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abstract

 

Members of the ligand-gated ion channel superfamily mediate fast synaptic transmission in the ner-
vous system. In this study, we investigate the molecular determinants and mechanisms of ion permeation and ion
charge selectivity in this family of channels by characterizing the single channel conductance and rectification of

 

�

 

1 homomeric human glycine receptor channels (GlyRs) containing pore mutations that impart cation selectivity.
The A-1’E mutant GlyR and the selectivity double mutant ([SDM], A-1’E, P-2’

 

�

 

) GlyR, had mean inward chord
conductances (at 

 

�

 

60 mV) of 7 pS and mean outward conductances of 11 and 12 pS (60 mV), respectively. This
indicates that the mutations have not simply reduced anion permeability, but have replaced the previous anion
conductance with a cation one. An additional mutation to neutralize the ring of positive charge at the extracellu-
lar mouth of the channel (SDM

 

�

 

R19’A GlyR) made the conductance–voltage relationship linear (14 pS at both
60 and 

 

�

 

60 mV). When this external charged ring was made negative (SDM

 

�

 

R19’E GlyR), the inward conduc-
tance was further increased (to 22 pS) and now became sensitive to external divalent cations (being 32 pS in their
absence). The effects of the mutations to the external ring of charge on conductance and rectification could be fit
to a model where only the main external energy barrier height for permeation was changed. Mean outward con-
ductances in the SDM

 

�

 

R19’A and SDM

 

�

 

R19’E GlyRs were increased when internal divalent cations were absent,
consistent with the intracellular end of the pore being flanked by fixed negative charges. This supports our hy-
pothesis that the ion charge selectivity mutations have inverted the electrostatic profile of the pore by introducing
a negatively charged ring at the putative selectivity filter. These results also further confirm the role of external
pore vestibule electrostatics in determining the conductance and rectification properties of the ligand-gated ion
channels.
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I N T R O D U C T I O N

 

The ligand-gated ion channels (LGICs)* mediate fast
synaptic transmission in the central and peripheral ner-
vous system. In most physiological conditions, the cat-
ion-selective nicotinic acetylcholine receptor channels
(nAChRs) and the serotonin type 3 receptor channels
(5-HT

 

3

 

Rs) mediate depolarizing, excitatory responses,
whereas the anion selective 

 

�

 

-aminobutyric acid recep-
tor channels (GABA

 

A

 

Rs, GABA

 

C

 

Rs) and glycine recep-
tor channels (GlyRs) mediate hyperpolarizing, inhibi-
tory responses. All the members of this channel super-
family are pentameric proteins, with the M2 domain of
each subunit contributing to the channel pore. The M2

domain contains charged amino acids at their extracel-
lular, intracellular, and cytoplasmic borders (Fig. 1).
The cytoplasmic ring of charge is negative in all the
LGICs, whereas the intracellular and extracellular rings
are negative in the cation-selective nAChRs and posi-
tive in the anion-selective GlyRs and GABARs (for re-
views see Changeux, 1993; Unwin, 1993; Karlin and Ak-
abas, 1995). The role of these charged rings in ion per-
meation in the nAChR has been extensively studied.
Monovalent cation conductance is decreased as the
charge on these rings is decreased, with the greatest ef-
fects occurring for mutations to the intermediate ring
(Imoto et al., 1988). Furthermore, in the nAChR, the
extracellular and intracellular rings of charge provide a
structural basis for inhibition of monovalent cation
conductance by extracellular and intracellular divalent
cations, respectively (Imoto et al., 1988; Kienker et al.,
1994; Forster and Bertrand, 1995). Much less detail is
known about the role of charged rings in permeation
in other members of the LGIC family, although muta-
tions which neutralize the extracellular ring of positive
charge in GlyRs reduce inward anion conductance
(Langosch et al., 1994; Rajendra et al., 1995).
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Abbreviations used in this paper:

 

 5-HT

 

3

 

Rs, serotonin type 3 receptor-
channels; GABA

 

A

 

R, 

 

�

 

-aminobutyric acid receptor channel; GlyR, gly-
cine receptor-channel; LGIC, ligand-gated ion channel; nAChR, nic-
otinic acetylcholine receptor channel; R.I., rectification index; SDM,
selectivity double mutant; STM, selectivity triple mutant; 293 cell, hu-
man embryonic kidney 293 cell.
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Mutations to the nAChR which neutralize or invert
the charge on the extracellular ring of the nAChR have
not, however, been reported to alter ion charge selec-
tivity. Instead, the molecular basis for cation or anion
selectivity within the LGIC family is mediated by other
differences in the amino acid sequence of the pore
forming M2 domains. Our accompanying paper (Kera-
midas et al., 2002, this issue) clearly demonstrated the
importance of the region around the intermediate ring
of charge in determining ion charge selectivity. This re-
gion is thought to be where the pore is most con-
stricted (Lester, 1992; Imoto, 1993; Wilson and Karlin,
1998). A single point mutation within this region (A-
1’E GlyR) was sufficient to convert the channel to being
cation selective, whereas the addition of P-2’

 

�

 

 to this
mutant (selectivity double mutant [SDM] or A-1’E,
P-2’

 

�

 

 GlyR) produced a more cation-selective channel
which also allowed the permeation of divalent cations.
Additional changes to the charge at the extracellu-
lar ring, neutralization (SDM

 

�

 

R19’A GlyR) or inver-
sion (SDM

 

�

 

R19’E GlyR) of the extracellular ring of
charged arginine residues, accentuated Ca

 

2

 

�

 

 perme-
ability, but did not further increase relative monovalent
cation to anion selectivity. This constricted region also

 

plays an important role in determining ion charge se-
lectivity in the 

 

�

 

7 homomeric nACh (Galzi et al., 1992;
Corringer et al., 1999), although the single inverse (E-
1’A) mutation did not convert the nAChR into being
anion-selective. The E-1’A mutation had to be coupled
with the insertion of a proline between 

 

�

 

1’ and 

 

�

 

4’,
and an additional mutation at the 13’ or 9’ position was
necessary to observe robust currents. It has been in-
ferred that ion-charge selectivity is achieved by interac-
tions between permeating ions and the peptide back-
bone, rather than with charged amino acid side chains
(Corringer et al., 1999). This has led to suggestions
that selectivity conversion involves some quite marked
structural rearrangement of the channel pore, espe-
cially around this constricted region, and is not simply
due to the addition or removal of charged amino acid
side chains (Corringer et al., 1999; Gunthorpe and
Lummis, 2001). We (Barry and Fatima-Shad, 1995;
Keramidas et al., 2000, 2002, this issue) and others
(Imoto, 1993) have postulated that selectivity conversion
primarily arises due to a change in the amino acid side
chains which may contribute to the intrinsic electrical
potential of the pore. That is, the lysine at 0’ becomes
exposed and electrostatically dominant in the anion-

Figure 1. Amino acids in the M2 domains of the �1 WT (Grenningloh et al., 1987) and the cation-selective mutant GlyRs. For compari-
son, the amino acids in the M2 domain of the �7 subunit of the nAChR (Couturier et al., 1990) are also shown. The individual mutations
introduced into the �1 WT GlyR, which confer cation selectivity, are circled. For the GlyRs, filled boxes illustrate basic or acidic residues in
the cytoplasmic (CYT), intermediate (INT), and extracellular (EXT) rings of charged amino acids (compare Imoto et al., 1988). The resi-
due numbering system, indicated with a’(prime), is taken relative to the internal charged arginine (R0’) with the conventional GlyR pri-
mary sequence number shown in parenthesis.
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selective mutated nAChRs, whereas, in the cation selec-
tive GlyR mutants, the arginine at 0’ becomes shielded
or electrostatically dominated by the introduced E-1’.
The presence of a negatively charged side chain at the
intracellular end of the pore in the cation-selective mu-
tant GlyRs should facilitate cation conductance. Fur-
thermore, it may create a site(s) for mediating an inhi-
bition of monovalent cation conductance by divalent
cations, as occurs in nAChRs (Imoto et al., 1988; For-
ster and Bertrand, 1995) and other cation channels
(e.g., Heinemann et al., 1992; Root and MacKinnon,
1993; Yang et al., 1993).

The aim of this study was to gain further insight
into permeation in LGICs by investigating the single
channel conductance and rectification properties
of these cation selective mutant GlyRs. Initially,
we wished to quantify the conductances to assess
whether the mutants simply abolished chloride per-
meability or had replaced the previous wild-type
(WT) GlyR chloride conductance with a significant
cation conductance. Primarily, however, we wished to
investigate whether these mutant GlyR pores were
flanked by rings of charged amino acids and, if so, in-
vestigate their influence on conductance and rectifi-
cation. Our hypothesis of the structural mechanisms
underlying conversion of ion-charge selectivity in the
cation-selective mutant GlyRs predicts a ring of nega-
tive charge at the intracellular end of the pore. Fi-
nally, we explored what effects these mutations also
had on the sensitivity to glycine and on the current
activation and decay kinetics.

 

M A T E R I A L S  A N D  M E T H O D S

 

Transient Expression of Recombinant 

 

�

 

1 Subunit GlyRs in 
293 Cells

 

The molecular biological techniques are identical to those de-
scribed previously (Keramidas et al., 2000). Briefly, complemen-
tary DNA (cDNA) encoding the 

 

�

 

1 subunit of the human GlyR
was subcloned into the pCIS expression vector and used to trans-
fect human embryonic kidney 293 (293) cells using the calcium
phosphate precipitate method of Chen and Okayama (1987).
The 293 cells were cotransfected with the expression marker,
CD4 surface antigen, and used for recordings between 1–3 d fol-
lowing transfection. A range of 

 

�

 

1 GlyR mutant channels were in-
vestigated in this study, all of which had point mutations in, or
flanking, the M2 transmembrane domain, as illustrated in Fig. 1.
These were: (a) the A-1’E (A251E) mutant, (b) SDM with A-1’E
and P-2’

 

�

 

 (P250

 

�

 

), (c) the SDM

 

�

 

R19’A mutation with R19’A
(R271A), P-2’

 

�

 

, and A-1’E, and (d) the SDM

 

�

 

R19’E mutation
with R19’E (R271E), P-2’

 

�

 

, and A-1’E.

 

Solutions

 

All solute concentrations given below are in mM. The standard
intracellular (pipette) solution consisted of: 145 NaCl, 2 CaCl

 

2

 

, 2
MgCl

 

2

 

, 10 HEPES, 5 EGTA adjusted to pH 7.3 with NaOH. The
standard extracellular (bath) solution consisted of: 145 NaCl, 2
CaCl

 

2

 

, 2 MgCl

 

2

 

, 10 HEPES, 10 glucose, adjusted to pH 7.4 with

NaOH. In some experiments Ca

 

2

 

�

 

 and Mg

 

2

 

�

 

 were omitted from
the bath and pipette solutions to give nominally divalent free so-
lutions. Liquid junction potentials arising from pipette and bath
solutions were calculated using the Windows version of the soft-
ware package 

 

JPCalc

 

 (Barry, 1994). Experiments were performed
at a room temperature of 21 

 

�

 

 2

 

�

 

C.
For the single channel recordings, and for the macroscopic

current concentration-response curve data, glycine was added to
the bath using a slow, gravity-fed bath perfusion system. For the
whole-cell current recordings, glycine was applied directly to the
cell under study using a gravity-fed parallel array of polythene mi-
croperfusion tubes mounted on an electromechanical microma-
nipulator (open pipette response times 

 

�

 

15–20 ms).

 

Electrophysiology

 

All patch pipettes were pulled using a two-stage electrode puller
(Sutter Instruments Co.) and fire-polished. Borosilicate haemat-
ocrit tubes (Vitrex-1601), with resistances, when filled with intra-
cellular solution and measured in the bath solution, between 1.4
and 2.7 M

 

	

 

, were used for whole-cell recordings. For these re-
cordings, series resistances ranged between 2 and 11 M

 

	

 

 and
were compensated for between 75–80%. Whole-cell membrane
currents were recorded using an Axopatch-1D amplifier, digi-
tized using a Digidata 1200 A/D board and recorded using

 

pCLAMP 8

 

 software (all from Axon Instruments, Inc.) on a Pen-
tium 166 MHz computer. Currents were filtered with the 4-pole
Bessel filter (provided on the amplifier) at a 

 

�

 

3 dB setting of 500
Hz and acquired at a sampling frequency of 1 kHz.

For single channel experiments, patch pipettes were made us-
ing thick-walled borosilicate glass capillaries (GC150F-15; Clark
Electromedical Instruments). These were generally coated with
Sylgard (Dow Corning) and fire-polished before use to give final
resistances of 8–15 M

 

	

 

 when filled with pipette solution. Single
channel currents were recorded from excised outside-out mem-
brane patches, typically held at membrane potentials between 60
and 

 

�

 

60 mV, in response to the bath application of glycine. Cur-
rents were recorded with 

 

pCLAMP 8

 

 software and an Axopatch
200B amplifier (Axon Instruments, Inc.) and were digitized at 10
kHz directly onto the hard disk of a 166 MHz Pentium computer
(via a Digidata 1200; Axon Instruments, Inc.) after filtering with
the amplifier’s 4-pole Bessel filter at a 

 

�

 

3 dB setting of 2 kHz.

 

Data Analysis

 

Single channel current amplitudes were quantified by direct
measurements using horizontal cursors placed on the estimated
mean baseline and open current levels and by the mean of Gaus-
sian distributions that were fitted to all-point amplitude histo-
grams (bin sizes: 0.03–0.10 pA) using a least squares minimiza-
tion procedure. All analysis used 

 

pCLAMP 8

 

 software (Axon In-
struments, Inc.). Additional digital Gaussian filtering up to 700
Hz was applied to some records. In these situations, the conduc-
tance values obtained were confirmed by analyzing the same re-
cordings, either unfiltered or filtered less. All-point histograms
were constructed from selected sections of the recordings with
transitions between baseline current and a clear single channel
open current level. Conductances were calculated by dividing
the current by the driving force (V

 

m

 

 

 

�

 

 V

 

rev

 

), with V

 

rev

 

 being ap-
proximated to zero for these NaCl solutions that are very close to
symmetrical. In some patches a subconductance state was ob-
served and the corresponding histogram was fit significantly bet-
ter with the sum of three, rather than two, Gaussian distributions.
As these subconductance states were rare and inconsistent, only
the dominant conductance level has been further analyzed and
reported here. The dominant conductance state was also typi-
cally the largest conductance level.
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Off-line analysis of the rise and decay times for whole cell cur-
rents were conducted using 

 

Clampfit

 

 (

 

pCLAMP 8,

 

 Axon Instru-
ments). All currents were elicited at a holding potential of 

 

�

 

40
mV in response to a 5 s application of a supramaximal glycine
concentration. The time taken for the current amplitude to rise
from 10 to 90% of its peak value, and the extent of current decay
(“fractional decay”) between the peak current and the current
amplitude at the end of the glycine application period, was mea-
sured. If this fractional decay exceeded 5% of the peak value
then a single exponential function was fit to the decay. Rise times
and decay times were measured in each experiment and then av-
eraged. All fits gave r

 

2

 

 values above 0.90.
Concentration-response curves from individual experiments

were fitted to the following Hill equation (Eq. 1) using a least
squares minimization procedure (

 

SigmaPlot

 

; Jandell Scientific),
and the EC

 

50

 

 and n

 

H

 

 values were then averaged for each mutant
GlyR. For display, the data from each experiment were normal-
ized with respect to the I

 

max

 

 value, averaged and then these mean
data were fitted to Eq. 1.

 

(1)

 

where I

 

glycine

 

 

 




 

 the current activated by a given concentration of
glycine, I

 

max

 

 

 




 

 the maximal current activated by glycine, n

 

H

 

 

 




 

the Hill coefficient, and EC

 

50

 

 

 




 

 the concentration of glycine
which elicits a current that is 50% of I

 

max

 

.
Statistical analysis used the paired or unpaired Student’s 

 

t

 

 test,
as appropriate. All data are expressed as mean 

 

�

 

 SEM.

 

R E S U L T S

 

Macroscopic Current Kinetics and Concentration
Response Curves

 

Before investigating the single channel properties of the
mutant GlyRs, we first examined the macroscopic cur-
rent kinetics and sensitivity to glycine. The rate of
whole-cell current activation and decay, in response to
relatively rapid application of a supramaximal glycine con-
centration, was examined in WT GlyRs and in the cation-
selective GlyRs (SDM, SDM

 

�

 

R19’A, SDM

 

�

 

R19’E, and
A-1’E [Fig. 2 A]), the results of which are summarized in
Table I. All the cationic mutant GlyRs showed a slower
rise in current, particularly the three SDM-based GlyRs,
which took up to 

 

�

 

3 s to reach the peak amplitude, as
opposed to 

 

�

 

100 ms in the WT GlyRs. Even more strik-

Iglycine Imax 1 EC50
nH+ [glycine]nH⁄( )⁄=

 

ing is the apparent total lack of receptor desensitization
in these SDM-based GlyRs. The current amplitude de-
cayed by 

 

�

 

5% when measured 2–3 s after the current
peak, as opposed to an exponential decline to 

 

�

 

50% of
the peak current in the WT GlyRs. In contrast, the A-1’E
mutant GlyR displayed even greater fractional decay (by
95%) than the WT GlyR (48% fractional decay).

Concentration-response curves were generated for the
SDM-based GlyRs using macroscopic current recordings
in excised outside-out patches in response to slow bath
application of glycine. As the whole-cell currents for the
SDM-based set of mutant GlyRs showed virtually no de-
sensitization during relatively rapid and maintained ap-
plications of glycine (above), slow bath perfusion should
still provide an accurate measurement of peak current
amplitude. This was not, however, an appropriate proto-
col for investigating the concentration-response proper-
ties of the rapidly desensitizing A-1’E mutant GlyR. The
mean data is displayed in Fig. 2 B, which also includes, for
comparison, concentration-response data obtained from
a previous study on WT GlyRs using whole cell recordings
and relatively rapid perfusion (Moorhouse et al., 1999;
see also De Saint Jan et al., 2001). All mutant GlyRs
showed a rightward shifted concentration-response curve
compared with the WT GlyR. For the SDM and the
SDM

 

�

 

R19’E GlyRs, the extent of this shift was compara-
ble, with an 

 

�

 

20-fold increase in EC

 

50

 

 to 420 

 

�

 

 80 

 

�

 

M
(

 

n

 

 

 


 

 

3) and to 500 

 

�

 

 70 

 

�

 

M (

 

n

 

 

 


 

 

3), respectively. The
SDM

 

�

 

R19’A GlyR showed the largest rightward shift,
with an 

 

�

 

400-fold increase in EC

 

50

 

 to 8,300 

 

�

 

 800 

 

�M
(n 
 3). The Hill coefficients for the three SDM-based
GlyRs were reduced from 3.9 � 0.9 in the WT (Moor-
house et al., 1999) to mean values of 1.90 � 0.32 (SDM,
n 
 3), 1.44 � 0.05 (SDM�R19’A, n 
 3), and 1.70 �
0.25 (SDM�R19’E, n 
 3). The mean Imax values, which
varied markedly from membrane patch to patch, ranged
from �50 to 300 pA across the set of GlyR mutants.

Conductance and Rectification in WT �1 GlyRs

Outside-out membrane patches excised from 293 cells
expressing WT GlyRs displayed clear single channel

T A B L E  I

Activation and Desensitization Rates of WT and Mutant GlyR Whole-cell Currents

WT (6) A-1’E (7) SDM (9) SDM�R19’A (8) SDM�R19’E (7)

Time to peak (ms) 51 � 14 340 � 35 860 � 210 2190 � 390 2400 � 560

10–90% rise time (ms) 17 � 8 160 � 18 230 � 170 890 � 210 1140 � 550

Fractional decaya 48 � 5% 95 � 2% 4 � 1% 3 � 1% 4 � 2%


decay (ms) 1860 � 230 650 � 80 flat flat flat

All data were obtained using whole cell currents recorded from 293 cells expressing the WT GlyR or the A-1’E, SDM, SDM+R19’A, or SDM+R19’E GlyR.
All currents were recorded at �40 mV in response to an �5 s application of a supramaximal glycine concentration. Data are means � SEM, numbers in
parentheses in the top row refer to the number of experiments (n), and the data are expressed to appropriate significant figures.
aFractional decay refers to the extent of current decay from the peak current to the current recorded just before the end of the 5-s glycine application pe-
riod. If the decay exceeded 5% of the peak amplitude then it was fitted with a single exponential function, giving the 
decay. If this decay was �5% then 
decay

was denoted as “flat”. 
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openings, at both �60 and 60 mV, in response to a low
(�1 �M) concentration of glycine (Fig. 3). At both po-
tentials, the GlyRs open in clear bursts, with the channel
passing considerable current at each opening. Note the
higher open probability at the positive potentials. The
open channel current at each potential was derived from
the mean of Gaussian fits to amplitude histograms, as il-
lustrated in Figs. 3, C and D. At membrane potentials be-
tween �50 and �60 mV the dominant conductance
level in six patches ranged from 74 to 100 pS (mean of
86.5 � 4.1 pS; Table II), whereas for the same six patches

Figure 2. (A) Representative whole cell recordings for the WT
GlyR and for the SDM, SDM�R19’A, SDM�R19’E, and A-1’E mu-
tant GlyRs. In each case the current was elicited in response to a
relatively rapid application of a supramaximal concentration of
glycine, as indicated. All currents were recorded at a membrane
voltage of �40 mV. Sample currents with comparable peak ampli-
tudes were chosen to illustrate the differences in the time course
of channel activation and desensitization between the GlyRs. (B)
Mean concentration-response curves for the WT GlyR (filled cir-
cles, n 
 5) and for the cation-selective mutant GlyRs, the SDM
(open squares, n 
 3), SDM�R19’A (filled squares, n 
 3), and
SDM�R19’E (open circles, n 
 3). The WT GlyR data are repro-
duced from the whole cell recordings of Moorhouse et al. (1999),
whereas, for the mutant GlyRs, data were obtained by recording
the macroscopic current in excised outside-out patches in re-
sponse to slow bath application of glycine. The mean data were fit-
ted to Eq. 1 using a least squares minimization procedure with the
resultant best fits shown by the curves. Fitting Eq. 1 to individual
experiments gave a mean EC50 and nH of, respectively, 23 � 10 �M
and 3.5 � 0.9 for the WT GlyR, 420 � 80 �M and 1.9 � 0.3 for the
SDM GlyR, 500 � 70 �M and 1.7 � 0.3 for the SDM�R19’E GlyR,
and 8,300 � 800 �M and 1.4 � 0.1 for the SDM�R19’A GlyR.

Figure 3. Representative single channel currents, and corre-
sponding all-point amplitude histograms, from excised outside-out
patches containing WT GlyRs. All currents were recorded in con-
trol 145 mM NaCl solutions with divalent cations present (see ma-
terials and methods). (A) Outward currents recorded at a
membrane potential of 60 mV. (B) Inward currents recorded at a
membrane potential of �60 mV. In both A and B, the top panel
shows �8 s of continuous current recordings, whereas the lower
panels show an �0.8 s subset of this recording (the borders of
which are indicated by the broken lines) expanded at higher reso-
lution. Note the different scale bars for the top and bottom panels.
C and D show the all-point amplitude histograms (bin widths 0.07–
0.10 pA) compiled from longer segments (�2 min) from the same
patches, at �60 mV (C) and 60 mV (D). The overlying curves are
the sum of two Gaussian distributions fitted to the histograms us-
ing a least squares method, the means of which were used to calcu-
late the conductance values for this patch, which are displayed
above the histograms.
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at membrane potentials between 50 and 60 mV, the
main conductance level ranged from 54 to 68 pS (62.2 �
2.3 pS; Table II). The extent of rectification in a single
patch was quantified by dividing the conductance ob-
tained at �50 or �60 mV by that obtained at the corre-
sponding positive membrane potential. This rectifica-
tion index (R.I.) ranged from 1.10 to 1.64 (1.40 � 0.08;
Table II), indicating that the WT GlyR shows inward rec-
tification of the open channel current.

Conductance and Rectification in the Cation Selective
Mutant GlyRs

Single channel conductance and rectification was in-
vestigated in the cation-selective GlyR mutants at
membrane potentials of 60 and �60 mV. Typical ex-
amples of single channel current recordings are
shown in Figs. 4 and 5. Clear single channel openings
could be observed for all four of these cation-selective
mutant GlyRs. For the A-1’E mutant GlyR (Figs. 4 B
and 5, A and E), the amplitudes of the single channel
openings were much reduced compared with WT and,
furthermore, the inward currents were now smaller
than the corresponding outward currents. For five
patches held at a membrane potential of �50 or �60
mV, the mean single channel conductance was 6.9 �
0.2 pS, whereas when four of the same patches were
held at 60 mV, the mean outward conductance was
11.1 � 0.6 pS. Thus, Na� conductances in this mutant

are much lower compared with Cl� conductances in
the WT GlyR and the direction of rectification is re-
versed. In these same four A-1’E mutant GlyR patches
the R.I. was 0.62 � 0.01, thus demonstrating outward
rectification.

For the SDM GlyR, the inward and outward currents
and the extent of rectification were comparable to the
A-1’E mutant GlyR (Figs. 4 C and 5, B and F). For six
patches held at a membrane potential of �60 mV, the
single channel conductance was 6.6 � 0.3 pS, whereas
when five of the same patches were held at 60 mV, the
outward conductance was 12.4 � 1.6 pS. In these
patches, the R.I. was 0.55 � 0.05. Thus, the A-1’E and
SDM GlyRs have similar conductances and both display
marked outward rectification.

We next investigated the role of the external ring
of charge in permeation through the cation-selective
mutant GlyRs, hypothesizing that the positively
charged R19’ residue would be electrostatically inap-
propriate for cationic currents as it would reduce the
rapid flux of cations through the pore. Indeed, as
shown in Figs. 4 and 5 and summarized in Table II,
when we combined the SDM mutation with the neu-
tralization of R19’ (SDM�R19’A GlyR), inward cur-
rents were substantially increased. In 13 patches held
at �50 or �60 mV the inward conductance was 13.5 �
0.3 pS, whereas the corresponding mean outward
conductance in 12 of these patches was 13.8 � 0.6 pS.
Thus, in addition to causing an increase in inward
currents, the I-V relationship became linear (mean
R.I. was 1.00 � 0.03; n 
 12). To further explore the
role of charge at the 19’ position, the SDM mutation
was combined with the introduction of a negatively
charged ring at the 19’ position (SDM�R19’E GlyR).
Inward conductance was further increased in these
SDM�R19’E GlyRs, with only a relatively small in-
crease in the outward conductance. The mean in-
ward conductance, at �50 or �60 mV, was 22.2 � 0.7
pS (n 
 14), whereas the corresponding mean out-
ward conductance was 16.4 � 0.8 pS (n 
 13). The
increase seen in inward currents resulted in inward
rectification, with the mean R.I. being 1.40 � 0.09
(n 
 13).

The effects of the R19’ mutations can also be
seen in Fig. 6 A, which plots the mean I-V relation-
ship for the SDM�R19’A GlyR (open circles, n 
 5)
and the SDM�R19’E GlyR (filled circles, n 
 4). The
SDM�R19’A GlyR has a linear I-V curve, whereas the
SDM�R19’E GlyR shows an increase in inward conduc-
tance, resulting in inward rectification.

T A B L E  I I

Summary of Conductance and Rectification Properties of WT and 
Cation-selective Mutant GlyRs

�1-GlyR �-60 mV ��60 mV Rectification indexa

pS pS (Iin / Iout)

WT 86.5 � 4.1 (6) 62.2 � 2.3 (6) 1.40 � 0.08 (6) inward

STMb 3.3 � 0.4 (4) 11.1 � 1.4 (3) 0.31 � 0.65 (3) outward

A-1’E 6.9 � 0.2 (5) 11.1 � 0.6 (4) 0.62 � 0.01 (4) outward

SDM 6.6 � 0.3 (6) 12.4 � 1.6 (5) 0.55 � 0.05 (5) outward

SDM�R19’A 13.5 � 0.3 (13) 13.8 � 0.6 (12) 1.00 � 0.03 (12) linear

SDM�R19’E 22.2 � 0.7 (14) 16.4 � 0.8 (13) 1.40 � 0.09 (13) inward

All data were obtained using excised outside-out patches from 293 cells
expressing �1 WT or the various cation-selective mutant GlyRs, and also
using the standard divalent cation containing �145 mM symmetrical NaCl
solutions (see materials and methods). Data are mean � SEM and
numbers in parentheses indicate n.
aThe R.I. was derived by dividing the conductance measured in each 
patch at �60 mV by that measured at 60 mV (��60 mV/��60 mV).
bFor the STM GlyR, data are from Keramidas et al. (2000) and were ob-
tained using noise analysis. For all other GlyRs, conductance values were 
obtained by direct measurements and from Gaussian fits to all-point histo-
grams.

Figure 4. Representative single channel currents from excised outside-out patches containing WT (A) or the cation-selective mutant
GlyRs, A-1’E (B), SDM (C), SDM�R19’A (D), and SDM�R19’E (E). All currents were recorded in control 145 mM NaCl solutions with
divalent cations present (see materials and methods). For each receptor type, the panels show 20 s of current recordings, with the
left panels being at a membrane potential of 60 mV and the right panels at �60 mV. In each panel, the current record is continuous,
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except for the A-1’E mutant GlyR, in which the current recording was interrupted (as indicated by the parallel bars). The dashed lines
represent the closed state of the channel. The solid bars below each trace indicate periods of the current recordings that are shown on
an expanded scale in Fig. 5. For the WT data, the current recordings come from the same patch as illustrated in Fig. 3. All traces are dis-
played using the same horizontal (time) scale bar to illustrate the different open times between the WT and the SDM-based GlyRs. Note
the different current amplitude scale bars between the WT GlyR and the cation-selective mutant GlyRs. For display, the data were fur-
ther filtered at a –3 dB of 1 KHz and redigitized at 2.5 KHz.
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Effects of Divalent Cations on Conductance of the 
SDM�R19’A and SDM�R19’E GlyRs

The above experiments were conducted in standard so-
lutions containing 2 mM Ca2� and Mg2� in the external

solution and 2 mM Mg2� in the internal solution (2
mM Ca2� was buffered with 5 mM EGTA). Our previ-
ous whole cell studies (Keramidas et al., 2002, this is-
sue) demonstrated significant Ca2� permeability in the
SDM, SDM�R19’A, and SDM�R19’E GlyRs. This ob-

Figure 5. Representative single channel currents, and corresponding all-point amplitude histograms, from excised outside-out patches
containing cation-selective mutant GlyRs. All currents were recorded in control 145 mM NaCl solutions with divalent cations present (see
materials and methods). The top panels (A–D) show outward currents and corresponding histograms recorded at a membrane poten-
tial of 60 mV, whereas the bottom panels (E–H) show inward currents and corresponding histograms recorded from the same patches at a
membrane potential of �60 mV. At both potentials the current traces show an expanded �0.5-s section of the longer recordings shown in
Fig. 4 (and indicated by the bars in that figure). The dashed lines represent the closed state of the channels. The all-point amplitude histo-
grams were compiled from longer segments of the same recordings. The overlying curve is the sum of two (A–C and E–H) or three (D)
Gaussian distributions fitted to the histograms using a least squares method. The difference between the means of the closed state and the
most dominant open state were used to calculate the dominant conductance value for each patch, which is displayed above the histo-
grams. A and E represent the A-1’E GlyR, B and F represent the SDM GlyR, C and G represent the SDM�R19’A GlyR, and D and H repre-
sent the SDM�R19’E GlyR.
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servation, coupled with the well reported inhibitory ef-
fects of divalent cations on the nAChR channel mono-
valent ion conductance (Dani and Eisenman, 1987;
Imoto et al., 1988; Kimura et al., 1991), led us to inves-
tigate whether the conductance and rectification prop-
erties were different in the absence of divalent cations.
We investigated the SDM�R19’A and SDM�R19’E
GlyRs to assess whether the introduction of a negatively
charged residue at the external vestibule position con-
ferred Ca2� sensitivity and a Ca2� binding site(s) on the
channel. We used two protocols to examine divalent
cation effects: (a) recording channel conductance in
standard solutions (with divalent cations) followed by
the replacement of the external bath solution with a
nominally divalent cation free solution, and (b) mea-
suring channel conductance in the absence of divalent
cations in both the external bath and the internal pi-
pette solutions.

The results of these experiments are illustrated in
Fig. 6 and the averaged, absolute data summarized in
Table III. When divalent cations were removed from
the extracellular solution there was no effect on the
conductance and rectification properties of the
SDM�R19’A GlyRs (Table III; Fig. 6 B). For seven
patches held at �50 to �60 mV the relative mean in-
ward conductance in the absence of external divalent
cations was 108.1 � 6.3% of the value obtained in the
same patches under the control conditions. For five
patches held at 50 or 60 mV the mean relative outward
conductance was 109.3 � 8.8% of the control. The rela-
tive R.I. was similarly unaffected (99.1 � 5.8% of the
control, n 
 5). In contrast, for the SDM�R19’E GlyR,
when divalent cations were removed from the external
medium there was a significant increase in inward cur-
rent (Fig. 6 C). In these experiments, the mean relative
inward conductance was 113 � 4% of the control (n 

6, P 
 0.02). The changes in outward conductance
were more variable but gave a mean relative conduc-
tance of 113 � 10% of the control (n 
 5). Hence, the
results indicate that in the SDM�R19’E mutant, the
19’E residues create an external ring of negative charge
that increases inward conductance and can be shielded
by divalent cations in the external solution.

In the second set of experiments, inward and out-
ward conductances were recorded in the absence of
divalent cations in both the external and internal
solutions. There was an increase in mean inward
and outward conductances for the SDM�R19’A and
SDM�R19’E GlyRs under these conditions (compare

Figure 6. Mean I-V curves for the SDM�R19’A and SDM�R19’E
GlyRs in the presence and absence of divalent cations. (A) Mean
I-V curves for the SDM�R19’A GlyRs (open circles, n 
 5) and the
SDM�R19’E GlyRs (filled circles, n 
 4) in control solutions (sym-
metrical 145 mM NaCl with 2 mM Ca2� and 2 mM Mg2� added to
both the external and internal solutions and 5 mM EGTA added to
the internal solution). (B) Mean I-V curves for the SDM�R19’A
GlyRs in control conditions (with divalent ions in both solutions;
circles, n 
 5), when the same five patches were exposed to exter-
nal solution without Ca2� or Mg2� (squares), and for recordings in
which neither the external or internal solution contained Ca2� or
Mg2� (triangles, n 
 3). (C) Mean I-V curves for the SDM�R19’E
GlyRs in control conditions (with divalent ions in both solutions;

circles, n 
 4), when the same four patches were exposed to exter-
nal solution without Ca2� or Mg2� (squares), and for recordings in
which neither the external or internal solution contained Ca2� or
Mg2� (triangles, n 
 4). For each patch, current recordings were
obtained at all potentials. Error bars, often obscured by the sym-
bol, represent the SEM.
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Tables II and III). For the SDM�R19’A GlyR the in-
ward and outward conductances were 15.3 � 1.1 pS
(n 
 8) and 18.1 � 1.8 pS (n 
 8), respectively. At a mem-
brane potential of 60 mV, the outward conductance was
significantly greater than the outward conductance re-
corded in control conditions (where the mean conduc-
tance was 13.8 � 0.6 pS, n 
 12, Table II, P 
 0.01). At
a membrane potential of �60 mV, the difference in in-
ward conductances measured under control conditions
(where the mean conductance was 13.5 � 0.3 pS, n 

13, Table II) and divalent cation free conditions was
not significant (P 
 0.06). The larger increase in out-
ward conductance caused a significant difference in
R.I. compared with the control conditions so that the
I-V relationship for the SDM�R19’A mutant rectified
outwardly (R.I. 
 0.87 � 0.05 in the divalent cation-
free conditions and 1.00 � 0.03 in the control condi-
tions, Table II, P 
 0.03). For the SDM�R19’E GlyR,
the inward and outward conductances were 31.8 � 2.9
pS (n 
 7) and 20.7 � 3.0 pS (n 
 7), respectively. This
represented a significant increase in inward conduc-
tance compared with the control conditions (where the
mean conductance was 22.2 � 0.7 pS, n 
 14, Table II,
P � 0.001). The increase in mean outward conduc-
tance at a membrane potential of 60 mV was not signif-
icantly different to the conductance value obtained at
60 mV in the control conditions (where the mean con-
ductance was 16.4 � 0.8 pS, n 
 13, Table II, P 
 0.08)
although at 30, 40, and 50 mV the outward conduc-
tances were significantly larger than corresponding
control values (P � 0.05). The mean R.I. in the divalent
cation-free conditions (1.61 � 0.13, n 
 7) suggested
an increase in the extent of inward rectification, but
was not significantly different from the value recorded

under control conditions (where mean R.I. was 1.40 �
0.09, n 
 13, Table II, P 
 0.18). Hence, when both in-
ternal and external divalent cations were removed
there were significant increases in outward conduc-
tances for both mutant GlyR channels.

We also investigated whether rapid block by divalent
cations contributed to the relatively large open channel
noise seen in the mutant GlyRs (particularly for the
SDM�R19’A and SDM � R19’E GlyRs; Figs. 5 and 6).
The increase in the SD of the current upon channel
opening was quantified for a random sample of 20
clear single SDM�R19’E GlyR channel openings from
4 different patches in control conditions, and another
20 openings from 4 additional patches in the absence
of divalent cations (Vm 
 �60 mV, filtered at �3 dB of
2 kHz). The mean increase in current SD upon chan-
nel opening in control conditions was 0.16 � 0.02 pA,
and in divalent cation free conditions was 0.29 � 0.06
pA. Consequently, rapid divalent cation block of the
pore does not contribute to the open channel noise.
The higher relative open channel noise in the GlyR
mutants may reflect some increase in rapid, small fluc-
tuations in the open pore.

D I S C U S S I O N

The current study investigated the mechanisms of ion
permeation in cation-selective GlyRs in an attempt to
determine how ion charge selectivity occurs. The ac-
companying paper (Keramidas et al., 2002, this issue)
described a series of mutations flanking the pore-form-
ing M2 domain of the human �1-homomeric GlyR that
convert the ion charge selectivity from anion- to cation-
selective. In this study, we investigate the permeation
characteristics of these cation-selective mutant GlyRs by

T A B L E  I I I

Effects of Divalent Cations on Conductance and Rectification in the Cation-selective SDM�R19’A and SDM�R19’E GlyRs 

SDM+R19’A GlyR SDM+R19’E GlyR

��60mV ��60mV R.I.a ��60mV ��60mV R.I.a

pS pS Iin/Iout pS pS Iin/Iout

Control solutionsb 13.7 � 0.5 (7) 13.5 � 0.8 (5) 1.00 � 0.02 (5) 23.9 � 1.1 (6) 15.3 � 1.5 (5) 1.63 � 0.19 (5)

External Ca2�/Mg2�-freec 14.7 � 0.6 (7) 14.6 � 1.2 (5) 1.00 � 0.07 (5) 26.9 � 1.2d (6) 17.5 � 2.4 (5) 1.67 � 0.25 (5)

Internal and external Ca2�/Mg2�-freee 15.3 � 1.1 (8) 18.1 � 1.8f (8) 0.87 � 0.05f (8) 31.8 � 2.9f (7) 20.7 � 3.0 (7) 1.61 � 0.13 (7)

All data were obtained using excised outside-out patches from 293 cells expressing the cation-selective SDM�R19’A and SDM�R19’E GlyRs. Conductance
values were obtained by direct measurements and from Gaussian fits to all-point histograms. The control data were obtained from the same patches that
were subsequently exposed to the external divalent cation free conditions, whereas the data for the external and internal divalent ion free conditions were
obtained from separate patches. The complete set of control data is shown in Table II. Data presented are mean � SEM and numbers in parentheses
indicate n.
aAs in Table II, the R.I. was derived for each patch as ��60 mV/��60 mV.
bThe control solution contained approximately symmetrical 145 mM NaCl with 2 mM Ca2� and 2 mM Mg2� in both the external and internal solutions. 
The internal solution also contained 5 mM EGTA.
cThe external divalent cation–free solution was the same as the control solution except that Ca2� and Mg2� were omitted.
dSignificantly different from control data obtained in the same patches (paired t test; P � 0.05).
eThe external and internal divalent cation–free solutions were the same as the control solution except that Ca2� and Mg2� were omitted.
fSignificantly different from the complete set of control data (Table II) obtained in separate patches (unpaired t test; P � 0.05). 
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recording their single channel conductance and rectifi-
cation properties and how these properties are affected
by divalent cations. In all of the mutants studied (A-1’E,
SDM, SDM�R19’A and SDM�R19’E GlyRs), single
channel openings were robust and clearly discernible.
For the SDM�R19’E GlyR, for example, inward cur-
rents (Vm 
 �50 to �60 mV) were large, being �30 pS
in the absence of divalent cations. The inward conduc-
tance of �7-homomeric nAChRs in Xenopus oocyte cell–
attached patches recorded with �80 mM NaCl pipette
solution is �46 pS (Revah et al., 1991). For other heter-
omeric nAChR subtypes, inward conductances are simi-
lar, ranging from �30 to 80 pS depending on the re-
cording conditions and subunit composition (e.g., 80
pS for Torpedo nAChR, Imoto et al., 1988; and 30 pS
in PC12 cells, Neuhaus and Cachelin, 1990; see also
Hille, 1992). Thus, the cation conductance of the
SDM�R19’E mutant GlyR is comparable to that ob-
served for some nAChRs. This indicates that the muta-
tions induce a clear change in ion charge selectivity,
rather than simply reducing relative chloride conduc-
tance. The previous WT chloride conductance has
been replaced with a significant cation conductance.
This implies that there are significant underlying
changes in the molecular determinants of permeation
in the mutant GlyRs to allow this to occur.

The single channel cation conductance in the mu-
tant GlyRs is lower than the anion conductance in the
WT GlyR. This may arise due to intrinsic differences in
the physical properties of Na� and Cl� ions (e.g., Cl� is
easier to dehydrate) and how they interact in the differ-
ent GlyR pores, or due to the influence of other resi-
dues, either within or flanking the pore, which have
not been mutated (e.g., particularly the R0’ and possi-
bly also polar residues within the pore).

Changes in Channel-gating Kinetics

Although the primary aim of this study was an investiga-
tion of single channel conductances and their depen-
dence on voltage and divalent cations, we have also
provided some preliminary characterization of the dif-
ferent channel gating kinetics seen in the cation-selec-
tive GlyRs. The whole-cell currents reveal that all the
mutant GlyRs activate more slowly than the WT, and
this is particularly true for the three SDM-based GlyRs.
The time taken for the current to peak in the SDM-
based GlyRs was �10 times longer (�2 s for the
SDM�R19’A and SDM�R19’E GlyRs) than our esti-
mated cell perfusion times (�100–200 ms). The SDM-
based mutant GlyRs also showed virtually no current
decay in the continued presence of glycine. Fast appli-
cation of glycine to outside-out patches containing WT
�1-GlyRs elicits currents whose decay can be fit well
with two exponentials with time constants of 10.6 � 3.1
ms and 305 � 212 ms (De Saint Jan et al., 2001). Pre-

sumably, our present results describe changes in the
slower component of desensitization. The external ring
of charge at 19’ does not seem to correlate with the ex-
tent of current decay, which was similar for all three
SDM-based mutant GlyRs. A similar reduced rate of
current activation and desensitization is seen in the an-
ion-selective STM 5-HT3R (Gunthorpe and Lummis,
2001).

The macroscopic current concentration-response
curves revealed a decrease in both apparent agonist af-
finity and in the Hill coefficient for channel activation
for the SDM-based mutant GlyRs. For the SDM�R19’A
mutant, the EC50 was increased �360-fold as compared
with WT GlyRs; for the SDM and SDM�R19’E mutant
GlyRs it was increased �20-fold. Previous studies have
identified the R19’ residue as being important in chan-
nel activation, with a range of mutations of this position
to neutral amino acids causing a reduced apparent gly-
cine affinity (Langosch et al., 1994; Rajendra et al.,
1995; Lynch et al., 1997). The SDM and SDM�R19’E
GlyRs both contain charged amino acids at the R19’ po-
sition, of opposite polarity, but have a similar concen-
tration-response relationship. This suggests that, in ho-
momeric GlyRs, a ring of either positive or negative
charge at the R19’ position may be equally compatible
with channel activation.

Some of these changes in channel-gating kinetics are
also reflected in the microscopic single channel cur-
rent records. Recombinant �-homomeric GlyRs ex-
pressed in Xenopus or 293 cells, as well as native spinal
GlyRs, typically have mean burst durations at low gly-
cine concentrations of �5–20 ms (Twyman and Mac-
donald, 1991; Lewis et al., 1998; Laube et al., 2000). As
can be seen in Fig. 4, at low and approximately equipo-
tent glycine concentrations, the SDM-based mutant
GlyRs appeared to open for longer periods than those
observed for WT GlyRs. This was despite the lower ap-
parent glycine affinity obtained from the concentra-
tion-response curves and seems to contrast with the
correlation between decreased EC50 and increased
channel open times for M2 mutated nAChRs (e.g., vari-
ous mutations to the 9’ position; Filatov and White,
1995; Kearney et al., 1996; Kosolapov et al., 2000).

Influence of External Charge on Conductance
and Rectification

The voltage dependence of channel conductance of
the cation-selective GlyR mutants was investigated to
determine the presence and role of charged amino ac-
ids, which flank the pore of all LGICs and which are
known to have effects on channel conductance in
nAChRs and anionic GlyRs (Imoto et al., 1988; Unwin,
1989; Langosch et al., 1994; Rajendra et al., 1995). The
A-1’E, the SDM, and also the previously characterized
STM GlyRs (Keramidas et al., 2000), in which the na-
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tive R19’ residue is expected to form an inappropriate
external ring of positive charge shows outward rectifica-
tion with inward cation currents being �60% of the
amplitude of outward currents. This postulated exter-
nal ring of positive charge would be electrostatically
counterproductive for cation permeation in the STM,
SDM, and A-1’E mutant GlyRs. When this external ring
was neutralized (SDM�R19’A GlyR), inward currents
were increased and rectification was lost. When the
charge of the external ring was made negative
(SDM�R19’E GlyR), inward currents further increased
to �150% of the amplitude of outward currents, result-
ing in inward rectification. We interpret the observed
conductance changes as being due to differences in the
rate of cation entry into, and then subsequently
through, the pore. A ring of positive charges would be
expected to increase the barrier for cation permeation
into the pore and reduce the local cation concentra-
tion in the extracellular pore vestibule, whereas a nega-
tive ring of charges would have the opposite effect (see
below; see also Dani, 1986; Green and Andersen, 1991;
Hille, 1992). The fact that the changes in the polarity
of fixed vestibule charges had the expected effects on
conductance also suggests common permeation mech-
anisms between cation-selective mutated GlyRs and
other members of the LGIC superfamily. This supports
the suggestion that the selectivity-converting mutations
have only had local conformational effects and have
not disrupted the gross structure of the entire pore.

The lack of rectification when the external ring
is neutralized suggests a symmetrical barrier for
cation permeation in both directions through the
SDM�R19’A GlyR. We propose that the GlyR selectivity
mutations change the dominating charge at the inter-
mediate ring position and that the conductance char-
acteristics are dominated by the side chain charge at
the intermediate ring, as also suggested for nAChRs
(Imoto et al., 1988; Forster and Bertrand, 1995). The
linear current-voltage relationship for the SDM�R19’A
GlyR therefore suggests that the intermediate ring af-
fects inward and outward conductances equally. Fur-
thermore, this suggests that, in the mutant GlyRs at
least, the ring of negative charges at the cytoplasmic
pore vestibule (D-5�; Fig. 1) does not contribute signifi-
cantly to permeation. This contrasts with the nAChRs,
in which the cytoplasmic ring of negative charges at the
equivalent position does contribute to cation conduc-
tance, and particularly to the outwardly directed cation
flux, although not to the same degree as the intermedi-
ate ring (Imoto et al., 1988). Perhaps not surprisingly,
the charge on the cytoplasmic ring does not seem to
contribute markedly to permeation in the cation-selec-
tive mutant GlyRs, as a ring of exposed negative
charges would be counterproductive to achieving ro-
bust anion transport through native GlyRs.

Effects of Divalent Cations on Conductance and Rectification

Fixed negative charges from acidic amino acids in or
around the pore of many cation-selective channels are
the sites of interactions with divalent and polyvalent
cations, as, for example, in inwardly rectifying K� chan-
nels (for review see Nichols and Lopatin, 1997), cyclic-
nucleotide–gated channels (Root and MacKinnon,
1993), and voltage-dependent Ca2� and Na� channels
(Heinemann et al., 1992; Yang et al., 1993). Similarly,
in nAChRs, the inhibitory effects of Mg2� on monova-
lent cation conductance are due to interactions with
the internal and external rings of charges (Imoto et al.,
1988; Forster and Bertrand, 1995). Ca2� and other diva-
lent cations also inhibit the conductance of monova-
lent ions through nAChRs (Imoto et al., 1986; Dani
and Eisenman 1987; Neuhaus and Cachelin, 1990;
Kimura et al., 1991), although the exact molecular de-
terminants of this effect are unknown. For both Ca2�

and Mg2�, however, the inhibition is sensitive to the
side from which the divalent ions are applied, with, for
example, typically greater inhibition of inward currents
when the ions are added to the extracellular side, con-
sistent with an action on the external rings of charge
flanking the channel pore. Hence, we investigated the
effects of divalent cations on conductance in order to
explore the presence of negative rings of charge flank-
ing the pores of the cation-selective mutant GlyRs. For
WT �1 GlyRs expressed in 293 cells, Ca2� has no direct
effect on the single channel conductance (Fucile et al.,
2000). In the current study, nominally divalent cation-
free external solutions increased the magnitude of in-
ward currents through SDM�R19’E GlyRs, but not
through SDM�R19’A GlyRs. This confirms that the ex-
ternal ring of negative charge in the SDM�R19’E GlyR
creates an interaction site for external divalent cations.
Furthermore, as was also seen with the difference be-
tween the SDM�R19’A and SDM�R19’E GlyRs, only
the inward conductance was increased, suggesting that
the negative charge only reduces the barrier for exter-
nal cation entry into the pore.

We also investigated the effects of removing both ex-
tracellular and intracellular divalent cations. It should
be noted that, since the Ca2� concentration in the
pipette solution was buffered by EGTA, removal of
divalent cations from the pipette solution effectively
equated to removal of Mg2�. Under these conditions,
inward currents through SDM�R19’E GlyRs were fur-
ther increased and there was a marginal increase in in-
ward currents through the SDM�R19’A GlyRs. Both of
the mutant GlyR channels showed a clear and signifi-
cant increase in outward currents under these condi-
tions. Thus, the pattern of changes observed was very
similar to the effects of Mg2� ions shielding of the inter-
mediate ring in the nAChR (Imoto et al., 1988). We in-
terpret these results as evidence for a ring of negative
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charges at the internal end of the pore and suggest that
this arises due to the �1’E acidic side chains. The mag-
nitude of the effect of Mg2� on conductance was not,
however, as marked as in nAChRs (Imoto et al., 1988).
Perhaps the preponderance of positively charged resi-
dues in the internal M3-M4 loop of the GlyR, which
have been speculated to line an intracellular vestibule
region and contribute to ionic selectivity in the nAChR
(Miyazawa et al., 1999), electrostatically reduce the ac-
cess of Mg2� to the constricted region.

Modeling of Ion Permeation in the SDM-based
Cation-selective GlyRs

The four barrier, three site rate theory model of ion
permeation of Hille (1975), modified for only one per-
meant ion species and with most of the voltage drop
(96%) occurring across the two central barriers, was
used to see whether modulation of a single barrier
height (or well depth) could simulate the rectification
pattern seen for the SDM-based mutant GlyRs when the
charge on the external ring (R19’) was changed from
positive to neutral and then to negative. It seems rea-
sonable to assume that these changes would affect ei-
ther the main external barrier height (B2), or well
depth (W1), or both. As can be seen from Fig. 7,
changes in barrier height alone could simulate the
changes in rectification observed at the single channel
level for the cation-permeant mutant GlyR channels.
Changes in well depth did not control rectification in
the same sort of way. This latter observation may reflect
the shortcomings of the model, which, for ease of
mathematical manipulation, assumes that only one ion
can be in the channel at any one time. Nevertheless, in
the absence of more precise modeling, the above rate
theory model does show that our interpretation of the
effects of charge modification is very reasonable.

Mechanisms Underlying Charge Selectivity Conversion

Energy barriers arising due to changes in dielectric con-
stant as an ion attempts to permeate through a mem-
brane channel can be overcome by the presence of polar
groups or fixed charges in or around the channel wall
(e.g., Dani, 1986; Hille, 1992; Hoyles et al., 1996). In the
mutant GlyRs, we suggest that the cation flux observed is
achieved as a result of the polarity of these fixed charges
in the intermediate charged ring, being changed from
positive to negative. We postulate that the critical change

Figure 7. A set of schematic I-V curves generated from a 4-bar-
rier, 3-site rate theory model of ion permeation (modified from
Hille, 1975), intended to show how variations in one rate theory
parameter can semiquantitatively simulate the changes in rectifica-
tion observed at the single channel level for the cation-permeant
mutant GlyR channels, when the charge in the external 19’ posi-
tion is changed from a positive arginine (SDM) to a neutral ala-
nine (SDM�R19’A) or to a negative glutamate (SDM�R19’E).
The (potential independent) barrier heights are indicated as B1,
B2, B3, and B4, and the well depths for the sites as W1, W2, and
W3. The potential independent energy profile is shown schemati-
cally in the inset boxes beside each plot. It should be noted that
the only parameter being changed between the I-V curves is the
main external barrier height, B2. The highest barrier height simu-
lates the case for the positively charged arginine present (9 RT),
the symmetrical case, the neutral alanine (7.5 RT, the same as B3),
and the lowest barrier height, the negatively-charged glutamate
(6.5 RT). The R.I. shown has been calculated as I(�60 mV)/I(60 mV),
and is close to the experimental values given in Table II for the ap-

propriate mutant GlyR and shown in parentheses with each plot. It
should also be noted that the model only allows one ion to be
present in the pore at any one time. In addition, the model re-
quires W2 to be less deep than W1 or W3 in order to get reason-
ably shaped I-V curves. The slightly greater decrease in absolute
conductance for the SDM-simulated case (Fig. 7 A), compared
with the SDM�R19’A (Fig. 7 B) and the SDM�R19’E (Fig. 7 C),
may also reflect the above model limitation.
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is the glutamate residue introduced into the �1’ posi-
tion, which provides the negative electrostatic environ-
ment and a relative energy well for cation permeation.
This hypothesis is strongly supported by the divalent cat-
ion effects. As also observed in nAChRs (Imoto et al.,
1988; Kienker et al., 1994; Forster and Bertrand, 1995),
Mg2� applied from the intracellular side of the mem-
brane shielded the intermediate ring of charge, which
decreased both inward and, particularly, outward con-
ductances. Extracellular divalent ions only affected the
inward conductance, and only when a fixed negative
charge was introduced into the external vestibule. The
conductance values and pattern of rectification was also
consistent with the presence of a ring of negative
charges at the intermediate position. Due to the pore ta-
pering to a constriction in this region (by analogy with
other LGICs; Lester, 1992; Wilson and Karlin, 1998), the
effectiveness of any point charge will be enhanced
(Dani, 1986; Hoyles et al., 1996). Hence, only a slight
change in the net electric field in this region could have
marked effects on permeation. The proline deletion at
�2’ (SDM GlyR) does not seem to markedly change the
barrier heights or electric potential in the pore, as
judged by an absence of changes in rectification and
conductance compared with the A-1’E mutant GlyR, but
does accentuate relative cation permeability, perhaps by
a subtle change in the pore dimensions (Keramidas et
al., 2002, this issue). The changes in pore diameter seen
in the different cation-selective GlyRs did not show any
correlation with the changes in single channel conduc-
tance. Furthermore, it does not seem that the influence
of the external ring on conductance is mediated
through indirect changes in minimum pore diameter.
This supports our inference that the effects of this exter-
nal charge on conductance are due to electrostatic ef-
fects, rather than due to changes in minimum pore di-
ameter. Whether the electrostatic effects of this 19’ ex-
ternal charge behave like a simple point charge, or acts
in a somewhat more complex manner, as suggested for
the nAChR charge manipulations (Kienker et al., 1994),
is not clear. The effects of the point mutations in the
GlyR were quite asymmetrical, enabling the conduc-
tance and rectification pattern to be successfully mod-
eled with changes only in the main external barrier
height (see above). This differed from equivalent
nAChR data (Kienker et al., 1994), indicating that the
electrostatic effects of the 19’ point mutations in the ho-
momeric �1-GlyRs may be different and more straight-
forward to interpret than for those in heteromeric
nAChRs.

Conclusion

In this study, we have investigated the conductance and
rectification properties of a series of cation-selective
mutant GlyRs using single channel recordings. All of

the cation-selective mutants showed reasonably large
conductances, ranging from �6 to 22 pS at �60 mV, or
even higher in the absence of divalent cations. The dif-
ferences in the single channel rectification patterns
amongst the mutant GlyRs depended on the presence
and polarity of a ring of charged residues in the 19’ po-
sition at the external pore vestibule, as did the inhibi-
tion of inward currents by externally applied divalent
cations. The inhibition of outward currents by inter-
nally applied divalent cations suggested a ring of nega-
tively charged residues located at the internal end of
the channel pore. Hence, these studies support the hy-
pothesis that the charge selectivity mutations only
cause local changes in the selectivity filter region of the
channel pore and that these local changes involve the
introduced glutamate at position �1’ becoming ex-
posed so that it now electrostatically dominates over
the adjacent arginine (R0’). We propose that ion
charge selectivity in LGICs is primarily achieved by an
appropriate electrostatic environment at the selectivity
filter of the pore. The data also show that channel con-
ductance and rectification is strongly influenced by the
electrostatic environment at the extracellular mouth of
the ion channel, and that this seems to be a general fea-
ture throughout the LGIC family.

We thank Dr. Kerrie Pierce for constructing the GlyR mutant
cDNAs; Irene Michas and Anna Scimone for maintenance of the
293 cells; and Dr. Trevor Lewis for comments on the manuscript.

This study was funded by the National Health and Medical
Research Council of Australia (NH&MRC Project Grant 993584,
NH&MRC Block Grant 993050) and a 2002 University Research
Support Program Grant (URSP).

Submitted: 27 December 2001
Revised: 22 March 2002
Accepted: 22 March 2002

R E F E R E N C E S

Barry, P.H. 1994. JPCalc, a software package for calculating liquid
junction potential corrections in patch-clamp, intracellular, epi-
thelial and bilayer measurements and for correcting junction po-
tential measurements. J. Neurosci. Methods. 51:107–116.

Barry, P.H., and K. Fatima-Shad. 1995. Ion permeation through
ligand-gated ion channels. Today’s Life Sci. 7:32–37.

Changeux, J.P. 1993. Chemical signalling in the brain. Sci. Am. 269:
58–62.

Chen, C., and H. Okayama. 1987. High efficiency expression of
mammalian cells by plasmid DNA. Mol. Cell. Biol. 7:2745–2751.

Corringer, P.J., S. Bertrand, J.L. Galzi, A. Devillers-Thiéry, J.P.
Changeux, and D. Bertrand. 1999. Mutational analysis of the
charge selectivity filter of the �7 nicotinic acetylcholine receptor.
Neuron. 22:831–843.

Couturier, S., D. Bertrand, J.M. Matte, M.C. Hernandez, S. Ber-
trand, N. Millar, S. Valera, T. Barkas, and M. Ballivet. 1990. A neu-
ronal nicotinic acetylcholine receptor subunit (� 7) is develop-
mentally regulated and forms a homo-oligomeric channel
blocked by �-BTX. Neuron. 5:847–856.

Dani, J.A. 1986. Ion-channel entrances influence permeation. Bio-
phys. J. 49:607–618.

Dani, J.A., and G. Eisenman. 1987. Monovalent and divalent cation



425 Moorhouse et al.

permeation in acetylcholine receptor channels. Ion transport re-
lated to structure. J. Gen. Physiol. 89:959–983.

De Saint Jan, D., B. David-Watine, H. Korn, and P. Bregestovski.
2001. Activation of human �1 and �2 homomeric glycine recep-
tors by taurine and GABA. J. Physiol. 535:741–755.

Filatov, G.N., and M.M. White. 1995. The role of conserved leu-
cines in the M2 domain of the acetylcholine receptor in channel
gating. Mol. Pharmacol. 48:379–384.

Forster, I., and D. Bertrand. 1995. Inward rectification of neuronal nic-
otinic acetylcholine receptors investigated by using the homomeric
alpha 7 receptor. Proc. R. Soc. Lond. B Biol. Sci. 260:139–148.

Fucile, S., D. De Saint Jan, L.P. de Carvalho, and P. Bregestovski.
2000. Fast potentiation of glycine receptor channels of intracellu-
lar calcium in neurons and transfected cells. Neuron. 28:571–583.

Galzi, J.L., A. Devillers-Thiéry, N. Hussey, S. Bertrand, J.P.
Changeux, and D. Bertrand. 1992. Mutations in the channel do-
main of a neuronal nicotinic receptor convert ion selectivity
from cationic to anionic. Nature. 359:500–505.

Green, W.N., and O.S. Andersen. 1991. Surface charges and ion
channel function. Annu. Rev. Physiol. 53:341–359.

Grenningloh, G., A. Rienitz, B. Schmitt, C. Methfessel, M. Zensen,
K. Beyreuther, E.D. Gundelfinger, and H. Betz. 1987. The strych-
nine-binding subunit of the glycine receptor shows homology
with nicotinic acetylcholine receptors. Nature. 328:215–220.

Gunthorpe, M.J., and S.C. Lummis. 2001. Conversion of the ion se-
lectivity of the 5-HT(3a) receptor from cationic to anionic re-
veals a conserved feature of the ligand-gated ion channel super-
family. J. Biol. Chem. 276:10977–10983.

Heinemann, S.H., H. Terlau, W. Stuhmer, K. Imoto, and S. Numa.
1992. Calcium channel characteristics conferred on the sodium
channel by single mutations. Nature. 356:441–443.

Hille, B. 1975. Ionic selectivity, saturation, and block in sodium
channels. A four-barrier model. J. Gen. Physiol. 66:535–560.

Hille, B. 1992. Ionic Channels of Excitable Membranes. 2nd ed.
Sinauer Associates, Inc., Sunderland, MA. 607 pp.

Hoyles, M., S. Kuyucak, and S.H. Chung. 1996. Energy barrier pre-
sented to ions by the vestibule of the biological membrane chan-
nel. Biophys. J. 70:1628–1642.

Imoto, K. 1993. Ion channels: molecular basis of ion selectivity.
FEBS Lett. 325:100–103.

Imoto, K., C. Busch, B. Sakmann, M. Mishina, T. Konno, J. Nakai,
H. Bujo, Y. Mori, K. Fukuda, and S. Numa. 1988. Rings of nega-
tively charged amino acids determine the acetylcholine receptor
channel conductance. Nature. 335:645–648.

Imoto, K., C. Methfessel, B. Sakmann, M. Mishina, Y. Mori, T. Konno,
K. Fukuda, M. Kurasaki, H. Bujo, Y. Fujita, and S. Numa. 1986. Loca-
tion of a �-subunit region determining ion transport through the
acetylcholine receptor channel. Nature. 324:670–674.

Karlin, A., and M.H. Akabas. 1995. Towards a structural basis for
the function of nicotinic ecetylcholine receptors and their cous-
ins. Neuron. 15:1231–1244.

Kearney, P.C., H. Zhang, W. Zhong, D.A. Dougherty, and H.A.
Lester. 1996. Determinants of nicotinic receptor gating in natu-
ral and unnatural side chain structures at the M2 9’ position.
Neuron. 17:1221–1229.

Keramidas, A., A.J. Moorhouse, C.R. French, P.R. Schofield, and P.H.
Barry. 2000. M2 pore mutations convert the glycine receptor chan-
nel from being anion- to cation-selective. Biophys. J. 78:247–259.

Keramidas, A., A.J. Moorhouse, K.D. Pierce, P.R. Schofield, and
P.H. Barry. 2002. Cation selective mutations in the M2 domain of
the inhibitory glycine receptor channel reveal determinants of
ion-charge selectivity. J. Gen. Physiol. 119:393–410.

Kienker, P., G. Tomaselli, M. Jurman, and G. Yellen. 1994. Conduc-
tance mutations of the nicotinic acetylcholine receptor do not
act by a simple electrostatic mechanism. Biophys. J. 66:325–334.

Kimura, I., H. Nojima, and M. Kimura. 1991. External Ca2� depen-
dence of acetylcholine- and succinylcholine-induced changes in
channel conductance, open time and frequency at endplates of
single muscle cells of adult mice. Neuropharmacology. 30:1211–1217.

Kosolapov, A.V., G.N. Filatov, and M.M. White. 2000. Acetylcholine
receptor gating is influenced by the polarity of amino acids at po-
sition 9’ in the M2 domain. J. Membr. Biol. 174:191–197.

Langosch, D., B. Laube, N. Rundstrom, V. Schmieden, J. Bormann,
and H. Betz. 1994. Decreased agonist affinity and chloride con-
ductance of mutant glycine receptors associated with human he-
reditary hyperekplexia. EMBO J. 13:4223–4228.

Laube, B., J. Kuhse, and H. Betz. 2000. Kinetic and mutational anal-
ysis of Zn2� modulation of recombinant human inhibitory gly-
cine receptors. J. Physiol. 522:215–230.

Lester, H.J. 1992. The permeation pathway of neurotransmitter-
gated ion channels. Annu. Rev. Biophys. Biomol. Struct. 21:267–292.

Lewis, T.M., L.G. Sivilotti, D. Colquhoun, R.M. Gardiner, R. Schoep-
fer, and M. Rees. 1998. Properties of human glycine receptors
containing the hyperekplexia mutation �1(K276E), expressed in
Xenopus oocytes. J. Physiol. 507:25–40.

Lynch, J.W., S. Rajendra, K.D. Pierce, C.A. Handford, P.H. Barry,
and P.R. Schofield. 1997. Identification of intracellular and extra-
cellular domains mediating signal transduction in the inhibitory
glycine receptor chloride channel. EMBO J. 16:110–120.

Miyazawa, A., Y. Fujiyoshi, M. Stowell, and N. Unwin. 1999. Nico-
tinic acetylcholine receptor at 4.6 Å resolution: transverse tun-
nels in the channel wall. J. Mol. Biol. 288:765–786.

Moorhouse, A.J., P. Jacques, P.H. Barry, and P.R. Schofield. 1999.
The startle disease mutation Q266H, in the second transmem-
brane domain of the human glycine receptor, impairs gating.
Mol. Pharmacol. 55:386–395.

Neuhaus, R., and A.B. Cachelin. 1990. Changes in the conductance
of the neuronal nicotinic acetylcholine receptor channel in-
duced by magnesium. Proc. R. Soc. Lond. B. Biol. Sci. 241:78–84.

Nichols, C.G., and A.N. Lopatin. 1997. Inward rectifier potassium
channels. Annu. Rev. Physiol. 59:171–191.

Rajendra, S., J.W. Lynch, K.D. Pierce, C.R. French, P.H. Barry, and
P.R. Schofield. 1995. Mutation of an arginine residue in the hu-
man glycine receptor transforms �-alanine and taurine from ago-
nists to competitive antagonists. Neuron. 14:169–175.

Revah, F., D. Bertrand, J.L. Galzi, A. Devillers-Thiery, C. Mulle, N.
Hussy, S. Bertrand, M. Ballivet, and J.P. Changeux. 1991. Muta-
tions in the channel domain alter desensitization of a neuronal
nicotinic receptor. Nature. 353:846–849.

Root, M.J., and R. MacKinnon. 1993. Identification of an external
divalent cation-binding site in the pore of a cGMP-activated
channel. Neuron. 11:459–466.

Twyman, R.E., and R.L. Macdonald. 1991. Kinetic properties of the
glycine receptor main- and sub-conductance states of mouse spi-
nal cord neurones in culture. J. Physiol. 435:303–331.

Unwin, N. 1989. The structure of ion channels in membranes of ex-
citable cells. Neuron. 3:665–676.

Unwin, N. 1993. Neurotransmitter action: opening of ligand-gated
ion channels. Cell. 72:31–41.

Wilson, G.G., and A. Karlin. 1998. The location of the gate in the
acetylcholine receptor channel. Neuron. 20:1269–1281.

Yang, J., P.T. Ellinor, W.A. Sather, J.F. Zhang, and R.W. Tsien. 1993.
Molecular determinants of Ca2� selectivity and ion permeation
in L-type Ca2� channels. Nature. 366:158–161.


