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Abstract

Background: In microarray data analysis, the comparison of gene-expression profiles with
respect to different conditions and the selection of biologically interesting genes are crucial tasks.
Multivariate statistical methods have been applied to analyze these large datasets. Less work has
been published concerning the assessment of the reliability of gene-selection procedures. Here
we describe a method to assess reliability in multivariate microarray data analysis using
permutation-validated principal components analysis (PCA). The approach is designed for
microarray data with a group structure.

Results: We used PCA to detect the major sources of variance underlying the hybridization
conditions followed by gene selection based on PCA-derived and permutation-based test
statistics. We validated our method by applying it to well characterized yeast cell-cycle data and
to two datasets from our laboratory. We could describe the major sources of variance, select
informative genes and visualize the relationship of genes and arrays. We observed differences in
the level of the explained variance and the interpretability of the selected genes.
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Conclusions: Combining data visualization and permutation-based gene selection, permutation-
validated PCA enables one to illustrate gene-expression variance between several conditions and
to select genes by taking into account the relationship of between-group to within-group variance
of genes. The method can be used to extract the leading sources of variance from microarray
data, to visualize relationships between genes and hybridizations and to select informative genes
in a statistically reliable manner. This selection accounts for the level of reproducibility of
replicates or group structure as well as gene-specific scatter. Visualization of the data can support
a straightforward biological interpretation.

Background

Microarrays have become standard tools for gene expression
analysis as the messenger RNA levels of thousands of genes
can be measured in one assay. In a standard microarray
experiment, total RNA or mRNA is extracted from cells or
tissue, labeled by reverse transcription with radioactive or

fluorescent-tag-labeled nucleotides and hybridized to the
arrays. After hybridization and washing, the arrays are
scanned and the hybridization intensities at each spot are
determined by image-analysis software. Two-channel
microarrays open up the possibility of carrying out many
hybridizations in parallel using a common reference RNA. In
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such experiments, different experimental conditions can be
compared to each other. In many cases, different conditions
are analyzed with some replications to allow variance analy-
sis [1,2]. This procedure results in multivariate grouped data
in which one group represents a condition with several repli-
cates. Such data can be represented as a matrix with n rows
(genes) and p columns (hybridizations) and a vector of
length p containing the group labels. These data are charac-
teristic of multi-condition microarray experiments.

To analyze such data, multivariate statistics are needed.
Before carrying out the analysis, the data must be pre-
processed by background subtraction, computation of ratios
and array-wise normalization. After this step, the data can
be analyzed using different multivariate approaches. These
methods can be classified as supervised and unsupervised. A
wide variety of supervised approaches have been described,
for example, classification and regression trees [3] or
support vector machines [4]. Among unsupervised methods,
hierarchical clustering [5] and other clustering approaches
[6,7], as well as projection methods such as multidimen-
sional scaling [8], principal components analysis (PCA)
[0-13] and correspondence analysis [14] have been
described. Such projection techniques reduce the dimen-
sionality of multivariate data to embed the variables and
objects of the data in a visualizable (two- or three-dimen-
sional) space. The projection aims to represent the objects
and variables in the reduced space in such a way that they
approximate their original distances in the high-dimensional
space. This enables one to extract and visualize the domi-
nant effects on variance from the data. With PCA, linear
combinations (principal components) of the original vari-
ables can thus be functionally interpreted (for review see
[15]). This enables a biological interpretation of the nature of
coherent variation.

In microarray experiments, the identification of subsets of
genes with large variation between groups is of primary inter-
est. This process has to comprise a criterion that accounts for
the variance within groups. Sometimes this selection is only
the first step in the data analysis. Hastie et al. [16] carried out
hierarchical clustering of gene-expression data and computed
an average expression profile for each cluster, providing the
input for a response model. A direct significance analysis to
select genes from microarray data (SAM) was proposed by
Tusher et al. [17]. This method is based on t-like (in the case
of two conditions) or F-like statistics.

Several methods for gene selection involving PCA have been
proposed. The ‘gene shaving’ approach of Hastie et al. [10]
restricts PCA to the first principal component. Groups of
genes are generated by iterative exclusion of fixed fractions
of genes (typically 10%) with smallest absolute loadings
according to the first principal component. After orthogonal-
ization of the data with respect to an averaged expression
profile of the first group, the procedure is repeated. Another

PCA-based method of gene selection using PCA-derived
gene coefficient vectors and F-statistics was described by
Landgrebe et al. [18].

Although these methods allow the detection of patterns or
‘characteristic nodes’ by dimension reduction and the selec-
tion of gene subsets with large variation between condition
groups, the reliability of the results has to be determined.
Therefore, it is imperative to assess whether the results are
statistically reliable relative to the level of noise in the data.
Classical statistical parametric tests depend on the assump-
tions of normality and independence of variables (hybridiza-
tions). Yet, these assumptions do not hold for microarray
data [1,19]. Consequently, computationally intensive
methods such as permutation tests or bootstrap procedures
as introduced by Efron [20] are preferable. Kerr et al. [1]
show the application of bootstrap technique to clustering
results. Ghosh [21] describes another approach based on
mixture modeling to assess the reliability of clustering
results. Other permutation-based approaches were pub-
lished by Tusher et al. [17] and Dudoit et al. [3]. The method
proposed by Hastie et al. [10] also contains bootstrap ele-
ments. An approach of Wall et al. [22] tries to combine PCA-
based gene selection with a confidence measure using
leave-one-out cross-validation.

Here we describe an approach combining PCA-directed gene
selection with validation by permutation tests. We use a test
statistic based on the genes’ object scores to select genes
with high variance with respect to the principal components.
The method was developed for the analysis of microarray
data having several conditions with a few replicates per con-
dition or a group structure. We demonstrate this approach
by applying it to the well-characterized data of Spellman et
al. [23]. Although other methods are better adapted to the
analysis of temporal effects (for example [24]), we chose the
yeast data to allow comparison with other approaches
applied to this dataset [14,23]. In addition, two datasets gen-
erated in our own laboratory were also analyzed. Our
method was successfully applied to the different datasets.
We revealed the main sources of variance in the data and
described the genes related to this variance. This allowed the
interpretation of variance and the permutation-validated
selection of genes in a functional context.

Results

Permutation-test-validated PCA

We carried out permutation-test-validated PCA on grouped
data with few replicates to study variation in gene expression
across several conditions, to understand the structure of the
data, to uncover patterns underlying the hybridization con-
ditions and to identify subsets of genes with large variation
across these patterns. PCA is primarily aimed at finding and
interpreting complex relationships between variables in a
dataset. Correlated variables are converted to factors that



are not correlated to each other. The central point of such
analysis is to decompose the original n x p data matrix (n
objects, p variables) in the following manner:

X = AFT,

where X is the n x p data matrix, A is the n x p matrix of
factor scores and F is the p x p matrix of factor loadings.
With s = p factors the total variance of all variables is
explained. The decomposition of X is done in such a way
that the factors explain the total variance in a descending
order. Therefore, it is possible to reduce the data to s dimen-
sions with a minimum loss of information expressed by the
matrix of residuals E:

X =AFT + E,

where A is the n x s matrix of factor scores, F the p x s
matrix of factor loadings and E is the matrix of residuals as a
result of dimension reduction. In this manner, PCA provides
a projection of the objects from p-dimensional to s-dimen-
sional space.

In grouped data with replicates per group (condition), there
is additional information about the columns of the data
matrix: y’ = (Y,,Ya,---Y,) is a set of class labels identifying the
replicates for each condition. Although PCA is generally not
considered to be appropriate for grouped data, the method
has been adapted for this data type (rank-ordered PCA [25]).

The consecutive steps of the permutation validated PCA pro-
cedure are shown in Figure 1. In step 1, we perform rank-
ordered PCA based on the polished gene expression matrix
X (see Materials and methods) by computing separate one-
way ANOVAs on the principal components loadings for each
of the components. If the between-group variance dominates
the total variability in the data, PCA discriminates between
groups. In this situation, the first components of the PCA
and components with high F-values are identical. Thus, fol-
lowing the order of explained variance, we select the compo-
nents with significant F-statistics (p <0.01). At the
occurrence of a component with nonsignificant F-statistics,
we terminate the selection. This process results in k compo-
nents (step 2). Data approximated in the space based on
these components reflect the between-group variance. Thus,
in step 3 of the procedure, we compute components from the
group-averaged data and derive the exact between-group
variance for each gene, which can be estimated by:

-
s2 = az.
g gi»
p-17%5

where a, is the factor score for gene g and component i. As a

test value, we use ty = - 1)s§ (step 3). Genes with a high
value are candidates for selection.
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. Rank-ordered PCA for grouped data based on polished expression matrix
X with rows centered to have zero mean and standardized columns.

2. Selection of components with significant F-statistics (ANOVA, p< 0.01)
following the order of explained variance. Termination of the selection
process at the occurrence of a component with non significant F-statistics
resulting in k components.

3. PCA based on group-averaged data, computation of the test value
£ 2
tg =._Zag,-
i=1

4. Random permutation of the columns of X, PCA based on group-averaged
resampled data, computation of

k 2
Ty 2ag
=1

for each gene g.

5. Repeat step 4 to get permutation distributions of Ty

6. Select genes with ty greater than the 95% quantile of the permutation
distributions Ty,

7.Visualize arrays and genes in the reduced space of kK components.

Figure |
The permutation-validated PCA procedure for grouped data.

To assess the reliability of the results we perform a permuta-
tion analysis (steps 4-6). Under the hypothesis of no effect of
different conditions on gene expression profiles, the class
labels given by y’ are randomly sampled to determine the per-
mutation distribution of the required test statistics. Comput-
ing PCAs from randomized group-averaged data yields the
distribution of the test statistic T, for each gene g (step 4):

k
T, = (p-1)si =2 az.
=1

We compute 1,000 permutation distributions for each gene
(step 5). In step 6 we select the genes for which t is greater
than the 95% quantile of the permutation distribution of
T,. The last step is the visualization of the arrays and
selected genes in the reduced k-components space. If k = 2,
a twofold visualization is suggested. The biplot with
marked selected genes can be used to relate genes and con-
ditions. Genes lying near an axis of a condition are upregu-
lated in this hybridization and genes lying in the opposite
direction are repressed. With several conditions, this rela-
tion is generally not unique. Therefore, the visualization
may be supported by color-coded expression-profile tables.
Here, the data matrix is rearranged according to the
angular distance from the x-axis for each gene (rearranging
n rows). The same is done for hybridizations (rearranging
p columns). If k > 2 several biplots and color-coded tables
must be constructed.

-~
e
o
3
o
(0]
Q
]
[}
»
[]
1Y)
5
fal
=




4 Genome Biology Vol 3 No4 Landgrebe et al.

Application to yeast cell-cycle data

To demonstrate our approach, we applied it to the yeast cell-
cycle data published by Spellman et al. [23]. These authors
synchronized the yeast cell cycle using independent methods
of cell-cycle arrest and measured the expression of all yeast
open reading frames (ORFs) at different time points after
the cell-cycle synchronization. They identified genes related
to the cell cycle using Fourier transformation and correlation
measures. We analyzed the cell-cycle-related genes selected
by Spellman et al. [23] to demonstrate the relationship
between cell-cycle phases and gene-expression patterns and
to select a subset of genes that show the highest and most
reproducible variance across the cell-cycle phases. We ana-
lyzed the expression patterns of 773 selected genes over all
73 hybridizations.

The cell cycle is a temporal continuum that is generally
grouped into cell-cycle phases. This classification was also
carried out by Spellman et al. [23]. The classification of

genes in cell-cycle phase groups enables one to analyze the
variance of gene expression across the cell-cycle phases and
to select genes with different and robust regulation. We ana-
lyzed the data using permutation-validated PCA. A first PCA
was based on the polished logarithmic ratios including all
arrays. An analysis of variance (ANOVA) using the variable
loadings as dependent variables and the -classification-
derived cell-cycle phase groups as factors was carried out.
The first two components were highly significant whereas the
others were not. Figure 2 shows a plot of the first two compo-
nent loadings against each other. Of the data’s variance,
37.2% was explained by the first two components. The plot
shows that the resulting ordination of the hybridizations cor-
responds to the assignment of cell-cycle phases by Spellman
et al. [23]. The angular position of the hybridizations in the
plot reflects their correct temporal situation in the cycle. The
first seven arrays of the CDC series seem to be misclassified.
They are shown with colored labels in Figure 2 and show a
counterclockwise shift in expression in the cell cycle. Thus,
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Figure 2

PCA of the cell-cycle data. Plot of the first two components’ loadings against each other. Crosses or gene names represent the variable (hybridization)
loadings. Colors indicate the cycle phase to which the hybridizations were classified by Spellman et al. [23]. M/GI, yellow; G, green; S, blue; G2, red; M,
brown. The labeled arrays are misclassified CDC hybridizations assigned to new cell-cycle phases by PCA.




the first two components approximate the cell-cycle aspect of
the data quite well and could be interpreted as cell-cycle com-
ponents. They reflect the main temporal aspect of the data.

A second PCA was carried out on the group-averaged data
using the original cell-cycle classification with two compo-
nents (94.4% explained variance). Figure 3 shows a biplot of
the 773 gene scores and the five cell-cycle phase group load-
ings. For each gene the distance to the origin indicates the
variance in the reduced two-dimensional space. The hole in
the middle of the plot reflects the fact that only genes related
to the cell cycle were chosen by Spellman et al. [23]. Genes
without variance with respect to the cell cycle (equally tran-
scribed in most cell-cycle phases) would lie in the middle of
the biplot. In Figure 3, 60 genes are labeled with gene
symbols. These genes had a test value above the 95% per-
centile of the permutation distribution of the related test sta-
tistic. Figure 3 allows the assignment of the genes to the

http://genomebiology.com/2002/3/4/research/0019.5

cell-cycle phases in which they are regulated. As illustrated
by Figures 3 and 4, in the cell-cycle phase M/G1, CDC46
(encoding part of the replication complex) was selected as an
upregulated gene, whereas the histone genes HTB2, HTA2
and HHO1 (also marked by Spellman et al. [23] and Fellen-
berg et al. [14]) were selected as downregulated genes. In
phases G1 and S, POL30 (replication complex) and RAD51
(cell-cycle-related protein kinase) were selected. The histone
genes repressed in M/G1 were upregulated in S. In G2 and
M, CLB1 (G2/M-specific cyclin involved in mitotic induc-
tion), CDC5 (mitotic DNA replication) and CLB2 (G2/M-
specific cyclin involved in mitotic induction) were selected as
upregulated, in phase M CDC20 (cyclin degradation, part of
the anaphase-promoting complex). Thus, among the known
genes selected by our algorithm, many play a crucial role in
the cell cycle. As described by Spellman et al. [23], the
microarray expression data confirm the results of other gene
expression studies.
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Figure 3

PCA of the grouped cell-cycle data. Biplot of gene scores and cell-cycle phase group loadings according to the first two components of the PCA. The
open circles or gene names represent the gene scores. The vectors represent the cell-cycle phase group (variable) loadings. The biplot enables the
association of genes with the cell-cycle phase groups. Labeled genes were selected by permutation test.
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Figure 4

Color-coded expression-profile table of the genes selected from the cell-
cycle data by permutation test. Abscissa, cell-cycle phase groups;
ordinate, genes. The cycle phase groups and the genes are arranged
according to the angular position in the PCA biplot (see Figure 3).
Upregulation, red; downregulation, green. The figure was generated using
Michael Eisen’s software TreeView [4].

Application to abolition of CRH-RI function data

In this experiment, mRNAs from whole brains of mice of dif-
ferent genetic backgrounds which had been treated with an
antagonist directed against the ligand-binding domain of a
seven-transmembrane neuropeptide receptor [26] (the cor-
ticotropin-releasing hormone receptor 1 (CRH-R1) [27])
were compared to mRNAs from brains of mice lacking a
functional CRH-R1 (CRH-R1 knockout mice [28]) using
cDNA-microarrays (Table 1). The data consist of log, ratios.
The matrix had 1,810 complete observations (genes) and 21
hybridizations. We computed a PCA based on the polished
matrix of single hybridizations to show that the treatment
group members clustered together (data not shown). We
performed an ANOVA using the variable loadings as depen-
dent variables and the treatment groups as factors. The first
two components were highly significant, whereas the third
component was not. The first two components explained
37.5% of the data’s variance. We carried out PCA for group-
averaged data with two components (54.8% explained vari-
ance). Figure 5 shows a biplot of these components. The two
components describe a gradient effect of the abolition of
CRH-R1 function in different genetic backgrounds. Compo-
nent 1 (abscissa) distinguishes the CRH-R1 abolition (null
mutant) from relatively mild CRH-R1 function impairment
(h1, w1: 1 day of treatment with antagonist). With the
increasing effect on the animals of gene function impair-
ment, the animals’ loadings on the first component become
more similar to the genetic CRH-R1 inactivation. Compo-
nent 2 (ordinate) distinguishes between impairment of het-
erozygotes treated for 1 day and wild-type animals treated
for 7 days (both of 1290la/CD1 background).

Table |

Hybridizations performed in the CRH-RI abolition experiment

Genotype (symbol) Treatment (days) Group ID N

1290Ia/CD| knockout (k) 0 ko 4
1290I1a/CD| heterozygous (h) 0 h0 4
1290I1a/CD| heterozygous (h) | hi 5
12901a/CD | wild type (w) 0 wO 4
1290Ia/CD | wild type (w) | wil 4
1290Ia/CD | wild type (w) 7 w7 3
129Sv) wild type (s) 0 sO 4
129Sv] wild type (s) | sl 3
129Sv) wild type (s) 7 s7 2
Total 33

Thirty-three 12-week-old male mice with the genotypes shown in column
I (k were CRH-RI deficient animals, h and w were their littermates)
were treated orally with an antagonist directed against the CRH-R|
(Janssen compound R121919) for 0, | or 7 days at a dose of 40 mg per kg
body weight. Untreated groups (h0, w0, sO) were used to normalize the
data and do not appear in Figures 5 and 6.
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Figure 5

PCA of the grouped CRH-RI function abolition data. Biplot of gene scores and treatment group loadings according to the first two components of the
PCA. The open circles or gene names represent the gene scores. The vectors represent the treatment group (variable) loadings. The biplot enables the
association of genes with the treatment groups. Labeled genes were selected by permutation test.

Because long-term-treated wild-type animals of 129SvJ
background (s7) are similar to the knockout animals, treat-
ment seems to have a strong effect in these animals.
Animals with a 1290la/CD1 background (group w7) show a
weaker response to treatment with the antagonist. Both
components describe abolition-of-function effects in a
background-dependent manner. Thus, given a particular
genetic background, treatment with an antagonist against
CRH-R1 can mimic the genetic abolition of gene function.
A comparable phenomenon was shown in yeast by Hughes
et al. [29].

Only 25 genes were selected by permutation tests and are
labeled with gene symbols in Figure 5. These genes show
high variance across the treatment groups and are highly
reproducible. Only genes that contrast the groups ko and s7
on one side and in the groups w1 and w7 on the other side
are selected. The profiles of these genes are illustrated in
Figure 6 and support the interpretation of the biplot.

Application to antidepressant data

In this experiment, 29 12-week-old male mice of 129SvJ
background were treated with mirtazapine, paroxetine or
vehicle for 1, 7 or 28 days (Table 2). cDNA microarrays were
used to measure the mRNA expression in total brain
homogenates of these animals. The data consist of log, ratios.
The matrix had 2,190 complete observations (genes) and 24
hybridizations. We computed a PCA based on the polished
matrix of single hybridizations to show that the treatment
groups were ordinated together (data not shown). We per-
formed an ANOVA using the variable loadings as dependent
variables and the treatment groups as factors. The first two
components were highly significant. They explained 36.3% of
the data’s variance and the object (gene) scores with respect
to these two components were used to compute the variance
of genes according to the group differences.

We carried out a PCA with group-averaged data and two
components (72.1% explained variance). Figure 7 shows a
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Figure 6

Color-coded expression-profile table of the genes selected from the
CRH-R1 function abolition data by permutation test. Abscissa, treatment
groups; ordinate, genes. The treatment groups and the genes are
arranged according to the angular position in the PCA biplot (see

Figure 5). Upregulation, red; downregulation, green.

biplot of these components with 127 selected genes at the
95% percentile (labeled with numbers) and 30 genes at the
99% percentile (labeled with gene symbols). The compo-
nents describe the effects of antidepressant treatment on the
mouse brain. The first component (abscissa) discerns treat-
ment with mirtazapine (a) from treatment with paroxetine
(p). This component can be interpreted as the drug-type
effect. The second component discerns short (1 day) from
longer (7 or 28 days) treatment and can be interpreted as the
treatment duration effect. Figure 8 shows the 30 genes
selected at the 99% percentile in a color-coded expression
table. These genes strongly reflect the treatment type and
duration effect.

Discussion

Here we propose a method for analyzing microarray data
with group structure imposed by different conditions. We
combine the visualization focused on the variance of genes

between groups and gene selection, taking into account the
within-group variance. Based on PCA, this method is able to
visualize relationships between hybridizations by dimension
reduction. Yet, data visualization via a biplot allows more
than biological interpretation of the components. After
appropriate data preprocessing, searching for genes with
changes in expression patterns across the groups can be based
on the genes’ (objects’) distance from the centroid of the
biplot. This distance is proportional to the variance of genes in
the dimension-reduced space. A correspondence analysis
would give a similar result [14]. But a selection of genes must
be accompanied by an assessment of whether the results are
statistically reliable relative to the level of noise in the data.
Whereas classic statistical tests (like #- and F-statistics) are
based on assumptions concerning distribution and variable
independence that do not hold for microarray data [1,19] the
permutation-validation procedure presented here makes no
assumption about the dependence of gene-expression mea-
surement within the expression matrix X. Therefore, gene-
specific scatter is taken into consideration by calculating the
test-value permutation distributions for each gene under the
null hypothesis of no group-structure effect in the expression
profiles. Another method for validating PCA results using a
leave-one-out approach (Wall et al. [22]) is very global, and
can only be applied when the conditions correspond to a con-
tinuous parameter, such as time or dose.

The last step of the permutation-validated PCA procedure
concerns the visualization and the interpretation of the
selected genes according to their importance in a biological
context. In the case of two dimensions (k = 2), a color-coded
expression profile can be generated by rearranging the
selected genes and the arrays with respect to angular distances
in the biplot. When looking at a biplot showing several vari-
able loadings, a given object (gene) has to be projected on all

Table 2

Design of the antidepressant experiment

Drug Treatment (days) Group ID N
Mirtazapine | al 3
Mirtazapine 7 a7 3
Mirtazapine 28 a28 5
Paroxetine | pl 5
Paroxetine 7 p7 5
Paroxetine 28 p28 3
Vehicle 28 c28 5
Total 29

Twenty-nine |2-week-old male mice of genotype 129Sv] were treated
with the drug mirtazapine (a), paroxetine (p) or vehicle (c) by mouth for
I, 7 or 28 days at a dose of 40 mg per kg body weight. The untreated
control group (c28) was used to normalize the data and does not appear
in Figures 7 and 8.



http://genomebiology.com/2002/3/4/research/0019.9

-40 =20 0 20 40
| | | | |
o
F! p—
o EST . O
° <
EST 1675 0 1% 1670 895
1384 o0 1964
011868 o
8
. o
o p7 RS
N a28 p28
= a7
g
8_ 210?% o° EST
g o _ 1892 00 0, 0083) " saix 3150 .
o © LS 83707 BT
o %0 o 9
. o P @ EST 3365
o 8t B
s (e %@95,%45&82 -
o
3, ®132
o
S ° -
? 3074 o EST
o
3076 Gstp2
o
pl
al 2238 | %
I I I I
-0.05 0.0 0.05 0.10
Component 1

Figure 7

PCA of the grouped antidepressant data. Biplot of gene scores and treatment groups loadings according to the first two components of the PCA. The
open circles represent the gene scores. The vectors represent the treatment groups (variable) loadings. The biplot enables the association of genes with
the treatment groups. Genes labeled with numbers have test values above the 95% percentile of the permutation distribution; genes labeled with gene

symbols have test values above the 99% percentile.

different variables (conditions) to understand its pattern with
regard to all of them. A color-coded expression-profile table
may support this visual interpretation. As a further develop-
ment of the method described here, we envisage cluster
analysis of the selected genes for higher dimensions (k > 2).

The application of permutation-validated PCA to microarray
data shows that the basic sources of variance could be
extracted from all datasets: The components computed from
the Spellman et al. [23] yeast data described the cell cycle and
allowed ordinations of the hybridizations according to their
temporal situation in the cell cycle. Arrays misclassified by
the Fourier transformation [23] were assigned to shifted
positions in the cell cycle (this was also achieved by corre-
spondence analysis [14]). The components computed from
the abolition of CRH-R1 function experiment described a

gradient of increasing functional impairment depending on
the genetic background of the animals. The analysis of the
antidepressant data also shows how principal components
led to an understanding of the fundamental biological phe-
nomena captured by the data: here, they discern the types of
treatment and the treatment duration.

But there were important differences in the results: whereas
the grouped PCA of the cell-cycle data explained 94.4% of the
data’s variance, the corresponding rates were 72.1% explained
variance for the antidepressant data and 54.8% for the CRH-R1
abolition data. In a situation with homogeneous array groups
and preselected genes such as the cell-cycle data, the level of
explained variance was very high as the components
explained the kind of variance the genes were preselected for.
For the antidepressant data, no a priori information about
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Figure 8

Color-coded expression-profile table of the genes selected from the
antidepressant data by permutation test above the 99% percentile.
Abscissa, treatment groups; ordinate, genes. The treatment groups and
the genes are arranged according to the angular position in the PCA
biplot (see Figure 7). Upregulation, red; downregulation, green.

the relation of genes to treatment type and duration was avail-
able. Thus the level of explained variance was lower (72.1%),
although the two components used to build the test statistics
still captured a big part of the variance present in the data.
Although the material used for the antidepressant treatment
data (RNA from total mouse brain homogenates containing a
variety of cell types) was more heterogeneous than the clonal
yeast cell lines, antidepressant effects on the brain’s mRNA
transcription were so important that clear variance structures
emerged in the data. In contrast, the level of explained vari-
ance for the CRH-R1 function abolition data was 54.8%. In
this experiment, different methods of impairing or abolishing
the function of CRH-R1 were used on different mouse genetic

backgrounds. The variance in the experimental design was thus
quite high. Heterogeneity within the groups was also higher
than in the antidepressant experiment, probably because a
selective pharmacologic antagonization of the neuro-
modulating peptide CRH [27] had a less pronounced and
stereotypic effect on transcription in the brain than the anti-
depressant drugs acting on a wide spectrum of neurotrans-
mitter receptors, transporters and related enzymes [30]. In
this situation of high variance in the experimental design, and a
relatively high rate of heterogeneity in the treatment groups,
permutation-validated PCA only selected genes reflecting the
contrast between the groups wi, w7 on one side and s7 and ko
on the other side because this contrast was captured by the first
two components. Other aspects of the data were not captured
by PCA. Thus, a multivariate approach trying to compare very
different gene expression patterns at the same time might lead
to loss of information. In such a case, the selection of genes
should be treated with caution and cross-validation by inde-
pendent methods should be applied if hypotheses are to be
derived from the selected genes. Pairwise comparisons of
groups might be more appropriate in such a situation.

In conclusion, permutation-validated PCA can be used to
extract the leading source of variance from microarray data, to
visualize relationships between genes and hybridizations and
to select informative genes in a statistically reliable manner.
This selection accounts for the level of reproducibility of repli-
cates or group structure as well as gene-specific scatter.

Materials and methods

Sample processing and hybridization

A subset of the data from Spellman et al. [23] was used. To
acquire our own data, microarrays were manufactured, mice
treated and total brain RNA extracted, labeled and hybridized
as described in [18]. Briefly, mice were killed after the end
of treatment, RNA was extracted by RNeasy and TRIZOL
procedure. Total RNA (100 ng) was fluorescence-labeled by
oligo-dT-primed reverse transcription to ¢cDNA in the pres-
ence of Cy3-dUTP as described by Eisen and Brown [31]. After
reverse transcription, total brain Cy3-labeled cDNA from each
animal was hybridized to a microarray. Fluorescence intensity
was detected using the Genetic Microsystems GMS 418 Array
Scanner. Raw data were assessed with the Spectrum vs.3.2
image-analysis software developed by Chen et al. [32].

Data preprocessing

Data from Spellman et al. [23] were also used by Fellenberg et
al. [14]; we did not modify the described preprocessing. The
two datasets from our lab were preprocessed in the following
manner. Matrix rows (genes) with missing observations were
excluded from the datasets, resulting in data without missing
values. To normalize and compare the different hybridizations
to each other, the intensity measured at each spot of the arrays
was divided by the centered median of the intensities mea-
sured at the corresponding spot in the reference groups. Thus,



every single hybridization was normalized against the refer-
ence groups by computing the log, of the ratios (the mean of
groups so, ho and wo for the CRH-R1 data and group c28 for
the antidepressant data). Therefore, these groups do not
appear in Figures 5 to 8. Given an n x p data matrix, the fol-
lowing model [1,2] can be stated:

ng=p+ag+Bj+69j+8gj

In this model, X, is the log-ratio of gene g under experimen-
tal condition j, a,, is the normalizing effect for gene g (row),
B; is the experimental variance effect for j (column), 8y is the
differential gene expression for gene g under experimental
condition j and ¢ ; is the random error.

To estimate the interaction term 8gj» several other effects must

be controlled: as o, reflects the relation of experiment RNA to

normalizing RNA and is of no biological interest, it can be con-
trolled by mean centering rows. f; reflects the global variance
in RNA preparation, labeling efficacy and hybridization
quality as well as other sources of experimental variance
between the arrays and can be controlled by standardizing the
matrix columns. Doing replicates enables control of ¢ ; . The
term §; can thus be obtained by data polishing [9], that is, the
matrix is iteratively subjected to column standardization and
row mean centering until convergence is reached. This pol-
ished matrix was used as the basis for multivariate analysis.
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