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ARTICLE INFO ABSTRACT

Keywords: A severe respiratory pneumonia COVID-19 has raged all over the world, and a coronavirus named SARS-CoV-2 is
Phylogenetic analysis blamed for this global pandemic. Despite intensive research into the origins of the COVID-19 pandemic, the
Bayesian

evolutionary history of its agent SARS-CoV-2 remains unclear, which is vital to control the pandemic and prevent
another round of outbreak. Coronaviruses are highly recombinogenic, which are not well handled with
alignment-based method. In addition, deletions have been found in the genomes of several SARS-CoV-2, which
cannot be resolved with current phylogenetic methods. Therefore, the k-mer natural vector is proposed to
explore hosts and transmission traits for SARS-CoV-2 using strict phylogenetic reconstruction. SARS-CoV-2
clustering with bat-origin coronaviruses strongly suggests bats to be the natural reservoir of SARS-CoV-2. By
building bat-to-human transmission route, pangolin is identified as an intermediate host, and civet is predicted as
a possible candidate. We speculate that SARS-CoV-2 undergoes cross-species recombination between bat and
pangolin coronaviruses. This study also demonstrates transmission mode and features of SARS-CoV-2 in the
COVID-19 pandemic when it broke out early around the world.

K-mer model
Intermediate host
Cross-species

(ORFs) in virus genome and some accessory genes (Wu et al., 2020b;
Zhou et al., 2020a). The first ORF (denoted as Orflab) occupying nearly
half of entire virus genome encodes 16 non-structure proteins, while
remaining ORFs encode structural proteins and accessory proteins, of
which four main structural proteins are spike surface glycoprotein (S),
small envelop protein (E), matrix protein (M), and nucleocapsid protein

1. Introduction

Emerging and re-emerging of virulent infection disease presents a
great threat to the public health (Gao, 2018). The outbreak of COVID-19,

a severe respiratory pneumonia, in Wuha.n, China, has captured th? (N). Of note, the S protein mediates receptor binding and membrane
attention of the world. A novel coronavirus named SARS-CoV-2 is fusion, and determines host tropism and transmission capacity (Jaimes
thought as the culprit of this epidemic, which is the seventh pathogenic et al., 2020).

coronavirus to human (Su et al., 2016; Lu et. al., 2020): Four coronavi- Coronaviruses are zoonotic pathogens that are naturally hosted by
ruses of 229E, 0C43, NL63, and HKU1 are mild and typically cause cold bats (Guan et al., 2003; Lau et al., 2020). Phylogenetic analysis has
symptoms in immunocompetent individuals (Droste?l et al., 2003), shown SARS-CoV-2 clustering with bat-derived SARS related coronavi-
whereas severe acute respiratory syndrome coronavirus (SARS-CoV) ruses (SARSr-CoVs) within the genus BetaCoV, of which RaTG13 is
al.ld Middle East respiratory syndrqme coronavirus (MERS'COV) are observed the highest degree of sequence identity to SARS-CoV-2 (Zhou
highly Pathogenlc a.nd linked FO .h%g.h mortality (Cui et al,, 2019). et al., 2020a). It is also confirmed that SARS-CoV-2 has close similarity
Depending on a high transmissibility, the COVID'1'9 has spread to SARS-CoV, particular in the receptor-binding domain (RBD) of the S
throughout the world and upgraded to a global pandemic. protein. Since human infections of bat-origin viruses typically occur

Initial analysis indicates that SARS-CoV-2 belongs to the genus through intermediate hosts, the Malayan pangolin has been suggested as
Betacoronavirus (BetaCoV), containing six major open-reading frames
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Abbreviations

SARS-CoV severe acute respiratory syndrome coronavirus
MERS-CoV Middle East respiratory syndrome coronavirus
BetaCoV Betacoronavirus

ORFs open-reading frames

SARSr-CoVs SARS related coronaviruses

RBD receptor-binding domain
Pan-CoV Pangolin coronavirus

ML Maximum-likelihood

MSA multiple sequence alignment
SL SARS-like

Env-CoVs environmental coronaviruses

RMSD  root-mean-square deviation
ACE2 angiotensin-converting enzyme 2
NJ Neighbor-Joining

an intermediate host of SARS-CoV-2 (Lam et al., 2020; Xiao et al., 2020).
Although the RBDs in the S protein from Malayan pangolin are well
conserved to SARS-CoV-2 (Highest at 97%), whole-genome analysis
reveals 85.5%-92.0% sequence identity, which are less than what is
observed from RaTG13 (over 96%). Thus, the phylogenies between
pangolin coronavirus (Pan-CoV) and SARS-CoV-2 could not be served as
the direct evidence of pangolin being an intermediate host of SARS-CoV-
2.

Coronaviruses are highly recombinogenic that are not well handled
with alignment-based method (Zielezinski, 2017), so (Boni et al., 2020)
had to remove the effects of recombination and used putative
non-recombinant regions to predict the origin of SARS-CoV-2. In addi-
tion, deletions have been found in the genomes of several SARS-CoV-2,
which indicates human adaptation after transmission and could not be
accurately reflected by current phylogenetic methods (Young et al.,
2020). It was demonstrated that the k-mer model method could capture
recombination events and deal with the cases with deletions efficiently
(Bauer et al., 2020). However, the k-mer approach is not suggested to
tract potential transmission route for its non-uniqueness. To this end, the
k-mer natural vector is proposed to characterize the compositions and
distributions of k-mers occurance in a virus genome, and construct
one-to-one relationship between a virus genome and its k-mer natural
vector. Based on this, we determine the classification of SARS-CoV-2,
identify its origin and intermediate hosts, and tract transmission mode
and features of SARS-CoV-2 in the COVID-19 epidemic, which deepen
our understanding of the recombination for viruses among cross-species
transmission.

2. Results
2.1. Classification of SARS-CoV-2

To validate the efficiency of the k-mer natural vector, all viruses from
the family Coronaviridae in NCBI's RefSeq database are applied to
determine the classification of SARS-CoV-2, in which one sequence
designated as Wuhan-Hu-1 is the reference strain for SARS-CoV-2.
Phylogenetic tree for coronaviruses in RefSeq database is shown in
Fig. 1(a), in which different colors represent different virus types. As a
comparison, results obtained by multiple sequence alignment (MSA)
with ClustalW are shown in Fig. 1(b). Comparing Figs. 1(a) and (b), both
results are consistent with each other, which cannot precisely depicted
by common k-mer model methods. Wuhan-Hu-1 and SARS-CoV are
clustered together, grouping with bat viruses of BM48-31/BGR/2008
and Hp_BetaCoV. It is indicated that Wuhan-Hu-1 is closely related to
SARS-CoV in phylogeny and suggested as a sister clade to SARS-CoV,
which was, therefore, named SARS-CoV-2 by the International
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Committee on Taxonomy of Viruses.

Furthermore, viruses in the genus BetaCoV are used to determine the
classification of SARS-CoV-2 at Genus level. Phylogenies for whole-
genome sequence and genes encoding non-structural protein Orflab
and structural proteins of S, E, M, and N are shown with similar struc-
tures (Figs. 2(a)-2(f)), in which viruses are classified into subgenera of
Sarbecovirus, Hibecovirus, Merbecovirus, Nobecovirus, and Embevovi-
rus. In special, Wuhan-Hu-1 always falls in basal position within the
subgenus Sarbecovirus, and tends to cluster with bat SARS-like (SL)
viruses of CoVZC45 and CoVZXC21, which is in line with results ob-
tained by alignment-based methods (Wu et al., 2020a; Zhu et al., 2020).

2.2. Origin and intermediate hosts of SARS-CoV-2

Identification of the origin and intermediate hosts is current urgent
task to be done, which is vital to control virus spread and prevent
another round of epidemic outbreak. It has been shown that SARS-CoV-2
clusters with bat-derived SL-CoVs, indicating that SARS-CoV-2 might
originate from bats. In Fig. 3(a), closely related coronaviruses are uti-
lized to identify the origin of SARS-CoV-2. Wuhan-Hu-1 clusters with
viruses of SARS-CoV-2 (WIV02, WIV04-07) with high sequence identity,
plus environmental coronaviruses (Env-CoVs) sampled from the seafood
market (IVDC-HB-envF13-20, 21) with distances less than 0.0010 (data
are not shown). Bat-CoV RaTG13 shows the highest homology to SARS-
CoV-2 among all current known SARSr-CoVs. In addition, Bat/Yunnan/
RmYNO2 is closely related to SARS-CoV-2, especially a peptide insertion
at S1/S2 cleavage site (Zhou et al., 2020a). RaTG13 and RmYNO2 are
both obtained from Rhinolophus bats, and SARS-CoV-2 cluster with bat-
origin CoVs, so bats are identified as natural reservoir of SARS-CoV-2.

Bats’ ecological separation from human makes it probable that other
animals act as intermediate hosts that transmit viruses to human (Cui
etal., 2019; Lam et al., 2020; Xiao et al., 2020; Shi, 2020; Sit, 2020). For
example, SARS-CoV and MERS-CoV are originated from bat, then
transmitted to civet (Song et al., 2005) or camel (Wang et al., 2016), and
finally to human. It is reported that the RBD of the S gene from
Guangdong Pan-CoV is conserved to SARS-CoV-2 (Lam et al., 2020; Xiao
et al., 2020). Besides pangolin, mink, snake, turtle, cat, and dog have
been proposed as intermediate hosts (Li et al., 2020; Xia, 2020; Shi et al.,
2020; Oreshkova et al., 2020; Sit et al., 2020; Zhang et al., 2020). Since
there is no possible way to get sufficient sampling to determine inter-
mediate hosts of SARS-CoV-2, it is necessary to build transmission route
from the origin to intermediate hosts. Since human is thought as the
terminal host of SARS-CoV-2, an inference of bat-to-human trans-
missiion route looks more effective. Based on the transmission modes of
animal origins of human coronaviruses (Cui et al., 2019), coronavirus
groups are chosen from all possible animal hosts, and distance for each
pair of virus groups is depicted the similarity between animal hosts
(Tables S1-S4), in which both whole-genome and S gene sequences are
considered. Moreover, Mean distance and Center distance are applied.
In Fig. 3(b), two bat-to-human transmission routes are inferred (see Text
S1 for more detail). The only difference between two transmission routes
is whether civet has taken part in the genetic recombination of SARS-
CoV-2; however, pangolin is always adjacent to human, and identified
as an intermediate host of SARS-CoV-2. Meanwhile, civet is predicted as
a possible candidate.

The S protein is a significant driver in virus evolution through
binding with receptor protein (Wrobel et al., 2021). To validate pangolin
as an intermediate host of SARS-CoV-2, the crystal structure of the S
protein for representatives from SARS-CoV-2, Pan-CoV, SARS-CoV, and
Bat-CoV are built by homology modelling using SWISS-MODEL server,
and pairwise values of root-mean-square deviation (RMSD) to the 3D
structure of Wuhan-Hu-1 are 2.34 (M789), 3.09 (Civet007), and 5.78
(HKU2), respectively. In Fig. 3(c), the structure of the S protein from
Pan-CoV (M789) is the most similar to that of SARS-CoV-2 (Wuhan-Hu-
1), which coincides with results from RMSD values. In addition, the
similarity analysis for the S genes from close related coronaviruses is
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Fig. 1. Phylogenetic trees of all viruses from the family Coronaviridae in NCBI's RefSeq database is shown the classification of SARS-CoV-2, which are classified into
four clades, including Alphacoronavirus, Betacoronavirus, Gammacoronavirus, and Deltacoronavirus. Phylogenetic tree constructing with the k-mer natural vector is
shown in (a), in which different colors represent different virus types. As a comparison, the results gotten by MSA with ClustalW are shown in (b).

performed. As shown in Fig. 4(a), it is confirmed again that RaTG13 is
the closest to SARS-CoV-2, and the recombination in SARS-CoV-2 is
noted, which suggests cross-species recombination between bat and
pangolin CoVs exists in the evolution of SARS-CoV-2. Furthermore, the
RBDs in the S protein are compared, in which the ACE2 critical contact
sites are highlighted with arrows in Fig. 4(b). It is obvious that all critical
contact sites in the Pan-CoV Guangdong/1 are consistent with that of
SARS-CoV-2, which proves that pangolin should be an intermediate host
in the emergence of SARS-CoV-2.

2.3. Transmitting mode and features of SARS-CoV-2 at the beginning of
the COVID-19 pandemic

It has been more than one year since the outbreak of COVID-19 in
Wuhan, China, but transmission mode and features are still unclear.
Because of many asymptomatic infections, it is likely that virus emerged
earlier in human than envisaged (Chinazzi et al., 2020). SARS-CoV-2
sampled at early stage of the epidemic is closely related to Env-CoVs
sampled from the seafood market (Fig. 3(a)). It is indicated that there
existed plenty of viruses at the seafood market when the epidemic broke
out, and this “clammy” market should play an important role in virus
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Fig. 2. Phylogenies of viruses in the genus BetaCoV is shown the classification of SARS-CoV-2 at Genus level. Phylogenies of whole-genome sequence (a), non-
structural protein gene Orflab (b), genes encoding structural proteins of S (c), E (d), M (e), and N (f) are shown with the k-mer natural vector, in which Beta-
CoVs are classified into subgenera of Sarbecovirus, Hibecovirus, Merbecovirus, Nobecovirus, and Embevovirus.
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(b) Inferrence of bat-to-human transmitting

route for SARS-CoV-2

(C)Crystal structure modelling of the S protein
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Pan-CoV, SARS-CoV, and Bat-CoV.
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Fig. 3. Origin and intermediate hosts of SARS-CoV-2. (a) Closely related coronaviruses from SARS-CoV, Bat-SL-CoV, Pan-CoV, Bat-CoV, and Env-CoV sampled from
the seafood market are utilized to identify the origin of SARS-CoV-2 using k-mer natural vector. (b) Bat-to-human transmission route is inferred to ascertain in-
termediate hosts of SARS-CoV-2. (c¢) Crystal structure modelling of the S protein for representatives from SARS-CoV-2 (Wuhan-Hu-1), Pan-CoV (M789), SARS-CoV

(Civet007), and Bat-CoV (HKU2).

transmission to human. In addition, human-to-human transmission has
been confirmed in family clustering and hospital personnel (Lu et al.,
2020; Zhou et al., 2020b; Chan et al., 2020).

SARS-CoV-2 is shown with location-linkage: viruses from neigh-
boring locations commonly clustering together (see Fig. 5(a)-(c)). Be-
sides different out-groups utilized, 141 virus genomes from human
SARS-CoV-2 were downloaded from GISAID database with submission
date on or before February 29, 2020, when the COVID-19 had escalated
to a global pandemic. To crack transmitting features of SARS-CoV-2 at
the beginning of the COVID-19 pandemic, the root of viruses was
carefully tested by introducing out-groups of Bat-CoVs, Pan-CoVs, and
HIVs, respectively. Since phylogenetic trees are shown with similar to-
pologies and viruses are hypothesized spread from the root region, it is
indicated that SARS-CoV-2 might have existed in several regions of the
world when it broke out in Wuhan, China (Deslandes et al., 2020). It is
also noted that most viruses near the root region are from Australia and
the USA, which is consistent with results from phylogenetic network
analysis of SARS-CoV-2 (Forster et al., 2020).

3. Discussion

The COVID-19 caused by SARS-CoV-2 had terrible influences on
human lives, so it is urgent to identify the origin and intermediate hosts,
which is the main objective of this study. The k-mer natural vector is
proposed to fulfil this tough task. SARS-CoV-2 clustering with bat-origin
coronaviruses strongly suggests bats serving as the natural reservoir for
SARS-CoV-2. Although Malayan pangolin was thought as a possible in-
termediate host, the result from phylogenies does not support this
induction.

To ascertain intermediate hosts of SARS-CoV-2, bat-to-human
transmission route is built based on the similarities of coronavirus
groups chosen from all possible animal hosts. It is identified that
pangolin is an intermediate host in SARS-CoV-2 transmission, which
coincides with results from the modelled structure comparisons of the S
proteins, as well as the high sequence and structural similarities among
RBDs. In addition, civet is predicted as a possible candidate, because
SARS-CoV-2 is closely related to SARS-CoV in phylogeny, especially the
peptide insertion at S1/S2 cleavage site in the S protein. It is strongly

suggested that SARS-CoV-2 has a history of cross-species recombination
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Fig. 4. Similarity analysis for the S genes between SARS-CoV-2 and several close related coronaviruses. (a) The similarity plot for the S gene comparisons between

Human-Hu-1 and CoVs from bat and pangolin indicates the recombination of SARS-

CoV-2 among bat and pangolin CoVs using Simplot. (b) The RBDs in the S proteins

are compared with ClustalW, in which the ACE2 critical contact sites are highlighted with arrows. Here, Human-Hu-1 is the reference sequence for SARS-CoV-2.

between bat and pangolin CoVs. Moreover, pangolin and civet are both
wild mammals sold at the seafood market when the epidemic broke out,
which coincides with rules for intermediate host (Zhang and Holmes,
2020).

It is predicted that the virus might have spread when it broke out in
Wuhan, China, for many asymptomatic infections. In addition, several
evidences have shown that the cold and wet circumstance is good for
virus transmission, as well as human-to-human transmission. To depict
transmission features of SARS-CoV-2, the root of viruses has been
carefully tested by introducing different out-groups. It is obvious that
viruses in neighboring locations often cluster together showing with
strong location-linkage. Combining virus location with the timeline, it is
suggested the virus having existed in several regions of the world when it
broke out in Wuhan, China, which needs to be verified with more evi-
dences from different research areas.

In this study, the k-mer natural vector is proposed to explore hosts
and transmitting traits for SARS-CoV-2 using strict phylogenetic recon-
struction, in which the k-mer natural vector is well kept the ability to
deal with recombination and deletions often existing in virus genome,
and overcomes the deficiencies of previous k-mer models. Although the
k-mer model methods have been proposed for several years, and some
methods based on the k-mer models have been optimized, but all of
these methods lose many important biological information, namely
there is no way to recover the original genome sequence. One significant

novelty of our k-mer natural vector is that each virus genome can be
rigorously recovered by its corresponding k-mer natural vector.
Compared with alignment-based method, our k-mer natural vector
concerns global similarities of genomes, such as the changes averaged
across whole genome rather than at specific locations (shared muta-
tions) and require no evolutionary model or human intervention. The k-
mer natural vector is a good choice in virus research that precisely de-
scribes the phylogenetic relationships and greatly enhances computa-
tional efficiency (see Table S5), especially facing volumes of data
extremely increasing.

4. Material and methods
4.1. Dataset

Virus genomes used in this study are collected from datasets of
GenBank and GISAID with basic sequence information (see Dataset.xls).

Dataset 1: all viruses from the family Coronaviridae in NCBI's RefSeq
database are collected to determine the classification of SARS-CoV-2, in
which Wuhan-Hu-1 is the reference sequence for SARS-CoV-2.

Dataset 2: viruses in the genus BetaCoV are used to determine the
classification of SARS-CoV-2 at Genus level, in which whole-genome
sequence, non-structural protein gene Orflab, and genes encoding
structural proteins of S, E, M, and N are utilized.
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Fig. 5. Phylogenies for 141 viruses from Human SARS-CoV-2 are applied to crack transmission features of SARS-CoV-2 at the beginning of the COVID-19 pandemic
based on the k-mer natural vector, by introducing out-groups of Bat-CoVs (a), Pan-CoVs (b), and HIVs (c), respectively.
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Dataset 3: closely related coronaviruses from SARS-CoV, Bat-SL-CoV,
Pan-CoV, Bat-CoV, and Env-CoV sampled from the seafood market are
applied to identify the origin of SARS-CoV-2.

Dataset 4: according to transmission mode of animal origins of
human coronaviruses (Cui et al., 2019), coronavirus groups are chosen
for possible animals to ascertain the intermediate hosts of SARS-CoV-2
(Lam, 2020; Shi, 2020; Sit, 2020; Xia, 2020; Xiao, 2020; Zhang, 2020).

Dataset 5: except different out-groups, a total of 141 virus genomes
from human SARS-CoV-2 viruses from GISAID with submission date on
or before February 29, 2020, are applied to crack transmitting features.
Any sequence with Ns is discarded. Sequences of Shenzhen/SZTH-001
(EPI_ISL_406592), Shenzhen/SZTH-004 (EPI_ISL 406595), TaiWan/
NTUO1 (EPLISL_408489), and Singapore/4 (EPI_ISL_410535) are also
excluded;.

4.2. K-mer natural vector for virus genome

Let s = ' N3Ny---N; be a virus genome with slength L, Lwhere N; €
{A,C,G, T}, 1 =1, 2, -, L, and s[j]l[i] be the location of the i-th occur-
rence of a k-mer s[j] ins,j=1, 2, -, 4k, For each given k, the distri-
butions of a k-mer s[j] can be described by three quantities:

ns[j1: Number of s[j] occurrences in s;

ﬂS[{l]: Mean distance of s[j] from the first position of s;

Di} 1. Central moment of s[jl, that is,
pill = z’[’:(smm;ﬂ\[,])w =1,2,,ny
" e mi (L= k+ 1"

Thus, the k-mer natural vector for virus genome s is defined by.

(g0, psts DSWP]),] =12, 4

By the definition above, the k-mer natural vector concatenates the
numbers of occurrence and mean distance for k-mer with its central
moments, it therefore contains the information of k-mers and avoids the
deficiencies of previous k-mer models. Moreover, the relationship be-
tween a virus genome and its k-mer natural vector is one-to-one for each
given k, which has been mathematically proved in the Test S1. In
addition, it has been verified that a k-mer natural vector with order two
central moment is enough to represent a virus genome, so (1, fsgj3, Db
U1y is effectively depict a virus genome, and still satisfies one-to-one
mapping.

4.3. Selection of the k-value and distance metric for k-mer natural vector

Parameter k has a great influence on obtaining result and compu-
tational complexity for k-mer model methods. Following our former
work, we choose optimal k value for k-mer natural vector is within a
range of [ceil(log4 min (L)), ceil(logs max (L)) + 11, where L is the set of
lengths of genome sequences considered (Wen et al., 2014). In this
study, values of k chosen for whole-genome sequence, non-structural
protein gene Orflab, and genes encoding the structural proteins of S,
E,M, and N are 8, 8, 7, 6, 6, and 7, respectively.

Once each virus genome is uniquely represented by a k-mer natural
vector, the Cosine distance metric is used to calculate pairwise distance
of virus genomes, which eliminates the effects of high dimensionality
and thus widely used in k-mer models (Zhang et al., 2019). Then,
Neighbor-Joining (NJ) tree is constructed to show the phylogenies of
virus genomes, which can be drawn by MEGA (version 7.0) with default
parameters (Kumar, 2016).

4.4. Mean distance and Center distance

Mean distance and Center distance are proposed to quantify the
distance between two point sets. Mean distance is defined as the average
of distances between two point sets. Although Center distance is similar
to Mean distance, they are different, in that, Center distance is proposed
based on convex hulls (Lin and Kwan, 2016; Dong et al., 2020).
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Let A = {V1,Vy,---,V,,} represents a point set of V; of n points. Then
the convex hull of A is defined as

CA) =4plp=> aV,> ai=1,4>00<i<n
i=1 i=1

i=

A convex hull is the smallest convex set containing a given point set.
For two point sets, each point set can be described by its convex hull, and
the barycenter of each hull is considered as the representative of the
hull. Thus, the distance between two barycenter represents the average
distance of two point sets as well.
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Appendix A. Supplementary data

Supplementary material to this article can be found online. All
datasets and matlab code used in this paper are available at https://gith
ub.com/wenjial98021/Hosts-and-transmission-traits-for-SARS-CoV-2.
Supplementary data to this article can be found online at https://doi.org
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