the number of times a BH motif is predicted to occur within each protein based on the following searches (>1

denotes ambiguity). Predefined amino acid sequence signatures from InterPro (IPR) [53], from published patterns talis qualis (tq), and from patterns inferred from these
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Figure 3. Phylogenetic tree of Bcl-2 homologous proteins. Neighbor-joining tree calculated using Poisson-corrected amino acid distances on 74 sites in the core Bcl-2

domain encompassing the Bcl-2 homology (BH)3 motif (or homologous site) through BH2. The tree was rooted with CED-9 sequences from Caenorhabditis. Numbers

indicate bootstrap percentages after 1000 replications; values below 50% are not reported. Branch lengths are proportional to distances between sequences. Sequence

names contain abbreviations of genus and species (see supplementary information 2 online); primarily antiapoptotic Bcl-2-related proteins (green), primarily proapoptotic

Bax-like members (orange), and Bid-like divergent homologs (brown).
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proapoptotic members (Bax, Bak, and Bok) (Figures 2 and
S1b,c in the supplementary information online). These
sequence differences are paralleled by the sensitivity of
the same three BH4-containing proteins to the BH3 mi-
metic ABT-737, although ABT-737 does not directly con-
tact the BH4. However, all (uncleaved) Bcl-2 family
proteins contain the N-terminal helix that encompasses
the BH4 motif [17].

Lack of conformity regarding BH4 nomenclature is un-
derstandable given that the conserved domain database
(CDD) at the National Center for Biotechnology Information
publications additum (ad) were used to search the indicated protein and the number of 

had no hits): IPR003093 for BH4; IPR020731 for BH4 is from the PROSITE pattern PS01260

6-mer BH4 tq ([ILVCAGMFYWHKT]-[ILVCAGMFYWHKT]-X2-[FYWH]-[ILVCAGMFYWHK

[ILVCAGMFYWHKT]); IPR020728 BH3 is from PS01259 ([LIVAT]-X3-L-[KARQ]-X-[IVAL]-

BH3 ([LM]-[ERAKQL]-[RAQICEY]-[MILAFSE]-[ASG]-D-[DEQKGR]-[LFMIVD]-[NDVHSEQA]

[DE]-X-[ILVCAGMFYWHKT]) [55]; 12-mer BH3 ad ([ILVCAGMFYWHKTE]-X3-[ILVC

([ILVCAGMFYWHKT]-[AGS]-X2-[ILVCAGMFYWHKT]-X2-[ILVCAGMFYWHKT]-[AGS]-D-[E

[AGSC]-X2-[ILVCAGMFYWHKT]-X2-[ILVCAGMFYWHKT]-[AGS]-D-[EDKQL]-[ILVCAGMFY

[GLPCKH]-X1/2-[NST]-[YW]-G-[RK]-[LIV]-[LIVC]-[GAT]-[LIVMF](2)-X-F-[GSAEC]-[GSARY])

[LIVFTC]) (http://www.ebi.ac.uk/interpro/).

106
(NCBI) appears to predict a more widely conserved BH4.
This BH4 is annotated in both antiapoptotic (including
Mcl-1, BFL-1/A1, and Buffy) and proapoptotic members
(Bax, Bak, BOK, and Bcl2L13). However, the CDD identifier
(132900) refers to a protein family (PFAM) signature that
captures similarities across all the Bcl-2 family (PF00452),
leading to the over-prediction of BH4-containing proteins
and misannotation. A more recent effort was made to rede-
fine BH4 as a motif present in most globular Bcl-2 family
proteins, including both pro- and antiapoptotic members
[18]. However, when we used this novel sequence signature
exact matches to the following sequences is reported (shaded cells; unshaded cells

 ([DS]-[NT]-R-[AE]-[LI]-V-X-[KD]-[FY]-[LIV]-[GHS]-Y-K-L-[SR]-Q-[RK]-G-[HY]-X-[CW]);

T]) [18]; 6-mer BH3 ad ([ILVCAGMFYWHKT]-[ILVCAGMFYWHKTE]-X2-[FYWHL]-

G-D-[DESG]-[LIMFV]-[DENSHQ]-[LVSHRQ]-[NSR]); 7-mer BH3 (L-X3-G-D-E); 9-mer

) [54]; 12-mer BH3 tq ([ILVCAGMFYWHKT]-X3-[ILVCAGMFYWHKT]-[KR]-X2-[AGS]-

AGMFYWHKT]-[KRAQL]-X2-[AGS]-[DE]-X-[ILVCAGMFYWHKT]); 13-mer BH3 tq

D]-[ILVCAGMFYWHKT]-[NHDY]) [56]; 13-mer BH3 ad ([ILVCAGMFYWHKTE]-

WHKT]-[NHDYE]); IPR020717 BH1 from PS01080: [LVMENQ]-[FTLS]-X-[GSDECQ]-

; and IPR020726 BH2 from PS01258 (W-[LIM]-X3-[GR]-G-[WQ]-[DENSAV]-X-[FLGA]-

http://www.ebi.ac.uk/interpro/


Box 1. Limited tools for defining BH3 motif-containing proteins

Informed visual inspection. BH3 motifs are typically identified by

visual inspection for the characteristic Leu-X3-Gly-Asp/Glu sequence.

This strategy has proven successful when searching for newly

identified Bcl-2 binding partners, but without additional information

this method is difficult to justify.

BLAST searches. Some groups have used the pairwise sequence

comparison program BLAST to define BH3 motifs [57,58]. However,

BLAST was not designed for short peptide sequences.

Motif searches. Published BH3 motif searches have relied mainly on

deterministic sequence patterns, such as the regular expression

PS01259 of the PROSITE database (InterPro signature IPR020728).

When we applied this pattern to search the database (UNI60/

UniProtKB with sequences �60% identity to avoid multiple copies

of the same sequence), it recovered only two of the eight canonical

BH3-only proteins, BIK and HRK (see Figure 2 in main text and Figure

S2 in the supplementary information online). Several groups have

defined less stringent consensus sequences in attempt to capture

more of the canonical BH3-only proteins [59]. Applying their 7-mer as

a search criterion, we identified only one additional BH3-only protein

(Bim) and 33,558 additional putative hits (see Figure 4 in main text

and Figure S2 in the supplementary information online). Similar

problems arise with the reported 9-residue [54], 12-residue [55], and

13-residue regular expressions [56], one of which identified 25% of all

proteins. The situation deteriorates if reported consensus patterns are

modified additum (ad) to capture all of the BH3 sequences that were

included in their respective published alignments (see Figures 2 and 4

in main text and supplementary information 3 online). By extending

this search to plants, microorganisms and viruses, we identified

putative BH3-only proteins in species that lack Bcl-2 homologs with

which to interact (e.g., Chlamydomonas, Arabidopsis) and that lack

true mitochondria (e.g., Giardia, Trichomonas). Furthermore, there

was strikingly little overlap between hit lists, and the number of hits

was not significantly different when the proteomes were shuffled or

reversed (rearrangements of the same amino acids) (see Figure 4 in

main text and supplementary information 3 online). Thus, the number

of BH3 motifs identified by these strategies is not significantly

different from random chance.

Hidden Markov models. Two studies reported using the probabil-

istic method of profile hidden Markov models (Profile HMMs), which is

known to be more sensitive and specific. This method identified a BH3

in PXT1 (Q8K459), but the assigned BH3 PFAM domain is untraceable

and may not exist, and the other HMM study provided no details

regarding the bioinformatic approaches [60,61]. Our experience with

building HMM profiles with BH3-like proteins invariably leads to profile

drift in iterated searches, indicating that these sequences collectively

contribute noise. Thus, there is a lack of evidence that BH3 motifs of the

Bcl-2 family proteins are significantly similar in sequence (Figure S1f,g

in the supplementary information online).
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for database searching, it produced high false-positive rates,
including multiple BH4 motifs within individual Bcl-2 fam-
ily proteins (Figure 2). Defining BH4 can be further compli-
cated by divergent sequences present on either side of helix 1
(e.g., the long N-terminal extension of Mcl-1 and the large
unstructured loop between the BH4 and BH3 of Bcl-xL)
(Figures 2 and S1c in the supplementary information
online). Although these difficulties do not exclude the
presence of an evolutionarily conserved BH4 region among
all Bcl-2 paralogs (e.g., defined by specific structural
contacts), currently available bioinformatics has not clearly
justified this classification as a sequence motif.

BH1–BH2 motifs define Bcl-2 family subgroups
Most alignment algorithms accurately align the paired BH1
and BH2 motifs that flank the central helical hairpin of both
anti- and proapoptotic Bcl-2 family proteins (Figure S1c in
the supplementary information online). However, the Bid-
like clade of Bcl-2 proteins, which also includes Bcl2L12,
Bcl2L13 (Bcl-Rambo), Bcl2L14 (Bcl-G), and Bcl2L15 (Bfk),
harbor dissimilar sequences at the equivalent BH1 or BH2
position [19,20] (Figures 2 and 3). Bcl2L13 is encoded in a
tail-to-tail orientation with Bid in vertebrate genomes, sug-
gesting that these two paralogs arose from a tandem
inverted duplication, followed by functional divergence
based on their antisymmetric distribution of BH motifs.
Bcl2L13 has recognizable BH1 and BH2 motifs but a less
conserved BH3, the antithesis of Bid (Figure S1b in the
supplementary information online). Bid has a structurally
well-defined and functionally important BH3 motif and has
also evolved unique functions in apoptosis [21,22] and in the
DNA damage checkpoint [23–25]. By contrast, Bcl2L13 may
have lost its role in apoptosis regulation [26].

BH3 homology versus homoplasy
The short BH3 motif of Bcl-2 family proteins is a special case
because it is present in pro- and anti-death Bcl-2 homologs
and in a diverse set of structurally and biologically unrelated
proteins, only eight of which are included in the extended
mammalian Bcl-2 family, based on traditional criteria.
These eight (plus worm EGL-1) constitute the canonical
BH3-only subfamily of the Bcl-2 family and are further
subdivided into two groups based on their ability to directly
(Bid, Bim, and Puma) or indirectly (Bad, Bik, Bmf, Hrk,
Noxa, and in principle Caenorhabditis elegans EGL-1) acti-
vate the pro-death function of Bax to kill cells (Figure S1d,e
in the supplementary information online). In addition, there
is an ever-growing list of disparate cellular and viral pro-
teins reported to contain BH3 motifs that regulate apoptosis
(Figures 1 and 2, and S1f,g in the supplementary informa-
tion online).

Although it is widely assumed that all BH3-only pro-
teins are unrelated except for their BH3, conservation of
sequence similarity in their BH3 motif has not been rigor-
ously confirmed (or dispelled, as seen in Box 1). Although
underappreciated, the best-characterized BH3-only pro-
tein Bid (defined as lacking BH1, BH2, and BH4) in fact
shares significant sequence similarity with Bcl-2 homolo-
gous proteins, consistent with its Bcl-2-like 3D structure
[19,21,22]. Thus, in contrast to current nomenclature, Bid
does not belong to the subgroup of canonical BH3-only
proteins, but instead belongs to a branch of the Bcl-2
phylogenetic tree with Bcl2L12, -13, -14, and -15, which
generally lack C-terminal transmembrane domains (Fig-
ures 3 and S1b in the supplementary information online).
Bid is an example of misclassification by applying the BH
motif criteria alone; additional evidence strongly argues
for an evolutionary relationship (homology) between Bid
and the Bcl-2 family. Yet the criterion for direct activator-
type BH3-only proteins is defined by the biochemical prop-
erties of Bid (activated/caspase-cleaved tBid or its BH3
peptide). Thus, Bid may have additional functions in apo-
ptosis regulation, beyond its BH3.

In contrast to Bid, Beclin 1 (yeast Atg6) and Atg12 are
not Bcl-2 family members because they lack overall amino
acid sequence similarity, consistent with their lack of
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Box 2. Criteria for including or rejecting candidate BH3

proteins

Definitive bioinformatic procedures that reliably predict new BH3-

containing proteins are currently lacking (Box 1) and new, improved

methods are needed. Although previously reported BH3 search

strategies potentially narrow the list of candidates somewhat, there

is little certainty of this. Similar issues plague our ability to

accurately predict microRNA targets [62]. Even with improved

bioinformatics, additional criteria are needed to avoid logical

contradictions and false positives. Using Bid-like proteins as an

example, it is reasonable to consider inclusion of proteins with Bcl-

2-like 3D structures even in the absence of recognizable BH motifs

[63]. Structural determinations and evidence for direct interactions

of putative BH3 peptides with confirmed Bcl-2-homologous proteins

using fluorescence polarization, nuclear magnetic resonance spec-

troscopy, or surface plasmon resonance have been applied to

confirm new BH3 motifs, in addition to cell-based evidence to

validate biochemical studies [64]. BH3 candidacy would also be

supported by functional conservation in closely related species and

by the pairing of a BH3 candidate with its target Bcl-2 family

member in the same species or perhaps with an invading

intracellular pathogen. In the absence of a host–parasite relation-

ship, candidate BH3-only proteins encoded by non-metazoan

species lacking Bcl-2 homologues or true mitochondria are difficult

to justify (Box 3). There are potentially many clinically relevant

peptides and small molecules that fit into the hydrophobic pockets

of various Bcl-2 family proteins and mimic natural ligands. Although

not derived from a natural protein, the case can be made to include

peptides selected from an artificial library as bona fide BH3 motifs

[65], with the potential appellation of ‘BH3-like’, ‘BH3-mimetic’, or

‘BH3 functional analog’.
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structural similarity to Bcl-2 [27,28] (Figure 2). However, a
large body of compelling functional and structural evidence
supports the existence of a BH3-like motif in Beclin 1.
Through this BH3-mediated interaction of Beclin 1 with
Bcl-2 proteins, autophagy appears to be functionally linked
to the control of apoptosis. Although it seems obvious that
the BH3 motifs of Bcl-2 and of Beclin 1 have distinct
origins, it is also possible that some BH3-only proteins
currently classified as Bcl-2 family members have BH3
sequence similarities due to either random coincidence or
convergent evolution (selection of the same residues for
identical functional reasons). To further clarify, there is no
denial that the core BH3 motif sequence Leu-X(3)-Gly-Asp
is present in many proteins and can be aligned by hand in a
diagram, but this does not imply that they are homologous
or are functionally equivalent. Conversely, the lack of
verifiable sequence similarity using currently available
bioinformatics does not negate the potential importance
of BH3-like motifs in biology. There may be other cases
where divergence accumulated over evolutionary time-
scales, producing proteins that will exhibit similarities
only in this short region. Thus, the denomination of
BH3-only protein carries some degree of ambiguity be-
cause many proteins that logically qualify for this desig-
nation belong to different protein families and contain
other (non-BH) motifs.

Tracing the evolution of Bcl-2 family proteins
Several different evolutionary mechanisms may explain
the conglomerate Bcl-2 protein family. Numerous viruses,
including herpesviruses such as Epstein–Barr virus (EBV)
and Kaposi’s sarcoma-associated herpesvirus (KSHV), en-
code compact Bcl-2 homologous proteins (BHRF1 and KS-
Bcl-2, respectively) with significant sequence similarity in
the BH1–BH2 motifs and high structural similarity
[29,30]. The finding that Bcl-2 homologs are encoded in
the genomes of several different families of large DNA
viruses, probably as a result of independent horizontal
gene transfer (HGT) events from their respective host cells,
suggest that the Bcl-2 structural fold can be acquired other
than by vertical descent.

In contrast to the structurally defined Bcl-2 protein fold,
which forms a single protein domain (helical bundle),
individual BH motifs do not constitute separate protein
domains [17]. Furthermore, sequence similarity of BH3 is
not sufficient to automatically infer common ancestral
origins [31] (Box 1). This raises the question of how BH3
motifs arose in so many diverse proteins. The most logical
assumption to explain the functionally and structurally
validated BH3 motifs in unrelated proteins is that they
arose independently on multiple occasions (homoplasy)
owing to specific constraints (either biological or physico-
chemical), facilitating interactions with Bcl-2 family pro-
teins. The surprising proteome-wide prevalence of
potential BH3 motifs (Box 1) suggests that they could
correspond to a particular class of short linear motifs
[32] used as a binding interface to connect critical compo-
nents of various biological pathways to the core apoptotic
machinery. As in other short linear motifs, the short length
of the BH3 signature and the small number of residues
involved in functional interaction make BH3 motifs likely
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to appear and disappear in unrelated protein sequences by
random mutation. This scenario does not exclude the
possibility of divergent evolution in some instances, such
as between the BH3-coding exons of the proapoptotic Bcl-2
homolog Bak and the BH3-only protein Bik, as we previ-
ously hypothesized [19,20]. Moreover, because 3D struc-
ture evolves more slowly than sequence, remote homologs
may be found among canonical/other BH3-containing pro-
teins as more protein structures are solved.

However, structural similarities do not always reflect
homologies. Convergent evolution also could explain the
structural similarity between the central helical hairpin of
Bcl-2 homologs and that of the needle protein PrgI of
Salmonella typhimurium [33] or the pore-forming domains
of some bacterial toxins (e.g., colicins and diphtheria tox-
ins) [34]. Until additional evidence is generated, it seems
reasonable to consider that the existence of this super-
secondary structure reflects a common structural require-
ment that is imposed on membrane-active proteins by
thermodynamics.

Despite considerable effort, so far no Bcl-2/Bax/Bid
homologs have been found outside the metazoan phyla,
apart from animal viruses [19,35], indicating that these
proteins are not present in non-metazoan species or that
ancestral Bcl-2 homologs in non-metazoan species have
become so dissimilar that their common origin cannot be
detected from their sequences. Similar difficulties chal-
lenge the evolutionary origins of RNA viruses, where high
mutation rates obscure ancestral origins [36]. It is hoped
that advances in structural genomics and remote homology
detection coupled with the growing size of sequence data-
bases will make it possible to capture more ancient evolu-
tionary events and possibly reveal connections between
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previously unrecognized Bcl-2-like proteins. In the mean-
time, we can only attempt to avoid a mammalian-centric
perspective. Indeed, interacting proteins are known to
evolve and coevolve in a lineage-specific manner [37]
and interacting proteins often display similar evolutionary
histories [38,39] (Box 2).

It is intriguing that mammalian Bcl-2 family proteins
can inhibit (e.g., Bcl-xL) or induce (e.g., Bax) cell death
when expressed separately in cells from multiple king-
doms, including yeast and other species lacking Bcl-2
homologs [40–43]. This could conceivably reflect conserva-
tion of function if mammalian Bcl-2 family proteins
Box 3. Do yeasts have BH3-only proteins?

One case in point is the candidate yeast BH3 protein Ybh3/Bxi1

(YNL305C) from Saccharomyces cerevisiae, which is a member of

the BI-1 protein family predicted with high confidence to be a

multimembrane-spanning protein [66–68]. The reported assignment

of a BH3 motif to yeast Ybh3 was made by visual inspection and the

multiple alignment reveals only two fully conserved residues (Leu

and Asp) followed by a less conserved amino acid (Asp or Glu).

Using the sequence L-X(4)-D-[DE] to search against the proteome of

S. cerevisiae yields 2575 hits (in 1834 sequences) and the more

stringent pattern [LTYIE]-X-[EQARS]-X-L-[KQRA]-X(3)-D-[EKDS] de-

rived from the reported alignment yields 160 matches (in 156

proteins). This candidate yeast BH3 sequence is also somewhat

truncated because it is located at the C terminus of the Ybh3 protein

and overlaps one of six transmembrane segments, two unprece-

dented features among BH3-containing proteins. Furthermore, the

putative BH3 sequence lacks conservation in orthologous proteins,

potentially challenging its functional importance. Although this BH3

was reported to bind Bcl-xL and to promote yeast cell death, two

other studies have reported that this yeast gene is pro-survival, not

pro-death, consistent with BI-1 function in other species [67–69].

More perplexing is how this yeast protein might ever encounter

human Bcl-xL. Still it is conceivable that non-metazoan species will

be found to encode proteins that closely resemble the 3D structure

of Bcl-2 family proteins to serve as a potential target of this yeast

BH3 [70]. Nevertheless, currently available tools to define BH3

motifs in non-metazoans suggest that Ybh3 is just as likely to reflect

a fortuitous event, although this does not negate its utility in

research if it binds tightly and specifically to the cleft of Bcl-2.
interface with highly conserved cellular machinery.
Consistent with this model, Bcl-xL and Mcl-1 were recently
reported to interact with the highly conserved mitochon-
drial ATP synthase [44,45]. One potential implication
would be that yeast and bacteria encode as yet unrecog-
nized Bcl-2-shaped proteins explaining why they maintain
the ability to interact with mammalian Bcl-2 proteins.
Pursuit of these answers is seriously compromised until
such putative Bcl-2-like proteins are identified in non-
metazoans, and there are equally valid alternative expla-
nations that do not evoke conservation of function. Ectopi-
cally expressed mammalian Bcl-2 proteins may use
different mechanisms to modulate cell survival/death in
yeast by acting on distinct effector proteins. Alternatively,
Bcl-2 proteins could act on lipid membranes, such as
changing membrane curvature in a manner that does
not require specific interactions with foreign proteins.
Experimental investigation of yeast is likely to provide
tremendous insight into many different cell-death mecha-
nisms and may even reveal as yet unknown mechanisms of
mammalian Bcl-2 proteins [46,47]. However, the epistemic
goal in this case would be different: to uncover the mecha-
nisms of action of Bcl-2 family proteins, which is funda-
mentally different from establishing phylogenetic
inferences (Box 3).

Although the search for genes controlling cell death has
benefited extensively from studies using model organisms
like C. elegans (which possesses only one Bcl-2 homolog,
CED-9), our views on cell death evolution mainly result
from biased sampling of the tree of life. The decoded
genome sequences of the sponge Amphimedon queenslan-
dica, the cnidarians Nematostella vectensis and Hydra
vulgaris, the echinoderm Strongylocentrotus purpuratus,
the urochordate Ciona intestinalis, and the cephalochor-
date Branchiostoma floridae revealed that these ‘early-
branching’ metazoan species have a large and unique set
of Bcl-2 homologs [48–50]. These findings destabilize the
idea of CED-9 being a prototypical multi-BH protein and
that simpler metazoans are necessarily less equipped than
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complex ones. The apparent conservation of apoptotic
functions in Hydra Bcl-2 family proteins, but not in
Drosophila Bcl-2 proteins, is even more puzzling [6].

Furthermore, all of the organisms listed above are
modern representatives of early-branching lineages that
have evolved along their own lines and that have developed
their own repertoire of Bcl-2 family genes, and do not
themselves represent ‘ancestral’ or ‘primitive’ metazoan
species.

Concluding remarks
Sequence analyses indicate that Bcl-2 family proteins
comprise three clades (Bcl-2-like, Bax-like, and Bid-like)
that share 3D structural folds and common ancestry de-
spite lacking BH motifs, and a fourth fast-growing group of
phylogenetically unrelated proteins with limited sequence
similarity in the BH3 motif. The examples presented here
illustrate the difficulty in interpreting functional versus
phylogenetic similarities of the diverse BH3 sequence
motifs reported to date, and in handling the potentially
huge number of predicted BH3-containing proteins. More
reliable strategies are therefore needed to identify and
classify functional BH3 motif-containing proteins by de-
fined and generally acceptable standards. Distinguishing
evolutionary similarities (homology) from other similari-
ties (analogy) will be important to achieve a stable classi-
fication scheme for the Bcl-2 family.
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