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Abstract

Dorsolateral prefrontal cortex (DLPFC) is well-known for its role in exerting mental

work, however the contribution of DLPFC for deciding whether or not to engage in

effort remains unknown. Here, we assessed the causal role of DLPFC in effort-based

decision making. We disrupted functioning of DLPFC with noninvasive brain stimula-

tion before participants repeatedly decided whether to exert mental effort in a work-

ing memory task. We found the same DLPFC subregion involved in mental effort

exertion to influence also effort-based decisions: First, it enhanced effort dis-

counting, suggesting that DLPFC may signal the capacity to successfully deal with

effort demands. Second, a novel computational model integrating the costs of endur-

ing effort into the effort-based decision process revealed that DLPFC disruption

reduced fatigue after accumulated effort exertion, linking DLPFC activation with

fatigue. Together, our findings indicate that in effort-based decisions DLPFC repre-

sents the capacity to exert mental effort and the updating of this information with

enduring time-on-task, informing theoretical accounts on the role of DLPFC in the

motivation to exert mental effort and the fatigue arising from it.
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1 | INTRODUCTION

Remember your toughest academic exam? When you answered the

questions you probably engaged fully, thinking of nothing else than

the task at hand. Moreover, it may have left you feeling more

exhausted than an easier exam. Thus, we seem to experience mental

work as effortful. In fact, humans often disengage from demanding

mental activity despite its beneficial consequences (Shenhav

et al., 2017). However, it remains unclear how the costs of mental

effort are computed, as theoretical accounts disagree on why mental

work is perceived as effortful. The resource hypothesis proposes that

subjective effort scales with the degree to which a limited resource is

used (Boksem & Tops, 2008), whereas the cost hypothesis claims that

subjective effort scales with the incurred costs of the exerted effort

(Kool & Botvinick, 2014, 2018).

Dorsolateral prefrontal cortex (DLPFC) canonically plays a central

role in exerting mental effort (Braver et al., 1997; Miller &

Cohen, 2001) and is hypothesized to contribute also to effort-based

decision making in communication with other regions such as the dor-

sal anterior cingulate cortex (dACC) (Domenech, Redouté, Koechlin, &

Dreher, 2018; Shenhav et al., 2017; Shenhav, Botvinick, &

Cohen, 2013; Vassena, Deraeve, & Alexander, 2017). While theoreti-

cal accounts posit the dACC to trade-off the value of potential

rewards against the required costs (Shenhav et al., 2013; Vassena

et al., 2017), the role of DLPFC for motivating engagement in

rewarded mental effort remains less well understood. Previous studies
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reported enhanced DLPFC activation in anticipation of high mental

effort demands (Vassena et al., 2014; Vassena, Gerrits, Demanet, Ver-

guts, & Siugzdaite, 2019). However, due to the correlative nature of

imaging results, the increased DLPFC activation in these studies could

be interpreted either as anticipation of error likelihood and effort

costs (Alexander & Brown, 2015; Vassena et al., 2017), or as active

preparation for effort exertion (Verguts, Vassena, & Silvetti, 2015).

Crucially, from these alternative interpretations, we can derive dis-

sociable predictions on how the DLPFC causally affects decisions to

engage in effort. If enhanced DLPFC activation signals predicted effort

costs (which might be forwarded to dACC to integrate effort costs with

rewards at stake), experimental disruption of DLPFC activity may

reduce the perceived costs of exerting effort, which in turn should

result in weaker discounting of reward value by increasing effort

requirements (cost hypothesis). This hypothesis is supported by previous

findings that DLPFC activation during a task switching paradigm pre-

dicts the desire to avoid performing further task blocks (McGuire &

Botvinick, 2010). Conversely, if DLPFC activation signals the capacity

to successfully exert effort, experimental disruption of DLPFC activity

should reduce the perceived available mental resources, thereby

enhancing effort discounting (resource hypothesis). This is because lower

mental resources may inform other regions like dACC that current

effort demands outweigh potential benefits. Thus, in direct opposition

to the cost hypothesis predicting DLPFC downregulation to reduce

mental effort discounting due to reduced costs, the resource hypothe-

sis predicts increased mental effort discounting due to downregulated

capacity. The current study aimed to dissociate these conflicting

accounts by testing how disrupting DLPFC functioning with noninva-

sive stimulation changes the motivation to exert effort.

DLPFC has also been related to the feeling of fatigue, which is

characterized by a lower willingness to engage in effort as a conse-

quence of enduring exertion of high mental effort (Muller &

Apps, 2019). Motivational fatigue after enduring work was reported

to result in lower DLPFC activation, which in turn reduces the capac-

ity to exert cognitive control (Blain et al., 2019; Blain, Hollard, &

Pessiglione, 2016). The lower DLPFC activation after task perfor-

mance was speculated to reflect a functional adaptation to the costs

of exerting control (Hockey & Hockey, 2013; Kurzban, Duckworth,

Kable, & Myers, 2013) and may signal to other regions like dACC that

the costs of effort exertion are greater than its benefits. Thus, consis-

tent with the possible role of DLPFC for signaling mental resources in

effort-based decision making (as discussed above), motivational

fatigue may reflect an updating of the information about available,

DLPFC-implemented, control capacities. However, also the evidence

regarding the relationship between DLPFC and fatigue is only correla-

tive to date. A further goal of the current study therefore was to

assess the causal role of DLPFC for updating the ability to exert men-

tal effort with enduring time-on-task.

Here, we employed continuous theta-burst stimulation (cTBS)

and computational modeling to dissociate between competing theo-

retical accounts of the role of DLPFC in motivating strenuous mental

work. Introducing a novel experimental paradigm that allows consider-

ing the impact of fatigue on motivation for mental effort, we tested

how mental effort exertion with perturbed DLPFC function changes

the nonfatigued and fatigued motivation to engage in mental work.

While formal models describing the discounting of reward value as

function of effort costs are widely used in the literature (Chong

et al., 2017; Hartmann et al., 2015; Hartmann, Hager, Tobler, &

Kaiser, 2013; Soutschek et al., 2020), formal models incorporating the

impact of fatigue into value computations (Muller & Apps, 2019) have

not been tested empirically so far. To test how DLPFC cTBS influ-

ences both fatigued and nonfatigued effort discounting, we therefore

incorporated possible influences of fatigue into existing formal models

of effort discounting. Disentangling nonfatigued and fatigued effort

discounting via experimental design and formal modeling allowed us

to test the following research questions: First, we assessed whether

DLPFC disruption leads to either stronger (resource hypothesis) or

weaker (cost hypothesis) nonfatigued effort discounting. Second, we

tested whether DLPFC cTBS reduces the impact of fatigue on effort-

based decision making by disrupting the updating of DLPFC-

implemented mental resources with increasing fatigue.

2 | MATERIALS AND METHODS

2.1 | Participants

Sixty volunteers (29 female, Mage = 23.7 years, SDage = 2.7 years) were

randomly assigned to one of the two stimulation groups (DLPFC or ver-

tex). Power calculations based on a previous study (Mottaghy

et al., 2003) suggested that a minimum of 25 participants per stimula-

tion group was needed to replicate the significant effects of DLPFC

stimulation on N-back performance with a power of 80% (alpha = 5%,

one-tailed). All volunteers gave written informed consent. The study

protocol was approved by the Research Ethics Committee of the can-

ton of Zurich. Participants received 60 Swiss francs for their participa-

tion and a monetary bonus that depended on their choices (see below).

2.2 | Stimuli and task design

2.2.1 | N-back task

Participants performed a letter version of the N-back task (Braver

et al., 1997) in which they were presented a stream of letters (b, c, d,

g, p, t, and w). We instructed participants to press the space bar on a

keyboard if the currently presented letter was a target stimulus, that

is, if it was identical to the letter presented N trials before. Thus, par-

ticipants permanently maintained and updated N letters in working

memory. Each trial started with the presentation of a letter (500 ms),

followed by a fixation cross (1,500 ms). If the current letter was a tar-

get, the response had to be executed before the start of the next trial.

Previous research suggests that humans perceive this task as mentally

demanding and that the value of performing the task decreases with

increasing N (Westbrook, Kester, & Braver, 2013). To calibrate the dif-

ficulty of the N-back task to individual performance levels (see below),
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participants performed one block of the 2-back, 3-back, 4-back, and

5-back condition (each block lasting 2 min) at the start of the experi-

ment. If performance in the 5-back condition was ≥40% correct, they

additionally performed a 6-back block (where no participant reached

40% correct).

2.2.2 | Effort-related decision task

In each trial, participants decided between two choice options

(Figure 1). For the effort-free option, participants obtained 1 Swiss

franc without having to perform the N-back task. In contrast, the

effortful option required participants to perform low, medium, or high

levels of mental effort in order to obtain a monetary reward (1.1–2.5

Swiss francs). The required mental effort was calibrated to an individ-

ual's performance level in the N-back task (Nmax40%, i.e., the highest N

at which a participant showed ≥40% correct responses). For example,

if Nmax40% = 3, the low, medium, and high effort levels corresponded

to the 2-back (Nmax40% − 1), 3-back (Nmax40%), and 4-back (Nmax40% + 1)

conditions, respectively. Before each decision, participants performed a

miniblock of the corresponding N-back condition with 10 trials for 30 s.

This allowed participants to experience and update the strain required

by the effortful option of each choice. Thereby, we could assess the

impact of accumulated effort exertion on effort-based choice.

At the end of the experiment, one trial was randomly determined

and implemented. If participants had chosen the effortful option, they

had to perform the corresponding level of the N-back task for 2 min

with a rate of correct responses ≥25% to obtain the reward; if perfor-

mance was below 25%, they obtained 1 Swiss franc (as for the effort-

free option, allowing to control for stimulation effects on risk prefer-

ences). Participants were not informed about the exact performance

threshold; instead, they were instructed that they would win the

bonus as long as they worked hard for it. Moreover, they were

informed that if the data suggested that they had not invested suffi-

cient effort they would receive no bonus (Westbrook et al., 2013).

This procedure ensures that choices are guided by participants' effort

preferences rather than by the perceived risk of not obtaining the

bonus despite strong task engagement. To disentangle effort from

time preferences, participants knew that they had to passively view

the letters for the N-back task for 2 min if they had chosen the effort-

free option. This ensured that they did not choose the effort-free

option to finish the experiment earlier.

2.2.3 | Rating tasks

To measure the impact of cTBS on fatigue, we administered a rating

task where participants (still under the impact of cTBS) indicated on a

20-point scale their level of fatigue (1 = not tired; 20 = very tired)

after the decision task. In addition, participants rated their mood.

Finally, to assess potential cTBS effects on risk preference, they made

a choice between a risk-free (1 Swiss franc for sure) and a risky

reward (50% chance of winning either 2 or 0 Swiss francs).

2.2.4 | Questionnaires

Before receiving cTBS, participants filled in questionnaires measuring

baseline reward sensitivity and motivation traits. The Snaith–Hamilton

Pleasure Scale (Snaith et al., 1995) measures individual differences in

anhedonia, whereas the behavioral inhibition/activation system

(BIS/BAS [Carver & White, 1994]) questionnaire represents a stan-

dard measure of individual reward sensitivity.

2.3 | Procedure

Participants first filled in the LARS and BIS/BAS questionnaires as

baseline measures of reward sensitivity. After motor threshold deter-

mination, participants performed the N-back task to determine their

F IGURE 1 Task procedure and example trial. (a) Participants first
performed the N-back task to determine their maximum effort level
(Nmax40%, i.e., the highest N for which accuracy was at least 40%).
Then participants received cTBS to either DLPFC or vertex as control
site, and performed the effort-based decision task. (b) Before making
effort-based decisions at a specific effort level, participants performed
10 trials (duration = 30 s) of the N-back task at that same effort level,
allowing participants to accumulate effort and base upcoming choices
on actual experience. Subsequently, participants decided between
performing the given N-back level for a monetary reward (1.1–2.5
Swiss francs; effortful reward option) and passively viewing letters of
the N-back task for 1 Swiss franc (effort-free reward option). Next, a

different 30 s N-back block with the effort level of the subsequent
effortful choice option started, and participants again decided
between the effortful and the effort-free reward options. Only at the
end of the experiment (i.e., after participants had completed all
choices), one choice was randomly selected and implemented. This
ensured that effort requirements during the decision task were
independent of the actual choices participants made
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maximum effort level (Nmax40%). Following cTBS to either DLPFC or

vertex, they made 24 choices in the effort-based decision task. Before

each decision, participants had to perform the N-back task with the

effort level of the subsequent effortful reward option for 30 s. Finally,

participants performed the rating tasks while still under the influence

of cTBS. At the very end of the experiment, one trial was randomly

selected and implemented as bonus trial.

2.4 | cTBS

Participants were stimulated either over the left DLPFC (30 participants)

or over the vertex (30 participants) with a standard cTBS protocol

(Huang, Edwards, Rounis, Bhatia, & Rothwell, 2005). We used a Super

Rapid stimulator (Magstim Co.) and a figure-of-eight coil (internal diam-

eter of 7 cm). For cTBS, bursts of 3 stimuli at 50 Hz were repeated with

a frequency of 5 Hz for 40 s (600 pulses in total) at 80% of the active

motor threshold. Motor threshold corresponded to the lowest pulse

intensity required to elicit a motor-evoked potential larger than 200 μV

from the contralateral first dorsal interosseous muscle on more than

five out of 10 trials while the participant maintained a contraction of

20% maximum force. This cTBS protocol reduces the excitability of the

stimulated brain region for up to 60 min (Huang et al., 2005).

We determined stimulation sites using individual T1-weighted

structural scans and Brainsight frameless stereotaxy (Rogue Research).

For the DLPFC site, we used coordinates for the left DLPFC (MNI

coordinates: x = −41, y = 27, z = 25) from a meta-analysis on the N-

back task (Owen, McMillan, Laird, & Bullmore, 2005). For each partici-

pant, we transformed the DLPFC coordinates into the native space of

their structural scan. As control site, we used the vertex (meeting

point of the pre- and postcentral sulcus in the interhemispheric fis-

sure). The cTBS coil was positioned tangentially to the cortical surface

over these sites during stimulation, with the handle pointing back-

ward. For DLPFC cTBS, the handle was angled 45� away from the

midline (Mottaghy et al., 2003).

2.5 | Data analysis

The statistical analysis of the behavioral data was performed with

Matlab R2016b (MathWorks, Natick, MA) and IBM SPSS Statistics 22.

For the effort-based decision task, we computed a mixed generalized

linear model (MGLM) to analyze dummy-coded choices (0 = effort-

free option, 1 = effortful option). The MGLM included the following

fixed-effects predictors: cTBS (0 = vertex, 1 = DLPFC), Trial (trial

1–24; recoded to the range of [0;1]), Effort level (z-standardized),

Reward magnitude (z-standardized), and the interaction terms model-

ing the impact of cTBS and Trial on Effort level and Reward magni-

tude. We additionally modeled participant-specific random intercepts

and all within-subject effects (Effort level, Reward magnitude, Trial,

Trial × Effort level, Trial × Reward magnitude) as random slopes. In

the N-back task, we regressed log-transformed reaction times (RTs)

on fixed-effects predictors for cTBS, Effort level, Trial, and all

interaction terms. As random effects, we entered random intercepts

as well as random slopes for Effort level, Trial, and the interaction

term. Degrees of freedom were computed using the Satterthwaite

approximation. In addition, we computed Bayes factors as indicators

of how strongly the data favor the alternative over the null hypothesis

(BF10) with the brms package in R.

We analyzed choice behavior also in a model-based fashion. Note

that models of effort discounting disagree on whether the devaluation

of subjective reward value by increasing (mental) effort is best

described with linear, hyperbolic, or parabolic functions (Bialaszek,

Marcowski, & Ostaszewski, 2017; Chong et al., 2017; Hartmann

et al., 2013; Soutschek et al., 2020; Westbrook et al., 2013). We

therefore modeled choices in the decision task with the following dis-

count functions (Equations 1–3):

SVeff = reward−k× effortcurrent linearð Þ ð1Þ

SVeff =
reward

1+ k× effortcurrent
hyperbolicð Þ ð2Þ

SVeff = reward−k× effort2current parabolicð Þ ð3Þ

where SVeff represents the subjective value of the effortful reward

option and k indicates the individual degree of effort discounting. To

translate subjective values (as given by Equations 1–3) into choice, we

used a standard softmax function (Equation 4).

P choice of effortful optionð Þ= 1
1 + expð−βtemp× SVeff−1ð ÞÞ

ð4Þ

This function captures the likelihood of choosing the effortful

reward option as a function of the value difference (multiplied by

the inverse temperature parameter βtemp) between the effortful

reward option (SVeff) and the effort-free option (which was fixed to

1 Swiss franc). Consistent with previous studies (Chong et al., 2017;

Hartmann et al., 2013), a parabolic discounting model explained the

data better (R2 = .68) than a hyperbolic (R2 = .63) or linear

model (R2 = .62).

Finally, we tested how fatigue affects the computation of effort

costs. We considered four alternatives how the accumulated amount

of effort might affect parabolic effort discounting (which explained

choices better than linear or hyperbolic discounting; see above): First,

we assumed that a fatigue parameter φ might be either added to, or

multiplied with, the discount factor k. Second, we tested whether

accumulated effort either linearly or nonlinearly (log-transformed)

affects effort discounting. We thus compared the following four alter-

native models:

Model 1: SVeff = reward− k×φ× effortaccumulatedð Þ× effort2:current
Model 2: SVeff = reward− k +φ× effortaccumulatedð Þ× effort2current
Model 3: SVeff = reward− k×φ× log 1 + effortaccumulatedð Þð Þ×

effort2current
Model 4: SVeff = reward− k +φ× log 1 + effortaccumulatedð Þð Þ×

effort2current
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In Models 3 and 4, we added 1 to the amount of accumulated

effort (sum of performed n-back levels) to avoid negative values after

the log-transformation in cases of effortaccumulated = 0. Model compar-

isons revealed that Model 4 (using an additive link between k and φ as

well as log-transformed effort costs) explained the observed data better

(R2 = .703) than all other models (Model 1: R2 = .592; Model 2; R2 = .696;

Model 3: R2 = .659). In addition, this model explained the observed data

better (R2 = .70) than the standard parabolic model (R2 = .68).

In all model-based analyses, parameters were estimated using

maximum likelihood methods as implemented in Matlab. Because the

resulting individual parameter estimates were not normally distrib-

uted, we used nonparametric ordinal regressions implemented in SPSS

to assess statistical significance.

3 | RESULTS

3.1 | Baseline measures

The two stimulation groups were balanced with regard to baseline

measures of anhedonia (Snaith et al., 1995), t(58) = 1.37, p = .18, or

reward sensitivity (behavioral inhibition/activation system, BIS/BAS

[Carver & White, 1994]), BIS: t(58) = 0.00, p = 1, BAS: t(58) < 1,

p = .78. Also Nmax40% did not significantly differ between stimulation

groups, χ2 = 5.57, p = .23. Any cTBS effects on N-back performance

or decision making thus cannot be explained by pre-existing baseline

differences in these measures.

3.2 | DLPFC cTBS impairs mental effort exertion

First, we tested whether we replicate previous reports of a causal

involvement of DLPFC in mental effort exertion (Mottaghy

et al., 2003; Oliveri et al., 2001; Sandrini, Rossini, & Miniussi, 2008).

An MGLM on log-RTs in the N-back task revealed a significant effect

of cTBS, β = .05, t(132) = 2.14, p = .03, BI10 = 1.7, indicating slower

RTs following DLPFC compared with control cTBS (Figure 2a and

Table 1). We observed no interactions between cTBS and Effort level

or Trial, all β < .05, all t < 1.73, all p > .09, all BI10 < 1.2. The main

effect of Effort level was not significant, β = .03, t(229) = 1.48, p = .14,

BI10 = 2.6, but higher effort levels resulted in performance decre-

ments with increasing time-on-task, β = .05, t(1798) = 2.06, p = .04,

BI10 = 1.9. Taken together, perturbation of DLPFC slowed responding

during mental effort exertion.

Furthermore, we tested for stimulation effects on N-back target

detection (controlling for false alarms using discriminability d'). An

ANCOVA showed no effect of cTBS or a cTBS × Effort level interac-

tion, both F < 1.53, p > .22, both partial eta2 < 0.026, both

BF10 < 1.1. However, when we explored cTBS effects for each effort

level separately, we observed that DLPFC cTBS tended to impair per-

formance in low-effort blocks, t(57) = 1.87, p = .06, BF10 = 2.3, but

not in medium- or high-effort blocks, both t(57) < 1, both p > .54,

both BF10 < .6 (Figure 2b). This may reflect floor effects (i.e., cTBS

cannot further reduce already low discriminability at higher effort

levels). In any case, the RT and discriminability findings corroborate

previous reports of a causal involvement of DLPFC in exerting mental

effort.

3.3 | DLPFC cTBS reduces fatigue after effort
exertion

After the decision task (still under the impact of cTBS), we measured

mood, risk preferences, and subjective fatigue. We observed no cTBS-

induced changes in mood or risk preferences, both t < 1.15, p > .25.

Importantly, we observed that participants felt less exhausted at the

end of the experiment (i.e., after the decision task) after DLPFC than

after control cTBS, t(58) = 2.78, p = .008, BF10 = 81.5 (Figure 3; we

note, though, that our study included no baseline measure of fatigue

before effort exertion). There were no significant differences in time

of day when participants of the DLPFC and control cTBS groups

started the experiment, χ2(9) = 11.53, p = .24, suggesting that the

stimulation effects on fatigue could not be explained by the DLPFC

cTBS group performing the experiment later in the day than the con-

trol group. Thus, impairing mental effort exertion did not result in

compensatory, more fatiguing mental work. Instead, it reduced the

sensation of work-related exhaustion.

F IGURE 2 Effects of downregulating DLPFC activity on mental
effort performance. DLPFC cTBS, relative to control cTBS, increased
(a) log-transformed RTs in the N-back task and (b) tended to reduce
discriminability d' in the low effort condition. These data replicate
previous findings of causal DLPFC involvement in mental effort
exertion (Mottaghy et al., 2003; Oliveri et al., 2001; Sandrini
et al., 2008). Error bars indicate standard error of the mean. Asterisks

indicate significant effects (*p < .05)
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3.4 | DLPFC cTBS changes willingness to engage
in effort with time-on-task

Next, we tested whether DLPFC affects not only the sensation of

fatigue after mental effort exertion but also decisions to engage in

effort. We computed an MGLM that regressed binary choices of

effortful versus effort-free rewards on predictors for cTBS, Effort

level, Reward magnitude, Trial, and the interaction effects. Because

the predictor Trial ranged from 1 to 24, the lower-level effects

without the predictor Trial describe behavior before effort accumu-

lation (i.e., Trial = 0). Choices of the effortful option decreased with

increasing effort, β = −1.57, t(135) = 3.70, p < .001, BF10 = 120.5,

and increased with reward magnitude, β = 1.31, t(397) = 3.28,

p = .001, BF10 = 1,427.0. Importantly, before effort accumulation

(i.e., at the start of the decision task, where the value of the predic-

tor Trial was set to the reference category 0) DLPFC disruption

resulted in stronger effort discounting than control stimulation,

cTBS × Effort level, β = −1.28, t(161) = 2.09, p = .04, BF10 = 3.0.

This reduced willingness to engage in mental work is consistent

with the resource hypothesis. cTBS did not modulate the impact of

reward magnitude, β = .41, t < 1, p = .47, BF10 = 0.3, and cTBS

effects were significantly stronger on effort than on reward,

Z = 2.04, p = .04. Thus, cTBS affected specifically the impact of

effort on choices, at variance with domain-general cTBS effects on

decision making.

We also observed that the impact of cTBS on effort discounting

depended on accumulated effort, cTBS × Effort level × Trial,

β = 2.40, t(143) = 2.38, p = .02, BF10 = 4.8 (Figure 4 and Table 2),

while the cTBS × Reward × Trial interaction was not significant,

β = .04, t(1428) = 0.05, p = .96, BF10 = 0.4. We note, though, that a

direct comparison of the regression weights for the cTBS × Effort

level × Trial and the cTBS × Reward × Trial interactions revealed

only a trend-level effect, Z = 1.80, p = .07. To resolve the cTBS × Effort

level × Trial interaction, we computed separate MGLMs for each effort

level: For high effort, but not for medium and low effort, we observed a

marginally significant negative effect of trial, β = −1.70, t(71) = 1.95,

p = .05, BF10 = 3.50, suggesting that in the control group participants

were less willing to choose the effortful option with increasing time-on-

task. This is consistent with stronger effort aversion under increasing

fatigue. Importantly, this de-motivating impact of accumulated effort

was significantly reduced after DLPFC cTBS, cTBS × Trial, β = 2.73, t

(66) = 2.31, p = .02, BF10 = 2.88. We note that the results for the deci-

sion task are robust to controlling for individual differences in anhedo-

nia. Thus, DLPFC disruption increased effort discounting before effort

accumulation and at the same time reduced the impact of time-on-task

on effort discounting.

3.5 | Computational modeling reveals crucial role
of DLPFC for accumulating fatigue

To further investigate the role of DLPFC for mental work, we ana-

lyzed choice behavior also with a model-based approach by fitting dis-

count functions to each individual's choices. Consistent with previous

studies (Chong et al., 2017; Hartmann et al., 2013), a parabolic dis-

counting model explained the data better (R2 = .68) than a hyperbolic

(R2 = .63) or linear model (R2 = .62; see Section 2 for details). The win-

ning parabolic model had the following form:

TABLE 1 Results of MGLM assessing
log-transformed reaction times in the N-
back task

Beta t-value Df p BF10

Intercept 2.90 (0.02) 188.39 132 <.001

cTBS 0.05 (0.02) 2.14 132 .03 1.7

Effort 0.03 (0.02) 1.48 229 .14 2.6

Trial 0.02 (0.02) 1.09 128 .28 0.4

cTBS × effort 0.03 (0.02) 1.37 229 .17 0.6

cTBS × trial −0.05 (0.03) 1.72 131 .09 1.1

Effort × trial 0.05 (0.02) 2.06 1,798 .04 1.9

cTBS × effort × trial −0.05 (0.03) 1.61 1,798 .11 0.9

Note: Standard errors of the mean are reported in brackets. BF10 is the Bayes factor indicating how

strongly the data favor the alternative over the null hypothesis (note that no Bayes factor can be com-

puted for fixed-effect intercepts in mixed models).

F IGURE 3 Effects of downregulating DLPFC activity on self-
reported fatigue. DLPFC cTBS, relative to control cTBS, reduced self-
reported feelings of fatigue measured after task performance. Error
bars indicate standard error of the mean. Asterisks indicate significant
effects (**p < .01)
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SVeffortful reward = reward−k× effort2current

As for the model-free analysis, we also included a term measuring

the impact of increasing time-on-task on effort discounting to the

best-fitting parabolic model in order to account for effects of fatigue

on effort discounting. We considered different possibilities for how

fatigue might computationally affect effort discounting: First, based

on a recent theoretical account suggesting that fatigue increases

effort discounting (indicated by the discount factor k; Muller &

Apps, 2019), we tested for either additive or multiplicative relation-

ships between effort discounting and performance-induced fatigue. In

addition, we considered the possibility that mental work might either

linearly or nonlinearly increase fatigue. In the winning model that

explained the data best (see Section 2), a fatigue parameter φ is added

to the discount factor k according to the following formula:

SVeffortful reward = reward− k +φ× log 1+ effortaccumulatedð Þð Þ× effort2current

In this model, k determines the degree of effort discounting before

effort exertion. As exerted effort accumulates, a fatigue parameter φ is

added to k (higher values of k imply stronger effort discounting). In

other words, if no effort has been exerted so far (effortaccumulated = 0),

the term “log(1 + effortaccumulated)” equals zero and thus φ has no

impact on effort discounting. With increasing accumulated effort, a

larger fatigue term is added to k, resulting in stronger effort dis-

counting. Nonparametric ordinal regressions revealed significant cTBS

effects on k, beta = 1.06 Wald's W(1) = 5.21, p = .02, BF10 = 2.9, with

DLPFC disruption resulting in stronger effort discounting (at the start

of the task before any effort was exerted) than control stimulation.

This supports the resource hypothesis according to which reducing

resources to exert mental effort should lower the motivation to engage

in rewarded effort. Importantly, individual fatigue parameters φ were

lower in the DLPFC than the control cTBS group, beta = −0.93 W

(1) = 4.10, p = 0.04, BF10 = 2.9 (Figure 5). Together with the cTBS

effects on fatigue ratings and the model-free results, these findings

provide converging evidence that DLPFC disruption both increases

effort discounting and reduces the impact of accumulated effort on

motivational fatigue.

If φ captures individual differences in fatigue, it should relate to

self-reported fatigue. Consistent with this prediction, φ was positively

correlated with fatigue ratings at the end of the experiment, Kendall's

τ = 0.17, p = .04, one-tailed. This correlation was robust to controlling

for TMS-effects on the constituent measures. In contrast, there were

no significant correlations between the parameters φ and k, τ = −0.08,

p = .35, as well as between k and self-reported fatigue, τ = 0.02,

p = .81, suggesting that k and φ measure dissociable constructs. More-

over, performance in the N-back task (log-RTs) predicted the degree

of effort discounting k, τ = 0.30, p = .001, but was uncorrelated with

φ, τ = 0.08, p = .38. Taken together, our findings are consistent with

the assumption that fatigue reduces the motivation to engage in

rewarded effort, with DLPFC disruption decreasing the influence of

accumulated fatigue on decision making.

F IGURE 4 Effects of downregulating DLPFC activity on
motivation to exert mental effort. (a) DLPFC disruption prevented
increasing effort discounting with increasing time-on-task. Conversely
(b), the control group showed steeper effort discounting toward the
end of the experiment, consistent with the assumption that fatigue
increases effort discounting. (c) The impact of time-on-task on
willingness to accept the high effort option (indicating increased
effort discounting) was significantly stronger after control compared
with DLPFC cTBS. Please note that participants had to exert the
chosen effort not immediately after each choice but only for one
randomly selected decision at the end of the experiment, such that
stimulation effects on choices cannot be explained by differences in
the amount of effort exerted during the decision task. For illustration,
we plot data separately for the first and second half of trials. Error
bars indicate standard error of the mean. Asterisks indicate significant
effects (*p < .05)
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To test the relationship between cTBS-induced performance dec-

rements in the N-back and stimulation effects on effort discounting

and fatigue more thoroughly, we conducted two separate mediation

analyses testing whether cTBS effects on effort discounting k or

fatigue φ are mediated by cTBS effects on N-back performance (log-

RTs). When entering mean log-RTs in the N-back task as predictor in

the ordinal regression on k, the predictor N-back performance showed

a significant effect, beta = 11.35, W(1) = 10.74, p = .001, whereas the

effect of cTBS now no longer passed the statistical threshold,

beta = .85 W(1) = 3.38, p = .07, in line with a mediation effect. This

interpretation was supported by a significant Sobel test (testing the

significance of the indirect mediation path), z = 1.99, p = .047.

Together, these data suggest that impairments in the ability to exert

mental effort mediate the stronger effort discounting after DLPFC

cTBS. In contrast, when conducting an analogous mediation analysis

on fatigue, cTBS effects on φ remained significant, beta = −1.02, W

(1) = 1.18, p = .03, even when controlling for N-back performance,

and also the Sobel test yielded no significant result, z < 1, p = .34.

Thus, there is no evidence that lower fatigue after DLPFC disruption

can be explained by impaired working memory performance.

Last, we also explored the possibility that time-on-task affects

choice consistency (measured by the inverse temperature parameter

βtemp in Equation 4) rather than effort discounting. For this purpose,

we modified our computational model of fatigue effects by adding the

fatigue term “φ × log(1 + effortaccumulated)” to the inverse temperature

parameter βtemp instead of to the discount factor k. However, this

model revealed no significant cTBS effects on either βtemp or φ, both

W(1) < 1, both p > .64. There was thus no evidence for time-on-task

effects on choice consistency.

4 | DISCUSSION

We tested competing hypotheses about the causal function of DLPFC

in effort-based decisions, according to which DLPFC either signals the

availability of mental resources (resource hypothesis) or the inherent

TABLE 2 Results of MGLM assessing
binary choice in the effort-based
decision task

Beta t-value Df p BF10

Intercept 2.00 (0.56) 3.62 74 .001

cTBS −0.54 (0.78) 0.70 74 .49 0.5

Effort −1.57 (0.42) 3.70 135 <.001 120.5

Reward 1.31 (0.40) 3.28 397 .001 1,427

Trial −0.55 (0.52) 1.07 1,428 .29 0.3

cTBS × effort −1.28 (0.61) 2.09 161 .04 3.0

cTBS × reward 0.41 (0.56) 0.72 396 .47 0.3

cTBS × trial 0.69 (0.73) 0.96 1,428 .34 0.6

Effort × trial −0.79 (0.73) 1.09 151 .28 0.6

Reward × trial 0.30 (0.60) 0.51 1,428 .61 0.4

cTBS × effort × trial 2.40 (1.01) 2.38 143 .02 4.8

cTBS × reward × trial 0.04 (0.84) 0.05 1,428 .96 0.4

Note: Standard errors of the mean are reported in brackets. BF10 is the Bayes factor indicating how

strongly the data favor the alternative over the null hypothesis (note that no Bayes factor can be com-

puted for fixed-effect intercepts in mixed models).

F IGURE 5 Model-based fatigue effects on effort discounting. (a) Consistent with the model-free results, enduring task performance
increased effort discounting only in the control cTBS, not the DLPFC cTBS, group. (b) The individually specific impact of fatigue on effort was
significantly lower in the DLPFC than the control cTBS group. (c) Compared to vertex disruption, DLPFC disruption increased effort discounting
at the start of the experiment before fatigue accumulation, as indicated by significant cTBS effects on the discount parameter k. Asterisks indicate
significant effects (*p < .05)
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costliness of mental work (cost hypothesis). First, we found that dis-

rupting DLPFC functioning impairs the motivation for mental work.

This conclusion is supported by both the model-free and model-based

results showing steeper effort discounting with DLPFC stimulation

than control stimulation before fatigue accumulation. This appears

inconsistent with the hypothesis that DLPFC activation in effort-

based choice signals the costliness of mental work (McGuire &

Botvinick, 2010), because according to this view DLPFC should have

reduced the perceived costliness of mental work, thereby promoting

decisions to engage in effort. Instead, our findings support the

resource hypothesis and suggest that individuals decide against

engaging in demanding work if they anticipate insufficient resources

to perform it after DLPFC perturbation (Boksem, Meijman, &

Lorist, 2006; Boksem & Tops, 2008). This interpretation is also

supported by the mediation analysis suggesting that stimulation

effects on effort discounting can be explained by the impact of cTBS

on N-back performance.

Our results further suggest that DLPFC plays a causal role in

mediating the impact of accumulated effort exertion on effort prefer-

ences. Strikingly, three distinct measures (model-free choice data,

self-reported fatigue, and computational model parameters) provide

converging evidence that DLPFC disruption reduced fatigue and its

impact on effort-based decision making. Previous studies reported

decreased DLPFC activation to correlate with fatigue after enduring

effort exertion (Blain et al., 2016; Blain et al., 2019; Ishii, Tanaka, &

Watanabe, 2014), and it has been speculated that decreased DLPFC

activity after enduring work reflects a functional adaptation to the

costs of effort exertion (Hockey & Hockey, 2013; Kurzban

et al., 2013). Consistent with our interpretation of cTBS effects on

choices before effort accumulation, the decrease in DLPFC activation

after enduring effort may signal dACC a reduced capacity to deal with

high effort demands, thereby increasing the costs of effortful rewards.

DLPFC cTBS may have disrupted this decrease in DLPFC activation

with time-on-task, which in turn prevented the adaptation of cost–

benefit weighting processes to increasing fatigue. Note that the

impact of cTBS on fatigue was not mediated by stimulation effects on

N-back performance, which speaks against the possibility that

reduced effort exertion per se can explain the lower fatigue after

DLPFC cTBS (though a null finding cannot fully rule out this possibil-

ity). Moreover, our interpretation does not imply that decreased

DLPFC activation represents the physiological processes underlying

fatigue or the perceived costs of enduring work. Indeed, these pro-

cesses are still a matter of controversial debate. For example, accumu-

lation of toxic beta amyloids in neural tissue has been discussed as

potential origin of costs (Holroyd, 2016). In any case, even though the

proposed interpretation of the cTBS effects on fatigue remains some-

what speculative and may require further investigation, our data pro-

vide first evidence for a causal link between task-related DLPFC

activation and performance-induced feelings of fatigue.

It is worth noting that DLPFC cTBS affected preferentially the

processing of effort while reward magnitude remained unchanged.

This speaks against the alternative explanation that DLPFC disruption

impaired decision making per se, because according to this account

cTBS should have affected both effort and reward processing. We

note that cTBS effects on effort were significantly stronger than on

reward before effort accumulation, whereas cTBS effects on reward

and effort as function of trial number showed only a trend-level dif-

ference, such that the specificity of DLPFC for effort relative to

reward processing in effort-based choice needs to be interpreted with

caution. Moreover, effort discounting was steeper under DLPFC than

control cTBS (before accumulating effort), which is at variance with

the possibility that cTBS increased decision noise by distorting effort

representations in DLPFC because this should have reduced, instead

of increased, the impact of effort on choices.

Our results inform recent neural frameworks of effort dis-

counting. While theoretical models assign dACC a central role in trad-

ing off costs against benefits and in recruiting DLPFC if the benefits

surpass the costs of control (Kool & Botvinick, 2018; Shenhav

et al., 2013; Shenhav et al., 2017), it remained open where the cost

signal stems from. Our results ascribe the DLPFC subregion involved

in effort exertion also a crucial role in computing the predicted capac-

ity to successfully exert effort, which constitutes a parsimonious solu-

tion to the problem of cost calculation. The strength of DLPFC

activation could inform dACC about the likelihood of successfully

dealing with future demands (Alexander & Brown, 2015; Vassena

et al., 2014; Vassena et al., 2019), enabling dACC to compare the

required work with the potential benefits.

The hypothesized DLPFC involvement in motivating mental effort

engagement has implications for psychiatric disorders involving dys-

functions in motivation or cognitive control. Major depressive disor-

der, for example, is characterized by both reduced motivation to

engage in mentally demanding activities and impairments in cognitive

functioning (Rock, Roiser, Riedel, & Blackwell, 2014). While the causal

relationship between these motivational and cognitive impairments

has been a matter of controversial debate (Moritz et al., 2017;

Scheurich et al., 2008), our findings inform this debate by identifying

the perceived capacity to exert mental effort as a crucial precondition

for deciding to engage in demanding goal-directed behavior.

To conclude, our findings suggest a causal role of DLPFC for both

exerting mental effort and informing cost–benefit decision processes

about the likelihood of successful effort exertion. A computational

model that takes accumulated effort into consideration revealed evi-

dence for DLPFC involvement both in predicting the capacity for

mental work and in updating this information with increasing fatigue.

By showing that mental exertion converges with the computation of

its costliness in DLPFC, our findings point to an efficient organiza-

tional principle of the brain.
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