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Abstract An important tool to study rhythmic neu-
ronal synchronization is provided by relating spiking
activity to the Local Field Potential (LFP). Two types
of interdependent spike-LFP measures exist. The first
approach is to directly quantify the consistency of single
spike-LFP phases across spikes, referred to here as
point-field phase synchronization measures. We show
that conventional point-field phase synchronization
measures are sensitive not only to the consistency of
spike-LFP phases, but are also affected by statistical de-
pendencies between spike-LFP phases, caused by e.g.
non-Poissonian history-effects within spike trains such
as bursting and refractoriness. To solve this problem,
we develop a new pairwise measure that is not biased
by the number of spikes and not affected by statistical
dependencies between spike-LFP phases. The second
approach is to quantify, similar to EEG-EEG coher-
ence, the consistency of the relative phase between
spike train and LFP signals across trials instead of
across spikes, referred to here as spike train to field
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phase synchronization measures. We demonstrate an
analytical relationship between point-field and spike
train to field phase synchronization measures. Based
on this relationship, we prove that the spike train
to field pairwise phase consistency (PPC), a quantity
closely related to the squared spike-field coherence,
is a monotonically increasing function of the number
of spikes per trial. This derived relationship is exact
and analytic, and takes a linear form for weak phase-
coupling. To solve this problem, we introduce a cor-
rected version of the spike train to field PPC that is
independent of the number of spikes per trial. Finally,
we address the problem that dependencies between
spike-LFP phase and the number of spikes per trial
can cause spike-LFP phase synchronization measures
to be biased by the number of trials. We show how to
modify the developed point-field and spike train to field
phase synchronization measures in order to make them
unbiased by the number of trials.

Keywords Spike-triggered average ·
Spike-field locking · Spike-LFP · Phase locking ·
Spike-field coherence · Phase-synchronization

1 Introduction

Neuronal spiking outputs are often temporally coor-
dinated across neuronal groups. Temporal coordina-
tion often manifests itself as rhythmic or phase syn-
chronization, i.e. phase-coupling of oscillatory activity,
which has been proposed as a candidate mechanism
for the flexible routing of neuronal signals (Abeles
1982; Fries 2005; Varela et al. 2001; Burchell et al.
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1998; Womelsdorf et al. 2010b; Gielen et al. 2010;
Börgers and Kopell 2008; Salinas and Sejnowski 2001;
Buschman and Miller 2007; Benchenane et al. 2011;
Gregoriou et al. 2009), assembly formation (Singer
1999; Buzsáki 2010; Kopell et al. 2011; Canolty et al.
2010; Battaglia et al. 2011), and coding (König et al.
1995; Fries et al. 2007; Panzeri et al. 2010; Vinck et al.
2010a; O’Keefe and Recce 1993; Azouz and Gray 2003;
Nadasdy 2010; Reimer and Hatsopoulos 2010; Siegel
et al. 2009; VanRullen et al. 2005; Havenith et al. 2011;
Koepsell et al. 2010).

To quantify rhythmic synchronization, we need to
relate signals generated by separate sources. An in-
creasingly popular choice of signals is the combination
of spiking activity and the LFP (Local Field Potential)
(e.g. see Fries et al. 1997, 2001; Gregoriou et al. 2009;
Pesaran et al. 2002, 2008; Ray and Maunsell 2010;
Colgin et al. 2009; Csicsvari et al. 2003; Vinck et al.
2010a; van Wingerden et al. 2010b; Chalk et al. 2010;
O’Keefe and Recce 1993; Eeckman and Freeman 1990;
Womelsdorf et al. 2010a; Brown et al. 2004; Jarvis and
Mitra 2001; Zeitler et al. 2006; Lepage et al. 2011;
Sirota et al. 2008; Siapas et al. 2005; Jacobs et al. 2007;
Donoghue et al. 1998; Gray et al. 1989; Wehr and
Laurent 1996; Cardin et al. 2009; Sohal et al. 2009;
Okun et al. 2010; Bichot et al. 2005; Buffalo et al.
2011; Canolty et al. 2010; Montemurro et al. 2008;
Kayser et al. 2009; Mitchell et al. 2009; Ray et al. 2008;
Saalmann et al. 2007; van der Meer and Redish 2009;
Denker et al. 2011; Lakatos et al. 2007; Besserve et al.
2010; Zanos et al. 2011; Destexhe et al. 1999).

Spike-LFP measures are thought to be more
sensitive to phase synchronization than spike-spike
measures, because the LFP measures the compound
synaptic activity generated by a large pool of neurons
(Mitzdorf 1985; Logothetis 2003). This sensitivity
is especially advantageous for the study of long-
range interactions: Many studies have revealed
functionally relevant changes in cross-areal spike-
LFP phase synchronization (e.g. Pesaran et al. 2008;
Womelsdorf et al. 2007; Siapas et al. 2005; Gregoriou
et al. 2009; Benchenane et al. 2010; Colgin et al. 2009;
Sigurdsson et al. 2010). In comparison to LFP-LFP
measures, spike-LFP measures have the advantage that
they provide an indirect measure of the relationship
between spiking outputs and synaptic inputs (Okun
et al. 2010; Harvey et al. 2009), and that they can
be related to neuronal firing rate selectivity (e.g.
Gregoriou et al. 2009; van Wingerden et al. 2010b)
and cell type (Benchenane et al. 2010; Tukker et al.
2007; Klausberger et al. 2003; Csicsvari et al. 2003;
Hasenstaub et al. 2005; van Wingerden et al. 2010a;
Wulff et al. 2009; Sohal et al. 2009; Cardin et al.

2009; Bragin et al. 1995; Gulyas et al. 2010), which
can provide useful insights into the mechanisms of
rhythmogenesis (for an overview, see Wang 2010). At
the same time, spike-LFP measures avoid the problem
that volume-conduction and common referencing can
create spurious correlations between LFP signals (e.g.
Vinck et al. 2011; Nolte et al. 2004; Sirota et al. 2008;
Stam et al. 2007; Nunez and Srinivasan 2006).

A wide variety of spike-LFP measures exist, and they
can be categorized into two classes. Firstly, some mea-
sures are based on a quantification of the consistency
of individual spike-LFP phases at a certain frequency
(e.g. Vinck et al. 2010b; Csicsvari et al. 2003; Fries
et al. 1997, 2001; Grasse and Moxon 2010; Canolty et al.
2010; Tukker et al. 2007; Hansen and Dragoi 2011;
Siapas et al. 2005; Sirota et al. 2008; Colgin et al. 2009;
Denker et al. 2011). In this paper, we will refer to these
measures as point-f ield phase synchronization measures
(Fig. 1), because they relate single points, i.e. spikes,
to the ongoing LFP oscillations, i.e. fields. A major

Fig. 1 Illustration of point-field phase synchronization measures.
Spikes (vertical, solid lines) are related to LFPs by determining
the instantaneous LFP phases at the times of spiking by centering
a window (horizontal, solid lines) around every spike. Thus, the
phase for each spike is determined from the LFP snippet that
is centered around it. The instantaneous LFP phase at the time
of spiking can be directly gauged by using the dotted lines that
connect the spikes to the LFP. The frequency resolution, which
is inversely proportional to time resolution, is proportional to the
window length, which needs to be sufficiently large. However, if
the windows are too long, then the loss of time-resolution may
lead to a decrease in spike-LFP phase consistency. The instan-
taneous spike-LFP phases are depicted by the unit arrows that
originate from the spikes. The LFP was modeled as band-stop
filtered Gaussian white noise, as in Zeitler et al. (2006). Here,
we show only two (m = 1 and m = 2) out of M available trials.
The measures of point-field phase consistency are computed over
the n relative spike-LFP phases. By vector addition of the n
spike-LFP phase vectors, a resultant vector is obtained, whose
length is conventionally taken as a measure of point-field phase
consistency
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problem bound to these point-field phase synchroniza-
tion measures is that they can be strongly biased by
the number of spikes. Previously, we addressed this
problem by introducing the pairwise phase consistency
(PPC) (Vinck et al. 2010a).

However, there are two further problems related to
point-field phase synchronization measures that were
not solved by the PPC measure. Firstly, the problem
that by the direct quantification of the consistency of in-
dividual spike-LFP phases through circular statistics, it
is implicitly assumed that individual spike-LFP phases
can be modeled as outcomes of statistically indepen-
dent random variables. This assumption is typically vi-
olated because neurons display non-Poissonian history
effects, such as refractoriness and bursting (Sections 2
and 3). For example, given the observation of a certain
spike-LFP phase for a bursting neuron, we may be
more likely to observe a similar spike-LFP phase again,
independent of the modulation of spiking probability
with LFP phase. To solve the latter problem, we de-
velop a new point-field phase synchronization measure
that is not affected by a dependence between spike-
LFP phases that were obtained from the same trial
(Section 3). We achieve this by modifying the PPC
such that its computation is now based only on pairs
of spike-LFP phases that were obtained from separate
trials (see Eq. (3.1) below). A second problem that we
address here is that dependencies between spike count
and spike-LFP phase, e.g. as consequence of theta or

gamma phase precession/shifting (O’Keefe and Recce
1993; Vinck et al. 2010a; Tiesinga and Sejnowski 2010;
Harris et al. 2002; Mehta et al. 2002; Schmidt et al.
2009; Siegel et al. 2009; Huxter et al. 2008), can cause
point-field phase synchronization measures to become
biased by the number of trials. We show how the point-
field PPC measure can be modified in order to render
it unbiased as a function of the number of trials (see
Eq. (4.3) below).

The second class of spike-field measures is inspired
by the classical coherence approach for EEG and MEG
data (e.g., see Nunez and Srinivasan 2006; Mitra and
Pesaran 1999; Walter 1963; Adey et al. 1961; Lachaux
et al. 1999) and is characterized by quantifying, for a
certain frequency, the consistency of the relative phases
between spike train and concurrent LFP signals across
trials, as opposed to quantifying it across spikes (Fig. 2)
(e.g. Fries et al. 2008; Gregoriou et al. 2009; Jarvis
and Mitra 2001; Pesaran et al. 2008; Chalk et al. 2010;
Pesaran et al. 2002; Lepage et al. 2011; Mitra and Bokil
2008). In this paper, we will refer to this second type of
measures as spike train to f ield phase synchronization
measures. With this approach, the spike trains are not
broken down into single spikes that are then related to
the LFPs around them, as opposed to the point-field
phase synchronization measures. Instead, the spike
train to field phase synchronization measures are based
on the computed cross-spectra between the spike train
signals of a certain duration and the concurrent LFPs.

Fig. 2 Illustration of spike train to field phase synchronization
measures. Spikes (vertical, solid lines) are related to LFPs by
computing, using the Fast Fourier Transform, the respective
phase offsets of the spike train and the LFP at a particular
frequency (grey arrows) and subsequently determining the rel-
ative phase between these phase offsets (black arrows). Thus,
the relative phases are computed for a time-period, not for an

individual spike. The LFP was generated using the same model
as in Fig. 1. Shown here are two trials (m = 1 and m = 2). The
measures of spike train to field phase consistency are computed
over the M relative phases. By vector addition of the M relative
phase vectors, a resultant vector is obtained, whose length is
conventionally taken as a measure of the consistency of the
relative phases between LFPs and spike trains
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Although both point-field and spike train to field
phase synchronization measures are widely applied,
it is unknown how they compare. In this paper, we
derive an exact, analytical relationship (see Eq. (5.9)
below) between the point-field PPC measures and the
spike train to field PPC, which is a quantity closely
related to the squared spike-field coherence (e.g. see
Jarvis and Mitra 2001), with the only difference that the
latter spike train to field index is a concurrent measure
of amplitude co-variations as well, while the former
spike train to field PPC measure only considers the
consistency of relative phases. From this relationship,
it follows that the spike train to field PPC is strictly
positively dependent on the number of spikes per trial
if the consistency of individual spike-LFP phases is
independent of the number of spikes per trial. These
findings are consistent with the previous result that the
spike train to field coherence is positively dependent
on the number of spikes (Zeitler et al. 2006; Lepage
et al. 2011). Our analytic derivation is exact and directly
leads to two corrected versions of the spike train to field
PPC measures that are fully independent of the number
of spikes per trial (Section 5).

The paper is organized as follows. We first introduce
conventional point-field phase synchronization mea-
sures (Section 2). In Section 3, we study the effect
of violations of the assumption of independency be-
tween spike-LFP phases (for different spikes) on these
conventional point-field phase synchronization mea-
sures, and introduce a point-field measure that does
not require this assumption. In Section 4, we study
the consequences of a dependence between spike-LFP
phase and spike count, and introduce a measure that
is not affected by this dependence. In Section 5, we
demonstrate an exact, analytical relationship between
point-field and spike train to field phase synchroniza-
tion measures and study the dependence of spike train
to field phase synchronization measures on the number
of spikes per trial. We end with a comparison of the ad-
vantages and disadvantages of the developed measures.

2 Definitions of conventional indices

2.1 A mathematical framework for point-field phase
synchronization measures

We first develop a mathematical framework for point-
field phase synchronization measures. Our starting
point is the observed data, i.e. spike counts and spike-
LFP phases, and we then proceed with modeling the
observed data as outcomes of random variables. Sup-
pose we perform simultaneous recordings of an LFP

and the spiking activity of a neuronal source. We
model the trial-wise spike counts by defining the vector
of identically and independently distributed random
variables N ≡ (N1, . . . , NM) ∈ N

M, where M is the
number of trials, whose observed value is defined
as n ≡ (n1, . . . , nM) ∈ N

M, i.e. the experimentally ob-
served counts of spikes emitted in each trial. Define
N ≡ ∑M

m=1 Nm, and its observed value n ≡ ∑M
m=1 nm,

the observed total number of spikes. The set of trials
that contained at least one spike is defined as M ≡
{m ∈ {1, . . . , M} : Nm > 0}, such that |M| is the number
of trials with at least one spike. For every spike, we take
the LFP segment that is centered around it, as illus-
trated in Fig. 1, and spectrally decompose it, to obtain
the spike-LFP phase at each frequency f . The spectral
decomposition of the LFP may, without loss of general-
ity, be based on e.g. the Discrete Fourier Transform or
the Hilbert Transform on the filtered signal. Thus for
all trials m ∈ M we observe, at a particular frequency
f , a data vector θm( f ) ≡ (θ1,m( f ), . . . , θnm,m( f )) con-
taining nm spike-LFP phase values, which are depicted
in Fig. 1. The dependence of θm and related statistics
on frequency is omitted and implicitly assumed in what
follows.

In order to make statements about the statistics
of the population from which these sample spike-
LFP phase data were drawn, we model the observed
spike-LFP phases as outcomes of random variables. A
straightforward approach may seem to define n inde-
pendent and identically distributed random variables
(�1, . . . , �n) (as in Vinck et al. 2010b). However, the
number of spikes itself is a random variable, such
that we cannot restrict ourselves to defining n random
variables. Furthermore, for a given trial, the spike-LFP
phase may be statistically dependent on the number of
spikes, as it is for example the case when theta phase
precession (O’Keefe and Recce 1993) is present. To
account for these two intricacies, we proceed as follows.
For all m ∈ {1, . . . , M}, let �m = (�1,m, �2,m, . . . ) be a
vector of random variables. For all (k, m) ∈ {(k, m) :
k ∈ {1, . . . Nm}, m ∈ M}, we let the observed value of
�k,m equal a randomly chosen—without replacement—
element of θm, and obtain a vector representation of
the spike-LFP phases by defining the spike-LFP phase
vector Uk,m ≡ (cos(�k,m), sin(�k,m)).

Thus, for all m ∈ M, we model all �k,m elements
of �m for which 1 ≤ k ≤ Nm as identically distributed
(i.e., across time). In practice, it can occur that spike-
LFP phases from the same trial are not identically
distributed, because the mean spike-LFP phase can be
a function of a time-varying variable, which occurs for
example during theta phase precession (O’Keefe and
Recce 1993) and gamma phase-shifting (Vinck et al.
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2010a). Mixing distributions with different mean spike-
LFP phases causes an average decrease in point-field
phase synchronization measures. If the mean spike-
LFP phase is indeed non-stationary, then this reduction
in point-field phase synchronization measures may be
avoided by using one of the following two strategies.
Firstly, by computing our point-field phase synchro-
nization measures over smaller trial segments for which
the mean spike-LFP phase is approximately station-
ary, at the cost of an increase in estimator variance.
Secondly, by explicitly modeling the mean spike-LFP
phase as a function of a time-varying random variable,
and subsequently computing our point-field phase syn-
chronization measures over the residual model error
terms, as in Vinck et al. (2010a).

Further, for all k ∈ {1, 2, . . . }, we model all elements
of the vector (�k,1, . . . , �k,M) as identically distributed
(i.e., across trials). In practice, it can occur that spike-
LFP phases are not identically distributed across trials,
e.g. as a consequence of pooling trials across different
experimental conditions or as a consequence of learn-
ing processes. Again, the consistency of spike-LFP
phases is, on average, decreased by mixing distributions
with varying mean spike-LFP phases.

Thus far, we did not make statements about the
statistical dependence or independence between the
different �k,m’s (the spike-LFP phases). While the
assumption of independence between the spike-LFP
phases from the same trial is convenient from a statis-
tical perspective (Section 2.2), it may be often violated
in practice (Section 3). Henceforth, we assume that a
dependence between spike-LFP phases can only occur
for spike-LFP phases from the same trial, i.e. we assume
that random variables are statistically independent if
they represent spike-LFP phases from separate trials
(Assumption 1).

Assumption 1 Spike-LFP phase vectors from separate
trials are conditionally independent given observation
of the spike count.

This assumption implies that for all (k, m, j, l) for
which l �= m, the equation

E{Uk,m · U j,l | Nm, Nl} = E{Uk,m | Nm} · E{U j,l | Nl}
(2.1)

holds, where · is the dot product operation. From the
independence of Nm and Nl, it follows that the equation
E{Uk,m · U j,l} = E{Uk,m} · E{U j,l} holds as well. The
justification of Assumption 1 is that dependencies will
mostly act on short timescales, and that spike train

statistics will typically be reset by an inter-trial in-
terval. Assumption 1 does not require that the LFPs
are not phase-synchronized across trials. If the LFP
attains the same phase offset relative to a trial event
in every trial, then the spike-LFP phase vectors from
different trials can still be independent of each other,
e.g. if the spike trains are generated by a homogeneous
Poisson process, or if the inter-trial interval duration is
sufficiently long. Nevertheless, phase-synchronization
of the LFPs across trials may well cause Assumption 1
to be violated if the inter-trial interval is short relative
to the oscillatory cycle duration. In that case, non-
Poissonian history effects such as autorhythmicity can
cause dependencies between spike-LFP phases across
trials. The violation of Assumption 1 has the same
consequences as a violation of Assumption 2 (which
will be introduced in Section 2.2), namely a systematic
increase or decrease in the PPC (Section 3).

2.2 Direct application of circular statistics to spike-LFP
phase data

It is common practice in neurophysiology to directly
compute circular statistics over the concatenated data
vector of spike-LFP phases. Whether this leads to valid
conclusions about the relationship between the LFP
and spiking activity remains to be demonstrated. Sup-
pose that the following two additional assumptions hold
however:

Assumption 2 Spike-LFP phase vectors from the same
trial are conditionally independent given observation of
the spike count.

This assumption implies that for all (k, j, m) for
which k �= j the equality

E{Uk,m · U j,m | Nm} = E{Uk,m | Nm} · E{U j,m | Nm}
(2.2)

holds. In other words, this assumption holds that, given
observation of the spike count Nm, the spike-LFP phase
vectors from the mth trial are independent, i.e. that the
observation of one spike-LFP phase vector does not
change the expected value of another spike-LFP phase
vector from the same trial. The conditional indepen-
dence (given Nm) is important here: If spike-LFP phase
and spike count are statistically dependent, then the
unconditional independence between the spike-LFP
phase vectors from the same trial does not necessarily
hold given Assumption 2. The reason for this is that the
observation of a certain spike-LFP phase may change
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the expected value of Nm, which could in turn change
the expected value of the other spike-LFP phase vec-
tors. Unconditional independence will only be attained
by making the additional assumption of independence
between spike count and spike-LFP phase (Assump-
tion 3, see below). Example cases where Assumption 2
is violated, e.g. as a consequence of non-Poissonian
history effects, will be presented in Section 3.

Assumption 3 Independence between spike count and
spike-LFP phase.

This assumption holds that the expected value of
Uk,m is independent of Nm, for k ≤ Nm, i.e. that the ex-
pected value of the spike-LFP phase vector Uk,m is in-
dependent of the number of spikes that were observed
in the mth trial. Example cases where this assumption
is violated will be presented in Section 4.

Based on the �k,m’s (spike-LFP phases) and Nm’s
(spike counts), we can now define several statistics
that estimate the consistency of spike-LFP phases,
e.g. the resultant vector length (Eq. (2.5)). In order
to define the population parameters corresponding to
these estimators, we will now define random vari-
ables that are identically distributed to the Uk,m’s.
Let N(1) and N(2) be two random variables inde-
pendently and identically distributed, such that for
any nm ∈ N, Pr{N(1) = nm} = Pr{N(2) = nm} = Pr{Nm =
nm | Nm > 0}. Let � be a random variable and U (1) and
U (2) two statistically independent random vectors iden-
tically distributed to the vector (cos(�), sin(�)), such
that the equation E{U (1)|N(1) = nm} = E{U (2)|N(2) =
nm} = E{Uk,m|Nm = nm} holds for 1 ≤ k ≤ nm. Given
Assumptions 1–3, it follows that for any (N(1), N(2)) ∈
N

2, the equation

E{U (1) · U (2)|N(1), N(2)} = E{U (1)} · E{U (2)} (2.3)

holds.
We now proceed with defining conventional statis-

tics quantifying the consistency of spike-LFP phases,
relying on Assumptions 1–3. A natural statistic for the
consistency of the spike-LFP phases is provided by
the circular resultant length, which is defined, on the
population level, as

R ≡ |E{exp(i�)}| . (2.4)

Its direct estimator is defined as

R̂ ≡
∣
∣
∣
∣
∣

1

N

∑

m∈M

Nm∑

k=1

exp(i�k,m)

∣
∣
∣
∣
∣
. (2.5)

This statistic is sometimes also referred to as the
(point-field) PLV (‘phase locking value’). Given our
Assumptions 1–3, it follows that the estimator R̂ is
strongly biased by sample size, i.e. approaches R from
above. This is a problem when comparing neurons
or experimental conditions with a small, varying and
uncontrollable number of spikes (Vinck et al. 2010b).
Therefore, the PPC estimator (Vinck et al. 2010b),
which is graphically illustrated in Fig. 3(a), is our pre-
ferred statistic at the descriptive level, and for perform-
ing simple parametric inferential statistics at the group
level, and is defined as

P̂0 ≡

⎛

⎝
∑

m∈M

∑

l∈M

Nm∑

k=1

Nl∑

j=1

Uk,m · U j,l

⎞

⎠ − N

N(N − 1)
. (2.6)

The corresponding population parameter of the PPC is
defined as

P ≡ E{U (1) · U (2)} . (2.7)

The quadruple sum in Eq. (2.6) computes the dot
product for all combinations of two spike-LFP phase
vectors (Uk,m · U j,l) for a given pair of trials (m and
l), and repeats this for all pairs of trials (m ∈ M and
l ∈ M), such that the dot product is computed for all
N(N − 1) combinations of two spike-LFP phase vec-
tors. The numerator term −N accounts for the fact
that the quadruple sum in Eq. (2.6) contains N dot
products of phase vectors for which (k, m) = ( j, l). The
dot product of a spike-LFP phase vector with itself (the
diagonal entries in Fig. 3(a)) is always one, and does not
contribute to the P̂0 statistic.

The PPC can be interpreted as quantifying the av-
erage coincidence between any two spikes in the LFP
phase domain. Two spikes are maximally coincident in
the LFP phase domain if their relative spike-LFP phase
equals zero, and they are maximally non-coincident
if their relative spike-LFP phase equals ±π . The dot
product measures to what extent two spikes (with ob-
served phases θk,m and θ j,l) are coincident in the LFP
phase domain, by outputting cos(θk,m − θ j,l). For exam-
ple, the dot product takes on the value −1 if two spikes
are maximally non-coincident, and +1 if two spikes are
maximally coincident. The choice of the dot product
function instead of the absolute angular distance (i.e.,
relative phase) as a measure of coincidence is motivated
by the relationship P = R2 between the PPC and the
resultant vector length (Vinck et al. 2010b).

The expected value of P̂0 is obtained by taking its
expected value conditional on N, which is required
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(a)

(b)

Fig. 3 Illustration of the point-field PPC P̂0 and the point-field
PPC P̂1. (a) Nine spike-LFP phases from four different trials are
recorded. These spike-LFP phases are depicted by the arrows,
which are duplicated on the x- and y-axis. This gives 9 · 9 =
81 potential 2-combinations of spike-LFP phases across trials.
The extent to which two spike-LFP phase vectors coincide is
measured by the dot product. The point-field PPC P̂0 equals
the average dot product of spike-LFP phase vectors across all

2-combinations of different spikes. The nine 2-combinations of
spikes with themselves are not taken into account, which is
indicated by the diagonal patterns. (b) Same as in (a), but the
point-field PPC P̂1 equals the average dot product of spike-LFP
phase vectors across all 2-combinations of spikes from different
trials.The 2-combinations of spikes from the same trial are not
taken into account, which is indicated by the diagonal patterns

because the Nm’s are random variables themselves,
and subsequently taking the expected value over all
possible realizations of N. Assume that Pr{N > 1} = 1,
because the PPC is not defined for N < 2, because
we need at least one pair of spike-LFP phase vectors
to compute the PPC. Using Assumptions 1 and 2, it
follows that

E{P̂0|N = n}

=

∑

m∈M

∑

l∈M

nm∑

k=1

nl∑

j=1

E{Uk,m · U j,l | Nm, Nl} − n

n(n − 1)

=

∑

m∈M

∑

l∈M
nmnlE{U (1) · U (2) | N(1) = nm, N(2) = nl} − n

n(n − 1)
.

(2.8)

Assumptions 1 and 2 allow us to replace the Uk,m and
U j,l terms by the independent and identically distrib-
uted random variables U (1) and U (2), such that the term

nmnl appears in the numerator. By using Assumption 3
and Eq. (2.3), Eq. (2.8) simplifies to

E{P̂0|N = n} = E{U (1)} · E{U (2)}
≡ P. (2.9)

Equation (2.9) shows that E{P̂0|N = n} does not de-
pend on n. Hence, it follows that E{P̂0} ≡ E{E{P̂0|N =
n}} = P, showing that, given Assumptions 1–3, P̂0 is an
unbiased estimator of P. Note that while 0 ≤ P ≤ 1, we
have −1 ≤ P̂0 ≤ 1.

If we make Assumptions 1–3, then P > 0 indicates
that a neuron has a preferred LFP phase of firing, i.e.
that spiking probability is modulated with LFP phase.
To test whether the inequality P > 0 holds, one could
for example use the Rayleigh test, or test whether the
distribution of P̂0’s across neurons differs from zero.
As will be shown in Sections 3 and 4, the validity of
these statistical inferences is based on Assumptions 1–3
as laid out above.
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3 The problem of statistical dependence
between spike-LFP phases

The assumption that observed spike-LFP phases can
be modeled as outcomes of independent random
variables (Assumption 2) is typically violated. One
cause of this violation is that neurons typically do
not behave as homogenous or inhomogeneous Pois-
son sources (Shinomoto et al. 2009), because neurons
have several physiological properties, e.g. refractori-
ness, autorhythmicity and burstiness, that cause non-
Poissonian history effects (Section 3.2.1). Another rea-
son for dependencies between spike-LFP phases to
occur is that the LFP may not cover all phases uni-
formly in a given trial (Section 3.2.2). If we ignore that
Assumption 2 is violated and directly apply circular
statistics to the observed vector of spike-LFP phases as
in Eqs. (2.5) and (2.6), then we may draw invalid con-
clusions about the relationship between spiking activity
and the LFP, especially if the number of trials is small.

The problem posed by dependencies between spike-
LFP phases is that the dot product term Uk,m · U j,l in
Eq. (2.6) may be biased towards producing higher or
lower values if l = m, i.e. if spike-LFP phases fall in the
same trial, in comparison to the case l �= m, i.e. if spike-
LFP phases fall in separate trials.

If we make Assumption 1, but not Assumption 2,
then we can conclude that the statistical dependence
between spike-LFP phases may especially have a large
impact on point-field phase synchronization measures
if the number of trials is relatively small, because
the number of independent spike-LFP phases scales
with N(N − 1)/2, whereas the number of possibly
dependent spike-LFP phases scales only with approx-
imately M

(N/M
2

)
. For example, suppose that all spike-

LFP phases within the same trial are statistically de-
pendent, and that the number of spikes per trial equals
N/M = 40. For one, two, and ten trials, the fraction of
dependent spike-LFP phases equals 1, 0.5 and 0.1 re-
spectively, and it tends to zero as M → ∞. The regime
in which M is small can be of great importance to
neurophysiology, e.g. when studying the involvement
of rhythmic neuronal synchronization in memory and
learning processes (e.g., van Wingerden et al. 2010b;
Hansen and Dragoi 2011; Tort et al. 2009; Popescu et al.
2009).

3.1 Solution to the dependence problem

The goal of this section is to provide a solution to
the problem that spike-LFP phases from the same trial

can be statistically dependent. We solve the problem
of statistical dependence between spike-LFP phases
as follows. Instead of computing the dot product of
spike-LFP phase vectors across all combinations of two
spikes (Fig. 3(a)), we compute it only for combina-
tions of spikes that were recorded from separate trials
(Fig. 3(b)). Let L ≡ {l : l ∈ M, l �= m}. We define the
point-field PPC P̂1 estimator of P as

P̂1 ≡

∑

m∈M

∑

l∈L

Nm∑

k=1

Nl∑

j=1

Uk,m · U j,l

∑

m∈M

∑

l∈L
Nm Nl

. (3.1)

Note the similarity between Eqs. (2.6) and (3.1),
whereas they differ in that the quadruple sum now runs
only over all pairs of separate trials (m ∈ M and l ∈ L).
If we make Assumption 3 and the assumption that
Pr{|M| < 2} = 0, then the conditional expected value of
this estimator equals

E{P̂1|N = n}

= E

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑

m∈M

∑

l∈L

nm∑

k=1

nl∑

j=1

Uk,m · U j,l

∑

m∈M

∑

l∈L
nmnl

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

N

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

=

∑

m∈M

∑

l∈L

nm∑

k=1

nl∑

j=1

E{Uk,m · U j,l | Nm = nm, Nl = nl}
∑

m∈M

∑

l∈L
nmnl

=

∑

m∈M

∑

l∈L
nmnlE{U (1) · U (2) | N(1) = nm, N(2) = nl}

∑

m∈M

∑

l∈L
nmnl

.

(3.2)

Assumption 1 allows to replace the Uk,m and U j,l

terms by the independent and identically distributed
random variables U (1) and U (2), such that the term
nmnl appears in the numerator. The product nmnl acts
as a weighting factor, assigning heavier weight to ex-
pected values of spike-LFP phase vectors for trials
with many spikes. However, if Assumption 3 holds,
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then this weighing factor falls away by division, and
equation

E{P̂1|N = n} =

∑

m∈M

∑

l∈L
nmnlE{U (1) · U (2)}

∑

m∈M

∑

l∈L
nmnl

= E{U (1) · U (2)}
≡ P (3.3)

holds. Thus, the P̂1 statistic is not affected by a de-
pendence between the spike-LFP phases (note that the
derivation of Eqs. (3.1) and (3.2) does not make use of
Assumption 2). This is our first main result, improv-
ing the point-field PPC P̂0 measure. We will show in
Section 5 that the PPC P̂1 measure allows to derive
an analytical relationship between point-field (Fig. 1)
and spike train to field phase-synchronization measures
(Fig. 2).

It should be noted, however, that the P̂1 estimate
cannot be obtained in case only a single trial is avail-
able. This problem may to some extent be circum-
vented by removing pairs of spike-LFP phase vectors
on the basis of a time-difference threshold, i.e. by re-
jecting combinations of spikes if they lie too closely to-
gether in time. The same approach, i.e. rejection on the
basis of a time-threshold, is possible for data-sets that
are not divided into trial and inter-trial interval periods.
Finally, it should be noted that the P̂1 estimator has a
higher variance than the P̂0 estimator if Assumption 2
does hold, especially if the number of trials is small,
because the computation of the P̂0 statistic is based
on more combinations of two spike-LFP phase vectors
than the computation of the P̂1 statistic.

3.2 Simulations of the effect of a statistical dependence
between spike-LFP phases on the P̂0 and P̂1

estimators

3.2.1 Ef fect of refractoriness and burstiness

To study the effect of a statistical dependence between
spike-LFP phases on point-field phase synchronization
statistics, we performed simulations with the following
model. Initially we assumed that neuronal firing was
described as a Poisson process, with the instantaneous
rate parameter defined by λ(φ(t)) = β/2π , where the
LFP-phase was defined as a linear function of time, i.e.
φ(t) = 2π f t, such that there was no modulation of spik-
ing probability with LFP phase. The probability of ob-
serving a spike in the interval [t, t + δ] was equal to the

product δ λ(φ(t)) for small δ. Thus, spiking probability
was a linear function of the parameter β, which equaled
the expected number of spikes per oscillatory cycle.
We assumed that the trial duration was of length k/ f
for integer k. In this model, spike-LFP phases can be
considered as outcomes of independent random vari-
ables: The observation of a spike at a particular time-
point does not change the probability density of firing
at other time-points. Correspondingly, the observation
of a spike at a particular LFP phase does not alter the
probability density of firing at other LFP phases, and
the point-field PPC P̂0 would be an unbiased estimator.

To demonstrate the effect of a refractory period with
simulations, we set λ(φ(t)) = 0 for the duration of the
refractory period after a spike was fired. We chose
f = 20 Hz, a time-window that comprised 500 time-
steps of 0.0001 s (such that k = 1) and β = 100. Without
a refractory period, the number of spikes equaled on
average β · 500 · 0.0001 = 5 per trial. We then exam-
ined two lengths of the refractory period: 8 (Fig. 4(a))
and 40 ms (Fig. 4(b)). Figure 4(a) and (b) show the
expected P̂0 value (solid line) as a function of the
number of trials. Figure 4(a) shows that in the presence
of a refractory period of 8 ms, the expected P̂0 value
attained negative values and approached its asymptotic
value from below. This result can be explained as fol-
lows: If the refractory period is short in comparison
to the oscillatory cycle period, then the observation of
a particular spike-LFP phase makes the observation
of similar spike-LFP phases less likely, causing the
expected value of the dot product of spike-LFP phase
vectors from the same trial to decrease. However, when
the refractory period was relatively long in comparison
to the oscillatory cycle length, then P̂0 approached its
asymptotic value from above (Fig. 4(b)). The latter
result can be explained as follows: If the duration of
the refractory period approaches the duration of the
oscillatory cycle period, then the observation of a spike-
LFP phase makes the observation of similar spike-LFP
phases on average more likely, causing the expected
value of the dot product of spike-LFP phase vectors
from the same trial to increase. In contrast to the point-
field P̂0 measure, we did not observe any dependence
of the P̂1 measure on the number of trials. Thus, the
P̂1 measure correctly indicated, on expectation, that
there was no modulation of spiking probability with
LFP phase.

To demonstrate the effect of burstiness we per-
formed the following simulation. Instead of adding
a refractory period to the Poisson model, we now
added for every spike fired an additional spike with
the same phase (i.e., duplicating all spike-LFP phases).
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(a) (b)

(c) (d)

Fig. 4 Influence of dependence between spike-LFP phases on
point-field phase synchronization measures. (a) Estimated, ex-
pected point-field PPC P̂0 (solid), and point-field PPC P̂1 values
(dotted) (y-axis) as a function of the number of trials (x-axis),
in the presence of an absolute refractory period of 8 ms. The
grey portion of the solid P̂0 curve highlights that no P̂1 estimate
exists when only one trial is available. (b) Similar to (a), but
now in the presence of an absolute refractory period of 40 ms.
(c) Influence of burstiness on point-field phase synchronization
measures. Estimated expected point-field PPC P̂0 (solid), and
point-field PPC P̂1 value (dotted) (y-axis) as a function of the
number of trials (x-axis). For every spike fired, we added one
extra spike with the same phase. (d) Influence of incomplete
coverage of LFP phases on estimated, expected point-field PPC
P̂0 (solid), and point-field PPC P̂1 values (dotted) (y-axis) as a
function of number of trials (x-axis), with the neuron firing only
during 20% of the cycle duration

Figure 4(c) shows that a strong negative dependence of
the expected P̂0 value on the number of trials emerged,
such that P̂0 approached its asymptotic population
value from above. Even though the probability of firing
was equal for all LFP phases, the expected P̂0 value
still attained positive values for a finite number of trials.
Again, in contrast to the point-field P̂0 measure, we did
not observe any dependence of the P̂1 measure on the
number of trials. Thus, the P̂1 measure correctly indi-
cated, on expectation, that there was no modulation of
spiking probability with LFP phase. The effect of burst-
ing on the PPC may be explained as follows. The PPC

quantifies coincidences of spikes in the LFP phase do-
main. Spikes from the same neuron are expected to be
coincident in the LFP phase domain if the probability of
spiking is modulated by LFP phase. Bursting can cause
spikes from the same trial to have a certain amount of
coincidence in the time domain. Because the LFP phase
is an approximately linear function of time (e.g., see SI
Fig. 1 in Canolty et al. 2010), this time-domain coinci-
dence can cause spikes from the same trial to become
coincident in the spike-LFP phase domain as well, even
though spiking probability is not modulated with LFP
phase.

3.2.2 Ef fect of non-uniform sampling of the LFP
phases

Dependencies between spike-LFP phases can also oc-
cur because of statistical dependencies between instan-
taneous LFP phases within the same trial, i.e. can be a
consequence of properties of the LFP signal instead of
the spike train signal. For example, a dependence be-
tween instantaneous LFP phases occurs if the window
length that is used to compute a point-field phase syn-
chronization measure does not equal an integer mul-
tiple of 1/ f , causing the instantaneous LFP phases to
be non-uniformly covered across time. Consequently,
given the observation of a particular instantaneous LFP
phase at a certain time-point, regardless of whether a
spike was fired there, we will be more likely to observe
similar instantaneous LFP phases at other time-points
within the same trial. This is exemplified by the simula-
tion that was performed for Fig. 4(d). We set the trial
duration to k/ f = 0.01 s (in 100 steps of 0.0001 s) with
k = 0.2, f = 20, β = 100, as above, but without further
non-Poissonian history effects. The P̂0 statistic was
negatively biased by the number of trials (Fig. 4(d)),
despite the fact that spike trains were generated ac-
cording to a homogeneous Poisson process. In contrast
to the point-field P̂0 measure, we did not observe any
dependence of the P̂1 measure on the number of trials,
and the P̂1 measure correctly indicated that there was
no modulation of spiking probability with LFP phase.

Taken together, the results from Section 3.2 show
that dependencies between spike-LFP phases within
the same trial can arise because of many factors. There
are various consequences: (i) The equation E{P̂0} ≥ 0
does not hold in general. (ii) It is not recommend-
able to use the Rayleigh test to assess whether spiking
probability is modulated with LFP phase because the
test assumes that phases are outcomes of independent
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random variables. (iii) The equation E{P̂0} > 0 can
hold even in the absence of a modulation of spiking
probability with LFP phase. (iv) The estimator P̂0 is
unbiased by the number of spikes only if the spike-
LFP phases can be treated as outcomes of independent
random variables. However, in practice, they usually
cannot, and as a result P̂0 can be both positively and
negatively biased by the number of trials. Because the
number of spikes per trial determines the ratio of the
number of possibly dependent over the number of in-
dependent spike-LFP phases, it affects the P̂0 estimator
as well. In opposition to our previous claim (Vinck
et al. 2010b), we conclude that the P̂0 statistic is not an
unbiased estimator if Assumption 2 is violated.

4 Effect of dependence between spike count and phase

We dealt with the violation of Assumption 2 by devel-
oping the point-field PPC P̂1 measure. In order for this
measure to be unbiased as a function of the number
of trials, we need to make Assumption 3. However,
in practice this assumption may be violated, which can
introduce a positive or negative bias as a function of the
number of trials.

There are two possible relationships between the
spike count and the distribution of spike-LFP phases.
Firstly, the consistency of spike-LFP phases and the
spike count can be statistically dependent. For example,
the strength of V1 gamma-band synchronization has
been found to be positively dependent on stimulus size,
while the V1 firing rate has been found to be negatively
dependent on stimulus size (Gieselmann and Thiele
2008). To give an example of the effect of a negative
dependence between spike-LFP phase consistency and
firing rate on the point-field PPC P̂1, we studied the
model

λ(φm(t)) = βmg(φm(t); μ, κ) , (4.1)

where g is the von Mises density, κ = 0.9, μ = 0, and
βm was a uniformly distributed random variable on
the interval [200, 600]. Spiking probability was a linear
function of the parameter βm, which equaled the ex-
pected number of spikes per oscillatory cycle. The LFP
phase was defined as

φm(t) = 2π f t + 2πε(t) ((βm − 200) /400)2 , (4.2)

where ε(t) was a random variable uniformly distributed
on the interval [0, 1]. For large βm, a large error term
was added to the LFP phase. Thus, small amplitude
noise was added to spike-LFP phases when a trial
contained a small number of spikes (i.e., βm small), and
large amplitude noise was added when a trial contained
a large number of spikes (i.e., βm large), thereby imple-
menting a negative correlation between the firing rate
and phase locking as in the V1 data (Gieselmann and
Thiele 2008) mentioned above. Figure 5 shows that in
this model, the P̂1 measure was positively biased by the
number of trials.

Secondly, it can occur that the mean spike-LFP
phase co-varies with the spike count. For example, in
case of pooling trials across experimental conditions
(e.g. orientations), it can occur that trials with higher
firing rates correspond to an advanced spike gamma
phase (Vinck et al. 2010a), which can bias the P̂1 mea-
sure as a function of the number of trials.

4.1 A point-field measure unaffected by rate-phase
dependencies

We will now define a statistic that is not affected by
phase-spikecount dependencies, and hence not biased
by the number of trials. We call the defined statistic the
point-f ield PPC P̂2 measure, and define it as

P̂2 ≡ 1

|M| (|M| − 1)

∑

m∈M

∑

l∈L

(∑Nm
k=1

∑Nl
j=1 Uk,m · U j,l

Nm Nl

)

.

(4.3)

1

2

Fig. 5 Influence of dependence of spike-LFP phase consistency
and spike count on point-field phase synchronization measures.
Estimated, expected point-field PPC P̂1 (solid), and point-field
PPC P̂2 values (black, dotted) (y-axis) as a function of the number
of trials (x-axis), where trials with a large number of spikes have
a noisier phase distribution
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The key difference with the P̂1 measure is that in
Eq. (4.3), the sum of dot products across combinations
of two spike-LFP phase vectors for a pair of separate
trials (m, l) is first averaged, i.e. normalized by the num-
ber of combinations Nm Nl. The average dot product for
a pair of separate trials is then averaged across all pairs
of separate trials (m ∈ M and l ∈ L). Thus, in the com-
putation of P̂2, a trial with few spikes will be given the
same weight as a trial with many spikes. Consequently,
spike-LFP phases from trials with few spikes are given a
stronger weight than spike-LFP phases from trials with
many spikes. The rationale behind the P̂2 measure is
the following: Because the number of combinations of
two spike-LFP phase vectors equals Nm Nl for a pair of
separate trials, both trials are given equal weight in the
computation of the average dot product for that pair of
trials. As a trivial example, suppose that the first trial
contains 20 spikes and the second trial contains 100
spikes, then there are 100 · 20 = 2,000 combinations
of spike-LFP phases containing spikes from the first
trial, but also 2,000 combinations of spike-LFP phases
containing spikes from the second trial. For a larger
number of trials, the trials with a large number of
spikes will contribute to more combinations of spike-
LFP phase vectors for the P̂1 statistic. For example
if we add a third trial that contains 50 spikes, then
the first trial will contribute to 20 · 100 + 20 · 50 = 3,000
combinations, but the second trial will contribute to
100 · 20 + 100 · 50 = 7,000 combinations of two spike-
LFP phases. This occurs because the normalization
term in Eq. (3.1) (

∑
m∈M

∑
l∈L nmnl) is a function of the

nm’s itself, such that it is less influenced by a single nm if
the number of trials is large. This explains why in Fig. 5,
the P̂1 measure is negatively dependent on the number
of trials.

From Assumption 1, it follows that the expected
value of P̂2 conditional on N, assuming that Pr{|M| <

2} = 0, equals

E{P̂2|N = n}

= 1

|M| (|M| − 1)

×
∑

m∈M

∑

l∈L
E

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Nm∑

k=1

Nl∑

j=1

Uk,m · U j,l

nmnl

∣
∣
∣
∣ nm, nl

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

=

∑

m∈M

∑

l∈L
E{U (1) · U (2)|N(1) = nm, N(2) = nl}

|M| (|M| − 1)
. (4.4)

Note that, in comparison to Eq. (3.1), we removed the
weighing factor nmnl.

The expected value over all possible outcomes of the
spikecounts for which |M| > 1 is then given as

E{E{P̂2|N = n}}

=
∞∑

n1=1

· · ·
∞∑

nM=1

∏

m∈M
Pr{N(1) = nm}

×

∑

m∈M

∑

l∈L
E{U (1) · U (2)|N(1) = nl, N(2) = nm}

|M| (|M| − 1)

=
∞∑

nm=1

∞∑

nl=1

E{U (1) · U (2)|N(1) = nl, N(2) = nm}

× Pr{N(1) = nm} Pr{N(2) = nl}
= E{U (1) · U (2)}
= |E{U (1)}|2
≡ P . (4.5)

The results of the simulation that are presented in Fig. 5
show that, indeed, phase-spikecount dependence does
not lead to a bias of P̂2 on the number of trials.

Note that

E{U (1)} =
∞∑

nm=1

E{U (1)|N(1) = nm} Pr{N(1) = nm} , (4.6)

i.e. E{U (1)} corresponds to the expected spike-LFP
phase vector, and is not affected by a potential de-
pendence between spike count and spike-LFP phase.
If Assumption 2 holds, then E{P̂1} = E{P̂2}. Also, for
|M| = 2, the equality E{P̂1} = E{P̂2} holds. However,
as |M| → ∞, P̂1 → |E{Z }|2 where the resultant vector
E{Z } equals

E{Z } =

∞∑

nm=1

Pr{N(1) = nm} nm E{U (1)|N(1) = nm}
∞∑

nm=1

Pr{N(1) = nm}nm

.

(4.7)

5 Relationship between the point-field PPC P̂1

and the spike train to field PPC

5.1 Definition of the spike train to field locking indices

We will now demonstrate a relationship between on
the one hand the point-field P̂1 and P̂2 measures,
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and spike train-LFP phase synchronization measures
on the other hand. Suppose we observe M trials of
LFP and spike train signals. Again, let �k,m be the
relative phase between a concurrent LFP segment and
an individual spike at a particular frequency, with the
spike-LFP phase now defined relative to the concurrent
LFP segment (Fig. 2), i.e., not in a centered fashion as
in Section 2.

For all m ∈ M, the cross-spectrum between spike
train and LFP in a given trial is then defined as

Cm ≡ Am

Nm∑

k=1

exp(i�k,m) , (5.1)

where Am is defined as the magnitude of the Fourier
spectrum of the mth LFP signal at frequency f and
the spikes are assigned unit energy at frequency f . The
single-trial resultant length over the individual spike-
LFP phases is defined as

Rm ≡
∣
∣
∣
∑Nm

k=1 Xk,m

∣
∣
∣

Nm
, (5.2)

where Xk,m ≡ exp(i�k,m). Note that 0 ≤ Rm ≤ 1. The
power of the spike-train (at a given frequency) equals
(Nm Rm)2. If at a given frequency all the spikes are in
phase, then the power of the spike train equals N2

m. The
single-trial circular mean spike-LFP phase is defined as

�̄m ≡ arg

(
Nm∑

k=1

Xk,m

)

, (5.3)

and the variables Nm, Rm and �̄m are related by the
equation

Nm∑

k=1

Xk,m ≡ Rm Nm X̄m , (5.4)

where X̄m ≡ exp(i�̄m). Finally, we define the phase
vector Vm ≡ (	{X̄m}, 
{X̄m}), which is depicted in
Fig. 2. Note that �̄m is the relative phase between spike
train and LFP for the mth trial. We define the spike
train to field PLV as the resultant length across spike
train to field phases, i.e. |M|−1 ∑

m∈M X̄m. The spike
train to field PLV is a quantity closely related to the
‘spike-field coherence’ (e.g., see Jarvis and Mitra 2001),
except for the fact that the former ignores amplitude
co-variations and assigns an equal weight to every trial
that contains at least one spike, while the latter weighs
the trials according to the product of LFP and spike
train spectral magnitude, i.e. Am Nm Rm (at a given fre-
quency), and is a concurrent measure of amplitude co-
variations. We may quantify the consistency of relative
phases across trials by directly using the PPC, which

removes the bias of the spike train to field PLV, by
defining

Ŝ2 = 1

|M| (|M| − 1)

∑

m∈M

∑

l∈L
Vm · V l , (5.5)

and we refer to this measure as the uncorrected spike
train to f ield PPC Ŝ2. By normalizing by |M| (|M| − 1),
the measure takes into account that no predictions
about the LFP phase can be made if a trial does not
contain spikes. Let Φ be a random variable identically
distributed to �̄m for all m ∈ M. The statistic Ŝ2 is
an unbiased estimator of its corresponding population
value, which is defined as S2 = |E{exp(iΦ)}}|2 (Vinck
et al. 2010b).

It may occur that neuronal output is highly predictive
of LFP phase, but that a neuron fires only in a small
number of trials, such that the predictive value of the
spike train across all trials is much lower than indicated
by the Ŝ2 measure. To accommodate this, and to assess
to what extent spike trains predict the LFP phase across
all trials, we define the measure

Ŝ(�)
2 = 1

M (M − 1)

∑

m∈M

∑

l∈L
Vm · V l . (5.6)

Note that because |M| ≤ M, the inequality Ŝ(�)
2 ≤ Ŝ2

holds.
In Eq. (5.5), all |M| relative phases are assigned

the same weight. However, the pairwise statistic may
be turned into a weighted pairwise statistic, similar to
the weighted phase-lag index in Vinck et al. (2011),
defining

Ŝ(w) =

∑

m∈M

∑

l∈L
WmWl (Vm · V l)

∑

m∈M

∑

l∈L
WmWl

.

(5.7)

If we define Wm = Rm Nm Am, then the expected
value of the numerator equals the numerator of the
squared spike-field coherence (e.g. see Jarvis and Mitra
2001). A special case of weighing is obtained when we
let Wm = Rm Nm, i.e., the spectral magnitude of the
spike train at a particular frequency, defining

Ŝ1 =

∑

m∈M

∑

l∈L
Rm Rl Nm Nl (Vm · V l)

∑

m∈M

∑

l∈L
Rm Rl Nm Nl

.

(5.8)

We refer to this measure as the uncorrected spike
train to f ield PPC Ŝ1. The rationale behind this
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weighted measure is that every individual spike-LFP
phase is given an equal weight by weighing by Nm Nl,
as will be shown below. Further, we will show that the
weighting factor Rm Rl can be used to correct for the
number of spikes per trial.

5.2 Relationship between point-field PPC and spike
train to field PPC

We now derive a relationship between the point-field
P̂1 measure and the Ŝ1 measure. We observe that the
equations

P̂1 ≡

∑

m∈M

∑

l∈L

Nm∑

k=1

Nl∑

j=1

Uk,m · U j,l

∑

m∈M

∑

l∈L
Nm Nl

=

∑

m∈M

∑

l∈L

(
Nm∑

k=1

Uk,m

)

·
⎛

⎝
Nl∑

j=1

U j,l

⎞

⎠

∑

m∈M

∑

l∈L
Nm Nl

=

∑

m∈M

∑

l∈L

⎛

⎝
Nm∑

k=1

sin(�k,m)

Nl∑

j=1

sin(� j,l) +
Nm∑

k=1

cos(�k,m)

Nl∑

j=1

cos(� j,l)

⎞

⎠

∑

m∈M

∑

l∈L
Nm Nl

=

∑

m∈M

∑

l∈L
Rm Nm Rl Nl Vm · V l

∑

m∈M

∑

l∈L
Nm Nl

(5.9)

hold.
The final expression in Eq. (5.9) is nearly identical

to the right-hand expression in Eq. (5.8). We define the
corrected (using the abbreviation ‘corr.’) spike train to
field PPC Ŝcorr

1 as

Ŝcorr
1 ≡ Ŝ1

∑

m∈M

∑

l∈L
Nm Rm Nl Rl

∑

m∈M

∑

l∈L
Nm Nl

. (5.10)

Note that this measure is, similar to the P̂1 statistic,
not unbiased as a function of the number of trials, un-
less we make the assumption that the single spike-LFP
phases are independent of the spike count (Assumption
3). Similarly, we define the corrected spike train to field
PPC Ŝcorr

2 as

Ŝcorr
2 = 1

|M| (|M| − 1)

∑

m∈M

∑

l∈L
Rm Rl Vm · V l . (5.11)

Similar to the P̂2 measure, this measure is not biased by
the number of trials, even if Assumptions 2 and 3 are
violated. The main difference between the Ŝcorr

1 and the
Ŝcorr

2 measure is that the former assigns an equal weight

to every spike-LFP phase (i.e., �k,m), by weighing the
influence of a trial by Nm Nl, whereas the latter assigns
an equal weight to every phase obtained for a trial
(i.e., �̄m), thereby weighing those spikes heavier that
occurred in trials with few spikes.

If we define the individual spike-LFP phases in
an identical way for P̂1 and Ŝcorr

1 , then the equality
P̂1 = Ŝcorr

1 holds and the measures have mathematically
equivalent definitions. Thus, we conclude that there ex-
ists a simple mathematical relationship between point-
field PPC P̂1 and the uncorrected spike train to field
PPC Ŝ1. Because the point-field P̂1 and P̂2 measures
are unaffected by the number of spikes per trial, we
conclude that the same property holds for the measures
Ŝcorr

1 and Ŝcorr
2 respectively, solving the problem that

their respective uncorrected counterparts can strongly
depend on the number of spikes. We may thus regard
Ŝcorr

1 and Ŝcorr
2 as measures of both the consistency of

individual spike-LFP phases and of the relative phases
between spike trains and LFP signals across trials, with
a correction factor for the number of spikes per trial.

The definitions of P̂1 and P̂2 are equivalent to the
definitions of their respective spike train to field coun-
terparts Ŝcorr

1 and Ŝcorr
2 , expect for the fact that the

individual spike-LFP phases are not computed in the
same way. We predict that, as a consequence of this
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difference in phase estimation, the inequalities P̂1 >

Ŝcorr
1 and P̂2 > Ŝcorr

2 typically hold if Pr{Nm > 1} is small.
This prediction has the following rationale: For spike
train to field phase-synchronization measures, spikes
can fall at arbitrary positions relative to the concurrent
LFP segment (Fig. 2), such that they sometimes fall
close to the borders of the concurrent LFP segment. On
the other hand, for point-field phase-synchronization
measures, they fall per definition at the center of the
LFP segment that is used to compute the spike-LFP
phase (Fig. 1). The instantaneous LFP phase is not
a strict linear function of time, but decorrelates over
time, because neuronal (e.g. gamma or theta) oscilla-
tions contain energy over a relatively large range of
frequencies. We assume that spiking probability at a
given time-point is especially modulated by the local
fluctuations in the LFP around that time-point, but
not by distant past or future fluctuations in the LFP.
The decorrelation of LFP phase across time will then
cause a decrease in the magnitude of the side-lobes
of the spike-triggered LFP average as a function of
time (e.g. see Fig. 1H-I in Fries et al. 2001). If a spike
falls at the border of an LFP segment, then its spike-
LFP phase is determined predominantly from either
past or future LFP fluctuations, and will be computed
based on a larger portion of the LFP signal to which
the spikes are not locked. For the point-field measure,
the spike-LFP phase will be computed based on a
larger portion of the LFP signal to which the spikes
are locked. To counter the decorrelation in LFP phases
across time, the LFP segment could be decreased in
duration. However, this would decrease the frequency
resolution, and thereby increase the amount of spectral
leakage.

5.3 Dependence of spike train to field PPC
on the mean and variance of the spike count

From the properties of the resultant length Rm it fol-
lows that Ŝ1 and Ŝ2 are statistically dependent on N.
The equation 0 ≤ Rm ≤ 1 holds, and Rm is positively
biased by Nm, i.e. approaches its asymptotic value from
above (e.g. see Vinck et al. 2010b). Thus, given a fixed
distribution of individual spike-LFP phases, it follows
that the expected values of Ŝ1 and Ŝ2 are positively
dependent on the expected value of Nm, consistent with
previous results on the spike-field coherence (Zeitler
et al. 2006; Lepage et al. 2011). There are two cases
in which Ŝ1 and Ŝcorr

1 are approximately equal. Firstly,
if for all m ∈ {1, . . . , M}, Pr{Nm > 1} = 0, then Ŝ1 =
Ŝcorr

1 and Ŝ2 = Ŝcorr
2 . Secondly, if the consistency of the

individual spike-LFP phases is very high, then Rm is
close to 1, and Ŝ1 ≈ Ŝcorr

1 . However, if the consistency
of the phases is very low and the number of spikes per
trial is large, then Ŝ1 will be small, yet much larger than
Ŝcorr

1 (Fig. 6).
These relationships can be intuitively explained as

follows. The statistics Ŝ1 and Ŝ2 measure the consis-
tency of relative phases across trials. For a given trial,
the computation of a relative phase is based on av-
eraging across multiple single spike-LFP phases. The
average of multiple single spike-LFP phases is more
consistent than the single spike-LFP phases themselves,
because averaging will remove variance across the sin-
gle spike-LFP phases. If the single spike-LFP phases
are only weakly consistent, then the average over many
single spike-LFP phases will be much more consistent
than the single spike-LFP phases themselves.

However, the expression Rm Rl is a function not only
of Nm and Nl, but also of the statistical dependence be-
tween spike-LFP phases. If spike-LFP phases become,
ceteris paribus, more positively (negatively) dependent,
then the expected value of Rm will increase (decrease),
and consequently the expected values of Ŝ1 and Ŝ2

will decrease (increase). Thus, the expected values of
Ŝ1 and Ŝ2 depend on three main factors, namely the
number of spike-LFP phases per trial, the statistical
dependence of the individual spike-LFP phases, and

Fig. 6 Comparison of
uncorrected and corrected
spike train to field PPC Ŝ1.
(a) Y-axis: corrected spike
train to field PPC Ŝcorr

1
(dotted) and uncorrected
spike train to field PPC Ŝ1
(solid). X-axis: number of
spikes per trial. Different
lines represent different
coupling strength, with the
von Mises dispersion
parameter
κ ∈ {0.1, 0.5, 1, 20}.
(b) Empirically observed and
analytically predicted
correction factor for spike
train to field PPC Ŝ1 (y-axis)
as a function of the number of
spikes per trial (x-axis), again
for κ ∈ {0.1, 0.5, 1, 20}

(a)

(b)
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the consistency of the individual spike-LFP phases. The
Ŝcorr

1 and Ŝcorr
2 measures remove the dependence on the

first two factors and offer a purer measure of the last
factor.

To demonstrate the relationship between the ex-
pected value of Ŝ1 and the number of spikes by
simulations, we drew samples of spike-LFP phases from
a von Mises distribution with dispersion parameter
k ∈ {0.1, 0.5, 1, 20}. The number of spikes per trial Nm

was fixed, such that for all m, Nm ∈ {1, . . . , 100}. The
number of trials M equaled 100. Figure 6(a) shows
the estimated expected values of Ŝcorr

1 (dotted) and
Ŝ1 (solid) as a function of the number of spikes per
trial. The Ŝcorr

1 measure attained values independently
of Nm. For Nm = 1, the equality Ŝcorr

1 = Ŝ1 held. As Nm

increased, Ŝ1 strongly increased. The ratio Ŝcorr
1 /Ŝ1 in-

deed had the form of the correction factor in Eqs. (5.10)
(Fig. 6(b)). Note that for large expected values of Ŝcorr

1 ,
Ŝ1 rapidly approached one, while it rose linearly with
the number of spikes per trial for a small expected
value of Ŝcorr

1 . This linear relationship implies that an
x% increase in firing rate, without a concurrent change
in the distribution of single spike-LFP phases, entails
an x% increase in uncorrected spike train to field PPC
Ŝ1 for low expected values of Ŝ1 and a relatively small
number of spikes per trial.

If our aim is to compare Ŝ1 or Ŝ2 between two exper-
imental conditions that have a different distribution of
spike counts, then it is insufficient that the means of the
spike counts are equal. As we will now show, other pa-
rameters of the distribution of spike counts, especially
the variance, should be equal as well, and these para-
meters may very well differ between conditions. For
example, the variance of spike counts can be a function
of attention (e.g. Mitchell et al. 2007). To demonstrate
the influence of the spike count variance (across trials),
we compared two conditions with an equal average
spike count, but with a different variance of the spike
counts. Phase samples were drawn from a von Mises
distribution with dispersion parameter κ = 1, and we
set the number of trials M = 100. In the first condition,
the variance of the counts equaled zero (zero-variance
condition). In the second condition, the spike count
was distributed according to a Poisson distribution, i.e.
the spike count variance equaled the mean spike count
(Poisson condition). Figure 7 shows the difference in Ŝ1,
Ŝ2 and Ŝ�

2 between the Poisson and the zero-variance
condition, as a function of the expected spike count per
trial, E{Nm}. The Ŝ1 measure attained higher values for
the Poisson distribution than for the zero-variance con-
dition. The cause of this difference is that the weights

Fig. 7 Influence of firing rate variance on spike train to field
phase synchronization measures. Dashed: spike train to field PPC
Ŝ1 for Poisson distribution minus spike train to field PPC Ŝ1 for
zero-variance distribution, as a function of the number of spikes
per trial. Positive values indicate a larger Ŝ1 value for Poisson
distribution. Solid: as for dashed, but now for spike train to field
PPC Ŝ2. Dashed-dotted: as solid, but now for spike train to field
PPC Ŝ�

2

Nm in Eq. (5.8) give a stronger weight to trials with
more spikes, and that the average spike-LFP phase
obtained from these trials is more reliable. The Ŝ2

measure on the other hand showed two opposite trends.
Because trials with zero spikes (i.e., Nm = 0) are left
out in Eq. (5.5), the effective firing rate was higher for
the Poisson condition, which increased the value of Ŝ2

for the Poisson condition for small E{Nm}. However,
the results of Fig. 6(a) imply that the consistency of
�̄m does not depend linearly on Nm, but is a concave
function of Nm. This concavity led to a relative decrease
in the value of Ŝ2 for the Poisson condition, an effect
which became dominant as E{Nm} ≥ 5. For the Ŝ�

2 mea-
sure, only the latter effect was present, causing the Ŝ�

2
measure to be higher for the zero-variance condition
than for the Poisson condition.

6 Discussion

6.1 Relationship between firing rate and uncorrected
spike train to field PPC measures

We demonstrated that the spike train to field PPC
measures can be corrected for the positive dependence
on the number of spikes per trial. However, correcting
for this positive dependence does not preclude the
possibility that the consistency of the single spike-LFP
phases (i.e., point-field phase-synchronization) is cor-
related with the firing rate. Still, the latter correlation
would be the result of a physiological relationship,
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and a change in the firing rate could be the conse-
quence of a change in spike-LFP phase-coupling as
well. On the other hand, the positive effect of the firing
rate on the uncorrected spike train to field PPC mea-
sures is a result of a statistical relationship, i.e. higher
(lower) spike train to field phase-synchronization ap-
pears because a neuron has more (less) spikes per
trial.

No a priori statements can be made about the cor-
relation between the consistency of single spike-LFP
phases and the firing rate. Independent variation can
be caused by subsampling spike trains, or by a failure
of one’s measurement or spike-sorting system to detect
a spike. A negative correlation between the firing rate
and the consistency of spike-LFP phases may be a
result of an increase in the amplitude of inputs that
are not coherent with the LFP (Zeitler et al. 2006), or
it may be a consequence of the inhibitory nature of
the rhythm generators (Gieselmann and Thiele 2008;
van Wingerden et al. 2010a; Donoghue et al. 1998;
Jensen and Mazaheri 2010). In case of such a negative
correlation, it can occur that the point-field PPC mea-
sures decrease while the increase in firing rate causes
a simultaneous increase in the uncorrected spike train
to field PPC measures. A positive correlation between
point-field phase synchronization and firing rate can
be found in visual cortex, where visual stimulation and
high contrast stimuli can increase both firing rates and
the precision of gamma-band synchronization (Gray
et al. 1989; Henrie and Shapley 2005). Selective visual
attention can increase both gamma-band synchroniza-
tion and firing rate (Fries et al. 2001, 2008; Gregoriou
et al. 2009) in V4 and FEF (but not in V1 (Chalk et al.
2010)). If the firing rate is positively correlated with
the consistency of individual spike-LFP phases, then
both the point-field PPC measures and the uncorrected
spike train to field PPC measures increase, although
the proportional increase in the value of the latter will
typically be larger.

6.2 Comparison between single-unit field
and multi-unit field phase synchronization
measures

Spike-field phase synchronization measures can be
based either on single unit activity (SUA), or multi unit
activity (MUA). Because MUA contains more spikes
per second than SUA, and because spiking activity of
different neurons is partially driven by uncorrelated
inputs which renders their respective spike-LFP phases

more independent, MUA-field measures will in general
attain higher uncorrected spike train to field PPC val-
ues, as shown by Zeitler et al. (2006).

This relative gain of the MUA is not present for
the point-field PPC and corrected spike train to field
PPC measures however. In fact, we predict that the
point-field PPC measures typically attain lower values
for MUA-field pairs than SUA-field pairs: Different
neuronal cell types, e.g. fast spiking basket cells and
pyramidal cells, fire preferentially at different LFP
phases (Klausberger et al. 2003; Tukker et al. 2007;
Csicsvari et al. 2003; Hasenstaub et al. 2005; Okun
and Lampl 2008). Furthermore, the preferred LFP-
phase of spiking of neurons in the hippocampus and
visual cortex is input-dependent (Vinck et al. 2010a;
O’Keefe and Recce 1993). This divergence of preferred
LFP-phases, a factor that was ignored in Zeitler et al.
(2006), tends to broaden the distribution of individ-
ual spike-LFP phases for the MUA. The effect of
linearly mixing spiking activity from different cells is
similar to linearly mixing trials across experimental
conditions with different mean spike-LFP phases (Sec-
tion 3). Thus, MUA-field point-field synchronization
will typically be weaker than SUA-field point-field
synchronization.

6.3 Comparison of point-field PPC P̂0 and PPC P̂1

In Sections 6.3, 6.4 and 6.5, we will discuss the advan-
tages and disadvantages of the developed measures,
whose properties are summarized in Table 1. The P̂1

estimator (Eq. (3.1)) solves the problem that the P̂0

measure can be affected by dependencies between
spike-LFP phases from the same trial. We believe that
the effect of dependencies between spike-LFP phases
on the P̂0 measure should be considered undesirable,
and that the P̂1 measure is therefore to be preferred. It
should be emphasized however that e.g. refractoriness
or burstiness can cause a true change in the consistency
of spike-LFP phases, which should be detected by a
point-field phase synchronization measure. However,
besides changing the consistency of spike-LFP phases,
refractoriness and burstiness also introduce a statistical
dependence between spike-LFP phases from the same
trial, an effect which should be distinguished from the
change in the distribution of spike-LFP phases. For a
large number of trials, P̂0 will be exclusively deter-
mined by the modulation of spiking probability with
LFP phase. For a small number of trials, P̂0 can also
determined by the dependencies between spike-LFP
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phases. For example, spiking probability may not be
modulated with LFP phase, however burstiness can
cause E{P̂0} to exceed zero. The question that we
are interested in is whether neurons tend to fire con-
sistently at particular phases of the LFP oscillation,
i.e., whether the ongoing phase of the LFP can be
predicted from the observation of a spike. However,
a dependence between spike-LFP phases will affect
the P̂0 measure even if we replace the LFP by a
white noise signal that bears no relationship to neu-
ronal firing. The availability of a phase consistency
measure that alleviates the dependency from firing
rate and history-effects goes in the same direction as
the derivation of statistically independent measure of
single cell spiking intensity and cell-cell interaction in
the information geometry paradigm (Nakahara et al.
2006).

6.4 Comparison of point-field PPC P̂1 and PPC P̂2

The P̂2 (Eq. (4.3)) estimator differs from the P̂1 mea-
sure in that the former cannot be affected by dependen-
cies between the spike-LFP phase and the spike count.
Whether or not P̂2 is a better measure than P̂1 depends
on the properties of the data, and our measurement
goals. If there is no relationship between the spike
count and the spike-LFP phase distribution, then the
P̂1 estimator is to be preferred above the P̂2 estimator,
because the former has a smaller estimator variance.
Whether spike count and spike-LFP phase are indeed
dependent may be tested by using the data itself. On
the other hand, if there is a relationship between the
spike count and the spike-LFP phase distribution, then
the P̂1 and P̂2 measures estimate a different population
parameter. The question is then, what do P̂1 and P̂2

measure?
The P̂1 measure gives an answer to the following

question: To what extent is the probability of ob-
serving a spike modulated with LFP phase? This fol-
lows from the fact that it simply counts how many
spikes fell at a particular phase, and characterizes
that distribution. The probability of observing a spike
in a small interval [φ(t), φ(t) + δ] is approximately
equal to

Pr{s = 1 | φ(t)}

≈
∞∑

nm=1

Pr{Nm = nm} f (φ(t) | Nm = nm)

(

nm
δ

T

)

,

(6.1)

where s is a binary variable indicating the occurrence of
a spike, f (φ) is a probability density function modeling



J Comput Neurosci (2012) 33:53–75 71

the modulation of spiking probability with LFP phase
φ(t) ∈ [−π, π ]. The modulation of spiking probability

with LFP phase can then be quantified by the resultant
vector length

R =
∣
∣
∣
∫ φ(t)=π

φ(t)=−π
Pr{s = 1 | φ(t)} exp(i φ(t)) dφ(t)}

∣
∣
∣

∫ φ(t)=π

φ(t)=−π
Pr{s = 1 | φ(t)} dφ(t)

=
∫ φ(t)=π

φ(t)=−π

∑∞
nm=1 Pr{Nm = nm} f (φ(t)|nm) nm exp(i φ(t))dφ(t)

∫ φ(t)=π

φ(t)=−π

∑∞
nm=1 Pr{Nm = nm} f (φ(t)|nm)nm dφ(t)

=
∑∞

nm=1 Pr{Nm = nm}nm
∫ φ(t)=π

φ(t)=−π
exp(i φ(t)) f (φ(t)|nm)dφ(t)

∑∞
nm=1 Pr{Nm = nm}nm

. (6.2)

If for all nm ≥ 1 we let E{exp(i�)|N(1) = nm} =∫ φ(t)=π

φ(t)=−π
exp(i φ(t)) f (φ(t)|Nm = nm) dφ(t), then this

equation equals Eq. (4.7), i.e. the asymptotic value that
the P̂1 measure is estimating.

The question that the P̂2 measure answers is the
following: If we know that a spike occurred at a certain
time-point, then to what extent can the LFP-phase
at the time of spiking be predicted, without further
knowledge of the spike count? In this case, the spike
has already occurred, and the estimated phase vector is
given by Eq. (4.6). If we would have used information
about the spike count then the expected spike-LFP
phase would have changed if spike count and spike-LFP
phase were statistically dependent on each other. Thus,
the P̂2 measure tells us to what extent we can predict
the instantaneous LFP-phase from the occurrence of a
spike, if we ignore the information in the spike count,
i.e. if we assume that all spike counts are equally likely.

There are two cautionary remarks about the use of
the P̂1 measure however. Firstly, when we mix experi-
mental conditions it should be realized that the average
will then be dominated by the experimental conditions
with the most spikes. Secondly, while the P̂1 measure
is not biased by the number of spikes or dependencies
between spike-LFP phases, it can still be biased as a
function of the number of trials. The fact that the P̂1

measure may in that case have some statistical bias
can be dealt with by using e.g. randomization statistics
(e.g. Maris et al. 2007). On the other hand, a statistical
dependence between spike count and spike-LFP phase
cannot ‘create’ an expected P̂1 value that exceeds zero:
If for all trials, firing probability is not modulated with
LFP phase, then E{P̂1} = 0.

The P̂2 measure may sometimes detect a relationship
between spiking probability and the LFP phase, while
the P̂1 measure does not, because the LFP phase
preference of a neuron can sometimes become visible
only over trials. For example, if a neuron has a firing

rate non-stationarity then the modulation of spiking
probability with LFP phase may only become apparent
over trials.

6.5 Comparison of point-field and corrected spike train
to field phase synchronization measures

The corrected spike train to field phase synchroniza-
tion measures solved the problem that the uncorrected
spike train to field phase synchronization measures
are strongly dependent on the spike count distribu-
tion. The only difference between the point-field and
corrected spike train to field phase synchronization
measures is that the latter define the phase in a non-
centered way, whereas the former define spike-LFP
phases in a centered way. In fact, both measures are
mathematically equivalent if the individual spike-LFP
phases are defined in the same manner. In practice,
this means that both measures are roughly equivalent
if the windows that are used to determine spike-LFP
phases are equally long, provided that the LFP phase
does not decorrelate on a too rapid time-scale. An
advantage of the spike train to field approach is that
it is computationally more efficient, because in case of
point-field PPC measures, the instantaneous LFP phase
needs to be determined for every spike separately.

If the spike-LFP phases are defined in a centered
way, then the point-field PPC measures to what extent
the occurrence of a spike can be predicted from the
instantaneous, ongoing LFP phase, or, vice versa, to
what extent the instantaneous LFP phase can be pre-
dicted from the observation of a spike. Spike train to
field phase-synchronization measures, with the phase
defined in a non-centered way, indicate to what extent
the phase of an LFP signal at arbitrary moments in
time, including those moments in time where no spike
was observed, can be predicted from the observation
of the concurrent spike train. Because spike train to
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field phase-synchronization measures are inspired on
the classical EEG-EEG coherence approach (by taking
the complete spike train signal) we expect them to be
more closely related to EEG-EEG measures or the
coherence of the membrane potential of a neuron to
the LFP.

The measures and estimation procedures described
in this paper are made available in the open source
FieldTrip toolbox (http://www.ru.nl/neuroimaging/
fieldtrip).

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which
permits any noncommercial use, distribution, and reproduction
in any medium, provided the original author(s) and source are
credited.
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