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A B S T R A C T   

A severe respiratory pneumonia COVID-19 has raged all over the world, and a coronavirus named SARS-CoV-2 is 
blamed for this global pandemic. Despite intensive research into the origins of the COVID-19 pandemic, the 
evolutionary history of its agent SARS-CoV-2 remains unclear, which is vital to control the pandemic and prevent 
another round of outbreak. Coronaviruses are highly recombinogenic, which are not well handled with 
alignment-based method. In addition, deletions have been found in the genomes of several SARS-CoV-2, which 
cannot be resolved with current phylogenetic methods. Therefore, the k-mer natural vector is proposed to 
explore hosts and transmission traits for SARS-CoV-2 using strict phylogenetic reconstruction. SARS-CoV-2 
clustering with bat-origin coronaviruses strongly suggests bats to be the natural reservoir of SARS-CoV-2. By 
building bat-to-human transmission route, pangolin is identified as an intermediate host, and civet is predicted as 
a possible candidate. We speculate that SARS-CoV-2 undergoes cross-species recombination between bat and 
pangolin coronaviruses. This study also demonstrates transmission mode and features of SARS-CoV-2 in the 
COVID-19 pandemic when it broke out early around the world.   

1. Introduction 

Emerging and re-emerging of virulent infection disease presents a 
great threat to the public health (Gao, 2018). The outbreak of COVID-19, 
a severe respiratory pneumonia, in Wuhan, China, has captured the 
attention of the world. A novel coronavirus named SARS-CoV-2 is 
thought as the culprit of this epidemic, which is the seventh pathogenic 
coronavirus to human (Su et al., 2016; Lu et al., 2020). Four coronavi-
ruses of 229E, OC43, NL63, and HKU1 are mild and typically cause cold 
symptoms in immunocompetent individuals (Drosten et al., 2003), 
whereas severe acute respiratory syndrome coronavirus (SARS-CoV) 
and Middle East respiratory syndrome coronavirus (MERS-CoV) are 
highly pathogenic and linked to high mortality (Cui et al., 2019). 
Depending on a high transmissibility, the COVID-19 has spread 
throughout the world and upgraded to a global pandemic. 

Initial analysis indicates that SARS-CoV-2 belongs to the genus 
Betacoronavirus (BetaCoV), containing six major open-reading frames 

(ORFs) in virus genome and some accessory genes (Wu et al., 2020b; 
Zhou et al., 2020a). The first ORF (denoted as Orf1ab) occupying nearly 
half of entire virus genome encodes 16 non-structure proteins, while 
remaining ORFs encode structural proteins and accessory proteins, of 
which four main structural proteins are spike surface glycoprotein (S), 
small envelop protein (E), matrix protein (M), and nucleocapsid protein 
(N). Of note, the S protein mediates receptor binding and membrane 
fusion, and determines host tropism and transmission capacity (Jaimes 
et al., 2020). 

Coronaviruses are zoonotic pathogens that are naturally hosted by 
bats (Guan et al., 2003; Lau et al., 2020). Phylogenetic analysis has 
shown SARS-CoV-2 clustering with bat-derived SARS related coronavi-
ruses (SARSr-CoVs) within the genus BetaCoV, of which RaTG13 is 
observed the highest degree of sequence identity to SARS-CoV-2 (Zhou 
et al., 2020a). It is also confirmed that SARS-CoV-2 has close similarity 
to SARS-CoV, particular in the receptor-binding domain (RBD) of the S 
protein. Since human infections of bat-origin viruses typically occur 
through intermediate hosts, the Malayan pangolin has been suggested as 
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an intermediate host of SARS-CoV-2 (Lam et al., 2020; Xiao et al., 2020). 
Although the RBDs in the S protein from Malayan pangolin are well 
conserved to SARS-CoV-2 (Highest at 97%), whole-genome analysis 
reveals 85.5%–92.0% sequence identity, which are less than what is 
observed from RaTG13 (over 96%). Thus, the phylogenies between 
pangolin coronavirus (Pan-CoV) and SARS-CoV-2 could not be served as 
the direct evidence of pangolin being an intermediate host of SARS-CoV- 
2. 

Coronaviruses are highly recombinogenic that are not well handled 
with alignment-based method (Zielezinski, 2017), so (Boni et al., 2020) 
had to remove the effects of recombination and used putative 
non-recombinant regions to predict the origin of SARS-CoV-2. In addi-
tion, deletions have been found in the genomes of several SARS-CoV-2, 
which indicates human adaptation after transmission and could not be 
accurately reflected by current phylogenetic methods (Young et al., 
2020). It was demonstrated that the k-mer model method could capture 
recombination events and deal with the cases with deletions efficiently 
(Bauer et al., 2020). However, the k-mer approach is not suggested to 
tract potential transmission route for its non-uniqueness. To this end, the 
k-mer natural vector is proposed to characterize the compositions and 
distributions of k-mers occurance in a virus genome, and construct 
one-to-one relationship between a virus genome and its k-mer natural 
vector. Based on this, we determine the classification of SARS-CoV-2, 
identify its origin and intermediate hosts, and tract transmission mode 
and features of SARS-CoV-2 in the COVID-19 epidemic, which deepen 
our understanding of the recombination for viruses among cross-species 
transmission. 

2. Results 

2.1. Classification of SARS-CoV-2 

To validate the efficiency of the k-mer natural vector, all viruses from 
the family Coronaviridae in NCBI’s RefSeq database are applied to 
determine the classification of SARS-CoV-2, in which one sequence 
designated as Wuhan-Hu-1 is the reference strain for SARS-CoV-2. 
Phylogenetic tree for coronaviruses in RefSeq database is shown in 
Fig. 1(a), in which different colors represent different virus types. As a 
comparison, results obtained by multiple sequence alignment (MSA) 
with ClustalW are shown in Fig. 1(b). Comparing Figs. 1(a) and (b), both 
results are consistent with each other, which cannot precisely depicted 
by common k-mer model methods. Wuhan-Hu-1 and SARS-CoV are 
clustered together, grouping with bat viruses of BM48-31/BGR/2008 
and Hp_BetaCoV. It is indicated that Wuhan-Hu-1 is closely related to 
SARS-CoV in phylogeny and suggested as a sister clade to SARS-CoV, 
which was, therefore, named SARS-CoV-2 by the International 

Committee on Taxonomy of Viruses. 
Furthermore, viruses in the genus BetaCoV are used to determine the 

classification of SARS-CoV-2 at Genus level. Phylogenies for whole- 
genome sequence and genes encoding non-structural protein Orf1ab 
and structural proteins of S, E, M, and N are shown with similar struc-
tures (Figs. 2(a)–2(f)), in which viruses are classified into subgenera of 
Sarbecovirus, Hibecovirus, Merbecovirus, Nobecovirus, and Embevovi-
rus. In special, Wuhan-Hu-1 always falls in basal position within the 
subgenus Sarbecovirus, and tends to cluster with bat SARS-like (SL) 
viruses of CoVZC45 and CoVZXC21, which is in line with results ob-
tained by alignment-based methods (Wu et al., 2020a; Zhu et al., 2020). 

2.2. Origin and intermediate hosts of SARS-CoV-2 

Identification of the origin and intermediate hosts is current urgent 
task to be done, which is vital to control virus spread and prevent 
another round of epidemic outbreak. It has been shown that SARS-CoV-2 
clusters with bat-derived SL-CoVs, indicating that SARS-CoV-2 might 
originate from bats. In Fig. 3(a), closely related coronaviruses are uti-
lized to identify the origin of SARS-CoV-2. Wuhan-Hu-1 clusters with 
viruses of SARS-CoV-2 (WIV02, WIV04-07) with high sequence identity, 
plus environmental coronaviruses (Env-CoVs) sampled from the seafood 
market (IVDC-HB-envF13-20, 21) with distances less than 0.0010 (data 
are not shown). Bat-CoV RaTG13 shows the highest homology to SARS- 
CoV-2 among all current known SARSr-CoVs. In addition, Bat/Yunnan/ 
RmYN02 is closely related to SARS-CoV-2, especially a peptide insertion 
at S1/S2 cleavage site (Zhou et al., 2020a). RaTG13 and RmYN02 are 
both obtained from Rhinolophus bats, and SARS-CoV-2 cluster with bat- 
origin CoVs, so bats are identified as natural reservoir of SARS-CoV-2. 

Bats’ ecological separation from human makes it probable that other 
animals act as intermediate hosts that transmit viruses to human (Cui 
et al., 2019; Lam et al., 2020; Xiao et al., 2020; Shi, 2020; Sit, 2020). For 
example, SARS-CoV and MERS-CoV are originated from bat, then 
transmitted to civet (Song et al., 2005) or camel (Wang et al., 2016), and 
finally to human. It is reported that the RBD of the S gene from 
Guangdong Pan-CoV is conserved to SARS-CoV-2 (Lam et al., 2020; Xiao 
et al., 2020). Besides pangolin, mink, snake, turtle, cat, and dog have 
been proposed as intermediate hosts (Li et al., 2020; Xia, 2020; Shi et al., 
2020; Oreshkova et al., 2020; Sit et al., 2020; Zhang et al., 2020). Since 
there is no possible way to get sufficient sampling to determine inter-
mediate hosts of SARS-CoV-2, it is necessary to build transmission route 
from the origin to intermediate hosts. Since human is thought as the 
terminal host of SARS-CoV-2, an inference of bat-to-human trans-
missiion route looks more effective. Based on the transmission modes of 
animal origins of human coronaviruses (Cui et al., 2019), coronavirus 
groups are chosen from all possible animal hosts, and distance for each 
pair of virus groups is depicted the similarity between animal hosts 
(Tables S1–S4), in which both whole-genome and S gene sequences are 
considered. Moreover, Mean distance and Center distance are applied. 
In Fig. 3(b), two bat-to-human transmission routes are inferred (see Text 
S1 for more detail). The only difference between two transmission routes 
is whether civet has taken part in the genetic recombination of SARS- 
CoV-2; however, pangolin is always adjacent to human, and identified 
as an intermediate host of SARS-CoV-2. Meanwhile, civet is predicted as 
a possible candidate. 

The S protein is a significant driver in virus evolution through 
binding with receptor protein (Wrobel et al., 2021). To validate pangolin 
as an intermediate host of SARS-CoV-2, the crystal structure of the S 
protein for representatives from SARS-CoV-2, Pan-CoV, SARS-CoV, and 
Bat-CoV are built by homology modelling using SWISS-MODEL server, 
and pairwise values of root-mean-square deviation (RMSD) to the 3D 
structure of Wuhan-Hu-1 are 2.34 (M789), 3.09 (Civet007), and 5.78 
(HKU2), respectively. In Fig. 3(c), the structure of the S protein from 
Pan-CoV (M789) is the most similar to that of SARS-CoV-2 (Wuhan-Hu- 
1), which coincides with results from RMSD values. In addition, the 
similarity analysis for the S genes from close related coronaviruses is 
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performed. As shown in Fig. 4(a), it is confirmed again that RaTG13 is 
the closest to SARS-CoV-2, and the recombination in SARS-CoV-2 is 
noted, which suggests cross-species recombination between bat and 
pangolin CoVs exists in the evolution of SARS-CoV-2. Furthermore, the 
RBDs in the S protein are compared, in which the ACE2 critical contact 
sites are highlighted with arrows in Fig. 4(b). It is obvious that all critical 
contact sites in the Pan-CoV Guangdong/1 are consistent with that of 
SARS-CoV-2, which proves that pangolin should be an intermediate host 
in the emergence of SARS-CoV-2. 

2.3. Transmitting mode and features of SARS-CoV-2 at the beginning of 
the COVID-19 pandemic 

It has been more than one year since the outbreak of COVID-19 in 
Wuhan, China, but transmission mode and features are still unclear. 
Because of many asymptomatic infections, it is likely that virus emerged 
earlier in human than envisaged (Chinazzi et al., 2020). SARS-CoV-2 
sampled at early stage of the epidemic is closely related to Env-CoVs 
sampled from the seafood market (Fig. 3(a)). It is indicated that there 
existed plenty of viruses at the seafood market when the epidemic broke 
out, and this “clammy” market should play an important role in virus 

Fig. 1. Phylogenetic trees of all viruses from the family Coronaviridae in NCBI’s RefSeq database is shown the classification of SARS-CoV-2, which are classified into 
four clades, including Alphacoronavirus, Betacoronavirus, Gammacoronavirus, and Deltacoronavirus. Phylogenetic tree constructing with the k-mer natural vector is 
shown in (a), in which different colors represent different virus types. As a comparison, the results gotten by MSA with ClustalW are shown in (b). 
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Fig. 2. Phylogenies of viruses in the genus BetaCoV is shown the classification of SARS-CoV-2 at Genus level. Phylogenies of whole-genome sequence (a), non- 
structural protein gene Orf1ab (b), genes encoding structural proteins of S (c), E (d), M (e), and N (f) are shown with the k-mer natural vector, in which Beta-
CoVs are classified into subgenera of Sarbecovirus, Hibecovirus, Merbecovirus, Nobecovirus, and Embevovirus. 

Y. Zhang et al.                                                                                                                                                                                                                                   



Infection, Genetics and Evolution 93 (2021) 104933

5

transmission to human. In addition, human-to-human transmission has 
been confirmed in family clustering and hospital personnel (Lu et al., 
2020; Zhou et al., 2020b; Chan et al., 2020). 

SARS-CoV-2 is shown with location-linkage: viruses from neigh-
boring locations commonly clustering together (see Fig. 5(a)–(c)). Be-
sides different out-groups utilized, 141 virus genomes from human 
SARS-CoV-2 were downloaded from GISAID database with submission 
date on or before February 29, 2020, when the COVID-19 had escalated 
to a global pandemic. To crack transmitting features of SARS-CoV-2 at 
the beginning of the COVID-19 pandemic, the root of viruses was 
carefully tested by introducing out-groups of Bat-CoVs, Pan-CoVs, and 
HIVs, respectively. Since phylogenetic trees are shown with similar to-
pologies and viruses are hypothesized spread from the root region, it is 
indicated that SARS-CoV-2 might have existed in several regions of the 
world when it broke out in Wuhan, China (Deslandes et al., 2020). It is 
also noted that most viruses near the root region are from Australia and 
the USA, which is consistent with results from phylogenetic network 
analysis of SARS-CoV-2 (Forster et al., 2020). 

3. Discussion 

The COVID-19 caused by SARS-CoV-2 had terrible influences on 
human lives, so it is urgent to identify the origin and intermediate hosts, 
which is the main objective of this study. The k-mer natural vector is 
proposed to fulfil this tough task. SARS-CoV-2 clustering with bat-origin 
coronaviruses strongly suggests bats serving as the natural reservoir for 
SARS-CoV-2. Although Malayan pangolin was thought as a possible in-
termediate host, the result from phylogenies does not support this 
induction. 

To ascertain intermediate hosts of SARS-CoV-2, bat-to-human 
transmission route is built based on the similarities of coronavirus 
groups chosen from all possible animal hosts. It is identified that 
pangolin is an intermediate host in SARS-CoV-2 transmission, which 
coincides with results from the modelled structure comparisons of the S 
proteins, as well as the high sequence and structural similarities among 
RBDs. In addition, civet is predicted as a possible candidate, because 
SARS-CoV-2 is closely related to SARS-CoV in phylogeny, especially the 
peptide insertion at S1/S2 cleavage site in the S protein. It is strongly 
suggested that SARS-CoV-2 has a history of cross-species recombination 

Fig. 3. Origin and intermediate hosts of SARS-CoV-2. (a) Closely related coronaviruses from SARS-CoV, Bat-SL-CoV, Pan-CoV, Bat-CoV, and Env-CoV sampled from 
the seafood market are utilized to identify the origin of SARS-CoV-2 using k-mer natural vector. (b) Bat-to-human transmission route is inferred to ascertain in-
termediate hosts of SARS-CoV-2. (c) Crystal structure modelling of the S protein for representatives from SARS-CoV-2 (Wuhan-Hu-1), Pan-CoV (M789), SARS-CoV 
(Civet007), and Bat-CoV (HKU2). 
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between bat and pangolin CoVs. Moreover, pangolin and civet are both 
wild mammals sold at the seafood market when the epidemic broke out, 
which coincides with rules for intermediate host (Zhang and Holmes, 
2020). 

It is predicted that the virus might have spread when it broke out in 
Wuhan, China, for many asymptomatic infections. In addition, several 
evidences have shown that the cold and wet circumstance is good for 
virus transmission, as well as human-to-human transmission. To depict 
transmission features of SARS-CoV-2, the root of viruses has been 
carefully tested by introducing different out-groups. It is obvious that 
viruses in neighboring locations often cluster together showing with 
strong location-linkage. Combining virus location with the timeline, it is 
suggested the virus having existed in several regions of the world when it 
broke out in Wuhan, China, which needs to be verified with more evi-
dences from different research areas. 

In this study, the k-mer natural vector is proposed to explore hosts 
and transmitting traits for SARS-CoV-2 using strict phylogenetic recon-
struction, in which the k-mer natural vector is well kept the ability to 
deal with recombination and deletions often existing in virus genome, 
and overcomes the deficiencies of previous k-mer models. Although the 
k-mer model methods have been proposed for several years, and some 
methods based on the k-mer models have been optimized, but all of 
these methods lose many important biological information, namely 
there is no way to recover the original genome sequence. One significant 

novelty of our k-mer natural vector is that each virus genome can be 
rigorously recovered by its corresponding k-mer natural vector. 
Compared with alignment-based method, our k-mer natural vector 
concerns global similarities of genomes, such as the changes averaged 
across whole genome rather than at specific locations (shared muta-
tions) and require no evolutionary model or human intervention. The k- 
mer natural vector is a good choice in virus research that precisely de-
scribes the phylogenetic relationships and greatly enhances computa-
tional efficiency (see Table S5), especially facing volumes of data 
extremely increasing. 

4. Material and methods 

4.1. Dataset 

Virus genomes used in this study are collected from datasets of 
GenBank and GISAID with basic sequence information (see Dataset.xls). 

Dataset 1: all viruses from the family Coronaviridae in NCBI’s RefSeq 
database are collected to determine the classification of SARS-CoV-2, in 
which Wuhan-Hu-1 is the reference sequence for SARS-CoV-2. 

Dataset 2: viruses in the genus BetaCoV are used to determine the 
classification of SARS-CoV-2 at Genus level, in which whole-genome 
sequence, non-structural protein gene Orf1ab, and genes encoding 
structural proteins of S, E, M, and N are utilized. 

Fig. 4. Similarity analysis for the S genes between SARS-CoV-2 and several close related coronaviruses. (a) The similarity plot for the S gene comparisons between 
Human-Hu-1 and CoVs from bat and pangolin indicates the recombination of SARS-CoV-2 among bat and pangolin CoVs using Simplot. (b) The RBDs in the S proteins 
are compared with ClustalW, in which the ACE2 critical contact sites are highlighted with arrows. Here, Human-Hu-1 is the reference sequence for SARS-CoV-2. 
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Fig. 5. Phylogenies for 141 viruses from Human SARS-CoV-2 are applied to crack transmission features of SARS-CoV-2 at the beginning of the COVID-19 pandemic 
based on the k-mer natural vector, by introducing out-groups of Bat-CoVs (a), Pan-CoVs (b), and HIVs (c), respectively. 
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Dataset 3: closely related coronaviruses from SARS-CoV, Bat-SL-CoV, 
Pan-CoV, Bat-CoV, and Env-CoV sampled from the seafood market are 
applied to identify the origin of SARS-CoV-2. 

Dataset 4: according to transmission mode of animal origins of 
human coronaviruses (Cui et al., 2019), coronavirus groups are chosen 
for possible animals to ascertain the intermediate hosts of SARS-CoV-2 
(Lam, 2020; Shi, 2020; Sit, 2020; Xia, 2020; Xiao, 2020; Zhang, 2020). 

Dataset 5: except different out-groups, a total of 141 virus genomes 
from human SARS-CoV-2 viruses from GISAID with submission date on 
or before February 29, 2020, are applied to crack transmitting features. 
Any sequence with Ns is discarded. Sequences of Shenzhen/SZTH-001 
(EPI_ISL_406592), Shenzhen/SZTH-004 (EPI_ISL_406595), TaiWan/ 
NTU01 (EPI_ISL_408489), and Singapore/4 (EPI_ISL_410535) are also 
excluded;. 

4.2. K-mer natural vector for virus genome 

Let s = ′ N1N2⋯NL
′ be a virus genome with slength L, Lwhere Nl ∈

{A,C,G,T}, l = 1, 2, ⋯, L, and s[j][i] be the location of the i-th occur-
rence of a k-mer s[j] in s, j = 1, 2, ⋯, 4k. For each given k, the distri-
butions of a k-mer s[j] can be described by three quantities: 

ns[j]: Number of s[j] occurrences in s; 
μs[j]: Mean distance of s[j] from the first position of s; 
Dm

s[j]: Central moment of s[j], that is, 

Ds[j]
m =

∑ns[j]

i=1

(
s[j][i] − μs[j]

)m

nm− 1
s[j] (L − k + 1)m− 1,m = 1, 2,⋯, ns[j]

Thus, the k-mer natural vector for virus genome s is defined by. 
(ns[j], μs[j], Dm

s[j]), j = 1, 2, ⋯, 4k 

By the definition above, the k-mer natural vector concatenates the 
numbers of occurrence and mean distance for k-mer with its central 
moments, it therefore contains the information of k-mers and avoids the 
deficiencies of previous k-mer models. Moreover, the relationship be-
tween a virus genome and its k-mer natural vector is one-to-one for each 
given k, which has been mathematically proved in the Test S1. In 
addition, it has been verified that a k-mer natural vector with order two 
central moment is enough to represent a virus genome, so (ns[j], μs[j], D2

s 

[j]) is effectively depict a virus genome, and still satisfies one-to-one 
mapping. 

4.3. Selection of the k-value and distance metric for k-mer natural vector 

Parameter k has a great influence on obtaining result and compu-
tational complexity for k-mer model methods. Following our former 
work, we choose optimal k value for k-mer natural vector is within a 
range of [ceil(log4 min (L)), ceil(log4 max (L)) + 1], where L is the set of 
lengths of genome sequences considered (Wen et al., 2014). In this 
study, values of k chosen for whole-genome sequence, non-structural 
protein gene Orf1ab, and genes encoding the structural proteins of S, 
E, M, and N are 8, 8, 7, 6, 6, and 7, respectively. 

Once each virus genome is uniquely represented by a k-mer natural 
vector, the Cosine distance metric is used to calculate pairwise distance 
of virus genomes, which eliminates the effects of high dimensionality 
and thus widely used in k-mer models (Zhang et al., 2019). Then, 
Neighbor-Joining (NJ) tree is constructed to show the phylogenies of 
virus genomes, which can be drawn by MEGA (version 7.0) with default 
parameters (Kumar, 2016). 

4.4. Mean distance and Center distance 

Mean distance and Center distance are proposed to quantify the 
distance between two point sets. Mean distance is defined as the average 
of distances between two point sets. Although Center distance is similar 
to Mean distance, they are different, in that, Center distance is proposed 
based on convex hulls (Lin and Kwan, 2016; Dong et al., 2020). 

Let A = {V1,V2,⋯,Vn} represents a point set of Vs of n points. Then 
the convex hull of A is defined as 

C(A) =

{

p|p =
∑n

i=1
αiVi,

∑n

i=1
αi = 1, αi ≥ 0,0 ≤ i ≤ n

}

A convex hull is the smallest convex set containing a given point set. 
For two point sets, each point set can be described by its convex hull, and 
the barycenter of each hull is considered as the representative of the 
hull. Thus, the distance between two barycenter represents the average 
distance of two point sets as well. 
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