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A B S T R A C T

In this study, we explored the application of Short-Wave Infrared (SWIR) hyperspectral imaging combined with 
Competitive Adaptive Reweighted Sampling (CARS) and advanced regression models for the non-destructive 
assessment of protein content in dried laver. Utilizing a spectral range of 900–1700 nm, we aimed to refine 
the quality control process by selecting informative wavelengths through CARS and applying various pre-
processing techniques (standard normal variate [SNV], Savitzky-Golay filtering [SG], Orthogonal Signal 
Correction [OSC], and StandardScaler [SS]) to enhance the model’s accuracy. The SNV-OSC-StandardScaler- 
Support vector regression (SVR) model trained on CARS-selected wavelengths significantly outperformed the 
other configurations, achieving a prediction determination coefficient (Rp2) of 0.9673, root mean square error of 
prediction of 0.4043, and residual predictive deviation of 5.533. These results highlight SWIR hyperspectral 
imaging’s potential as a rapid and precise tool for assessing dried laver quality, aiding food industry quality 
control and dried laver market growth.

1. Introduction

Seaweed has been a traditional dietary staple in eastern and south- 
eastern Asia, including China, Indonesia, Korea, Philippines, and 
Japan. Despite its longstanding popularity in these regions, its signifi-
cance and potential have often been undervalued in other regions 
(Msuya et al., 2022). However, recently, it has garnered significant in-
terest as a source of various nutrients such as protein and dietary fiber 
(Marques de Brito, Campos, Neves, Ramos, & Tomita, 2023; Murai, 
Yamagishi, Kishida, & Iso, 2021). Furthermore, the excellent carbon 
capture ability has positioned seaweed farming as a countermeasure 
against global warming (Yong, Thien, Rupert, & Rodrigues, 2022). 
Consequently, the seaweed market has now reached an annual value of 6 
billion dollars, and production has grown to 12 million tons per year 
(García-Poza et al., 2022).

Laver (Porphyra spp.) is one of the most widely cultivated seaweeds 
and is mainly consumed in its dried form. Seaweed is not only 

nutritionally excellent, as it is rich in protein, dietary fiber, and vitamin 
B, but is also used as a raw material for various foods such as sushi and 
gimbap (Wada et al., 2021). It is also processed in the form of seasoned 
snacks and has recently become popular not only in Asia but also in the 
West.

Red seaweeds, including laver, are known for their wide-ranging 
protein content, varying from 2.7 % to 47 % (Figueroa, Farfán, & 
Aguilera, 2023). This variability is primarily influenced by seasonal and 
climatic conditions. In the northern hemisphere, protein contents in red 
seaweeds are observed to decrease during the summer, while late winter 
and spring see an increase in protein content due to the elevated ni-
trogen levels associated with upwelling (Raja et al., 2020). The har-
vested seaweed is subjected to drying processes to obtain a moisture 
content of 15 % or less. This dehydration step enhances the suitability of 
seaweed for distribution and storage and ensures hygiene. The most 
important quality indicator of laver is the protein content. Laver’s high 
protein content not only provides nutritional value, but the amino acids 
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such as taurine, alanine, and glutamic acid derived from this protein are 
also the basis for its distinctive flavor (Jeong et al., 2023). Additionally, 
dried laver is produced by grinding raw laver and then drying it, which 
results in minimal visual differences based on its composition and gives 
it a characteristic black color. Consequently, it is challenging to deter-
mine the protein content of dried laver without specific quantative 
methods such as Kjeldahl Method. Traditional methods for determining 
protein content are characterized by their ease of use and reliability. 
However, they are time-consuming, laborious, and destructive. 
Furthermore, they do not align well with the requirements of rapid and 
non-destructive evaluation of dried laver. For these reasons, novel 
methods are necessary and should be developed for a rapid quality 
assessment of dried laver.

Hyperspectral imaging is a technology that combines imaging and 
spectroscopy, allowing simultaneous acquisition of spatial and spectral 
information using a single system (Özdoğan, Lin, & Sun, 2021). The 
spectral regions widely used for food analysis via hyperspectral imaging 
(HSI) include the ultraviolet (200–400 nm), VIS/NIR (400–1000 nm), 
and near-infrared (900–2500 nm) regions (Elmasry, Kamruzzaman, Sun, 
& Allen, 2012). The information obtained through hyperspectral anal-
ysis can affect the performance of the learning models due to increased 
data dimensionality and the extensive redundancy of information 
inherent in hyperspectral imaging data. Therefore, appropriate pre-
processing techniques such as redundancy removal and feature selection 
are being utilized to enhance the efficiency of the models (Nagy, Wang, 
& Farag, 2022).

In recent years, short-wave infrared (SWIR) hyperspectral imaging 
has emerged as a powerful non-destructive analytical tool for the 
quantitative and qualitative assessment of food. This technique, partic-
ularly when combined with various machine-learning methods, has 
been effectively used to evaluate the nutritional and hygienic indicators 
of various foods. Notable studies have demonstrated the effectiveness of 
SWIR in conjunction with machine-learning techniques for analyzing 
food products, offering significant insights into their quality and safety 
(Kang et al., 2022; Ozturk, Bowler, Rady, & Watson, 2023). Hyper-
spectral imaging has great potential and has been used for quality 
assessment of a variety of agricultural products and foods, including 
determination of chemical components such as moisture, protein, ash, 
oil, reducing sugar, etc. (Fatemi, Singh, & Kamruzzaman, 2022; He 
et al., 2022). It has also been applied in predicting microbial spoilage 
(Manthou et al., 2022), analyzing textural profiles (de Souza Zangir-
olami, Moreira, Leimann, Valderrama, & Março, 2023), and detecting 
food adulteration (Amirvaresi, Nikounezhad, Amirahmadi, Daraei, & 
Parastar, 2021). Given these research findings, SWIR and machine 
learning have been widely applied in the analysis of various foods. 
However, studies specifically focusing on predicting the composition of 
seaweeds such as laver using these technologies are notably rare despite 
their importance. Additionally, data preprocessing methods have often 
been applied without consideration of the specific characteristics of 
machine learning models. Therefore, research is needed to compare the 
effects of different preprocessing techniques and explore combinations 
of various preprocessing methods in hyperspectral image analysis to 
optimize the impact on machine learning model training.

Therefore, the objectives of this study were as follows: (1) To 
compare the effects of different preprocessing techniques, both indi-
vidually and in combination, on the performance of various machine 
learning models (Partial Least Square Regression, Support Vector 
Regression, Elastic Net Regression, Gradient Boosting Regression, and 
Random Forest Regression) using SWIR hyperspectral imaging data in 
the spectral region of 900–1700 nm, with preprocessing techniques 
including Standard Normal Variate (SNV), Savitzky-Golay filtering (SG), 
Orthogonal Signal Correction (OSC), and StandardScaler (SS), (2) To 
develop prediction models for protein content using both the complete 
spectral region and effective wavelengths selected via CARS (Competi-
tive Adaptive Reweighted Sampling) with SWIR hyperspectral imaging 
in the spectral range of 900–1700 nm, and (3) To apply the models to 

each pixel of the images to generate chemical maps for visualizing the 
distribution of protein content. In this study, we aimed to demonstrate 
the feasibility of using SWIR-based spectroscopy combined with ma-
chine learning for the effective non-destructive prediction of protein 
content in dried laver.

2. Materials and methods

2.1. Sample preparation

Ninety dried laver samples were harvested and processed in Jan-
gheung, Jeollanam-do, and Wido, Jeollabuk-do, South Korea from 
December 2021 to February 2022 and then stored in the refrigerator 
(− 18 ± 0.5 ◦C) for further hyperspectral image collection and analysis. 
The width, depth, and thickness of the samples were 26.67 ± 0.29 cm, 
19.37 ± 0.15 cm, and 0.09 ± 0.01 mm, respectively. For the purpose of 
model training and validation, the samples were evenly divided into a 
calibration set and a prediction set in an 8:2 ratio.

2.2. Determination of protein content

The technique developed by the Association of Official Analytical 
Chemists was used to examine the proximate composition of the samples 
(Jeong et al., 2023). The moisture content was determined by air-drying 
at 105 ◦C. The protein content was measured using the Kjeldahl method. 
Briefly, each sample (0.5 g) was added to a digestion flask along with 10 
mL of sulfuric acid (96–98 %) and selenium tablets. Digestion was 
performed using the meat AOAC program from the Digestor™ auto 2508 
(Foss Analytic), and the distillation and titration were conducted using 
an automatic Kjeltec™ 8400 (Foss Analytic) unit. The measured nitro-
gen content (%) was converted to protein content (%) using a conversion 
factor of 6.25. Each parameter of each sample was measured thrice and 
averaged for use as the reference value.

2.3. Hyperspectral image acquisition

The custom-designed hyperspectral system comprised a spectro-
graph (N17E, Specim, Oulu, Finland), vision dome light (VTDL550*240, 
Vision Technology, Cheonan-si, Korea) with six halogen lamps (150 W 
power), a SWIR camera (PA320F300TCL, OZRAY, Korea), and a linear 
sample stage (FBL80E1400, FUYU, Sichuan, China). The optical module 
(SWIR camera, spectrograph, and vision dome light) of the SWIR system 
was fixed 460 mm above the sample, and SWIR spectral images (hy-
percube) were acquired in the line-scan mode while moving the module 
at a constant velocity of 275 mm/s using the linear sample stage. The 
SWIR spectral images were recorded from 900 to 1700 nm, and the 
reflectance intensities of the images were measured at an average in-
terval of 3.45 nm. The resolution of the SWIR spectral images was 320 
pixels in the horizontal direction and 256 pixels in the vertical direction, 
and the spectral band comprised 256 channels. White and black back-
ground images were obtained by scanning a white tile (99.99 % 
reflectance) and completely turning off the lens using a cap (0.00 % 
reflectance).

2.4. Spectral extraction and preprocessing

After image calibration, the spectral information within the region of 
interest (ROI) of the sample image was extracted and averaged into one 
spectrum to represent the sample. This process was implemented using 
the hyperspectral imaging software Breeze (Prediktera AB, Umea, 
Sweden). To improve the accuracy of the SWIR quantitative analysis, a 
methodical spectral preprocessing strategy was adopted to highlight 
crucial information and reduce irrelevant background noise and scat-
tering effects. Spectral data preprocessing was accomplished using the 
Unscrambler X version 10.4 software (CAMO Software, Oslo, Norway).

To determine the impact of these preprocessing techniques on model 
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performance, they were applied both individually and in various com-
binations. For instance, SNV followed by SG filtering was used to correct 
scatter effects and then smooth the data, while SNV combined with OSC 
was employed to normalize the spectra and remove uncorrelated noise. 
Another combination included applying StandardScaler after SNV to 
ensure both scatter correction and standardized scaling across features. 
Including the raw (unprocessed) data, a total of 12 preprocessing tech-
niques were used in this study. These included the four preprocessing 
methods (SNV, SS, SG, OSC) applied individually and in various com-
binations, as well as the raw data. The spectra processed with these 
individual and combined preprocessing techniques are illustrated in 
Fig. 1, providing a visual overview of the methods applied to ensure 
optimal data quality for subsequent analysis.

2.4.1. Standard Normal Variate (SNV)
SNV is a scatter correction method used to reduce the effects of 

particle size and surface irregularities on the spectral data. This method 
normalizes each spectrum individually by centering the data to have a 
mean of zero and scaling it to have a standard deviation of one. By doing 
so, it ensures consistent spectral intensity across samples, thereby 
reducing variability caused by scatter effects. The transformed spectrum 
provides a more accurate representation of the sample’s true spectral 
features, making it easier to compare different samples and improving 
the robustness of subsequent analysis.

2.4.2. StandardScaler (SS)
In contrast to SNV, which normalizes each spectrum individually, 

StandardScaler standardizes the data across all samples. It normalizes 
the data by transforming it to have a zero mean and unit variance for 
each spectral feature across the entire dataset. This means that each 
wavelength is scaled based on the mean and standard deviation calcu-
lated from all samples, ensuring that each spectral feature contributes 
equally to the analysis. StandardScaler addresses biases caused by 
different scales of measurement and can enhance the performance of 
machine learning algorithms sensitive to input scale differences.

2.4.3. Savitzky-Golay filtering (SG)
Savitzky-Golay filtering aims to smooth noisy spectral data while 

preserving the important spectral features such as peaks and troughs. 
This method applies a polynomial smoothing algorithm by fitting suc-
cessive subsets of adjacent data points with a low-degree polynomial 
through the method of linear least squares. By moving the window 
across the data points and recalculating the polynomial coefficients, SG 
filtering effectively reduces random noise without significantly distort-
ing the signal. This results in a smoother spectrum that retains the 
essential characteristics needed for accurate analysis.

2.4.4. Orthogonal signal correction (OSC)
OSC is a preprocessing technique designed to remove variations in 

the spectral data that are orthogonal (i.e., unrelated) to the response 
variable of interest. This method enhances the focus of the model on 
pertinent spectral features by eliminating uncorrelated noise and irrel-
evant information. The OSC process involves projecting the original 
spectral data onto a subspace orthogonal to the response variable, 
resulting in a corrected data matrix that highlights the relevant spectral 
information while suppressing the background noise. This improves the 
robustness and accuracy of the predictive models.

2.5. Predictive modeling approaches

Five regression models (Partial Least Squares Regression, Support 
Vector Regression, Elastic Net Regression, Gradient Boosting Regres-
sion, and Random Forest Regression) were developed and individually 
tested for quantitative analysis based on the absorbance SWIR spectra, 
following the methodology outlined in Fig. 2. The best settings for each 
machine learning model were thoroughly searched for using the Grid 
Search approach (GridSearchCV) with cross-validation (cv = 5), trying 
out various specified values for its hyperparameters. Each model was 
trained using the calibration set that had been preprocessed with each of 
the 12 different preprocessing techniques. The optimal hyperparameters 
were identified by exploring a range of values, as listed in Table S1, to 

Fig. 1. SWIR spectra of dried laver by different preprocessing method including standard normal variate (SNV), Savitzky-Golay filtering (SG), Orthogonal Signal 
Correction (OSC), and StandardScaler (SS). (a) Raw spectra, (b) SNV, (c) OSC, (d) SNV + OSC, (e) OSC + SS, (f) SNV + OSC + SS.
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find the combination that enhances the performance of each model. The 
models trained with the optimal hyperparameter conditions were then 
validated by estimating the protein content using the prediction set.

2.5.1. Partial least squares regression (PLSR)
Partial Least Squares Regression (PLSR) is tailored for scenarios 

where the relationship between variables is complex with a high degree 
of multicollinearity. By transforming a large set of variables into a 
smaller set of uncorrelated latent variables, PLSR simplifies analysis 
without sacrificing essential information. This model is particularly 
suitable for linear relationships in spectral analysis and offers a 
straightforward method to model substantial amounts of data with 
fewer samples (Cheng & Sun, 2017).

2.5.2. Support vector regression (SVR)
Support Vector Regression (SVR) stands out for its unique approach 

to regression challenges, emphasizing the fitting of errors within a 
specific threshold known as the epsilon margin. This methodology 
renders SVR exceptionally adept at managing outliers and ensuring that 
predictions are both robust and within a defined tolerance level. The 
flexibility afforded by the use of kernel functions allows SVR to effec-
tively capture complex, nonlinear relationships within the data, which is 
particularly beneficial for the analysis of spectral data, where such 
patterns are common (Bermolen & Rossi, 2009).

2.5.3. Elastic Net regression (ENR)
Elastic Net combines the best ridge and LASSO regression, offering a 

balanced solution for regularization and variable selection. This method 
is particularly useful for spectral analysis, where numerous predictors 
can be highly correlated. Elastic Net simplifies model complexity and 
enhances interpretability by selecting a relevant subset of variables, 
effectively addressing multicollinearity, and reducing the risk of over-
fitting (Z. Zhang et al., 2017).

2.5.4. Gradient boosting regression (GBR)
Gradient Boosting distinguishes itself through its sequential model- 

building approach, which focuses on correcting errors in preceding 
models. This technique, which leverages the strengths of multiple weak 
learners, is particularly effective for modeling complex nonlinear data 

relationships. Its adaptability extends to handling missing data and 
incorporating various loss functions, making it a versatile tool for 
spectral analysis (Golden, Rothrock Jr, & Mishra, 2019).

2.5.5. Random forest regression (RFR)
Random Forest (RF) is well-known for its simplicity and scalability, 

utilizing an ensemble of decision trees to produce robust and accurate 
predictions. RF excels in dealing with high-dimensional datasets owing 
to its inherent feature-selection capabilities and resistance to overfitting. 
The model also offers valuable insights into variable importance, 
enhancing its utility in spectral analysis and other applications where 
understanding feature relevance is crucial (Ribeiro et al., 2021) .

2.6. Informative wavelength selection and model optimization

In the analysis of hyperspectral images, the presence of redundant 
information and multicollinearity can adversely affect model pre-
dictions, compromising accuracy, robustness, and predictive efficiency. 
To mitigate these issues, wavelength selection is pivotal to identify and 
utilize wavelengths that significantly enhance the predictive capabilities 
of the model. In this context, Competitive Adaptive Reweighted Sam-
pling (CARS) was employed to discern the most informative wave-
lengths. CARS assesses the importance of each wavelength through the 
absolute values of regression coefficients, adhering to the principle of 
“survival of the fittest” (Dai et al., 2014). This selection process was 
executed using the MATLAB R2023b software (MathWorks, Inc., Natick, 
MA, USA), ensuring rigorous and efficient identification of the key 
wavelengths for our study.

2.7. Model performance index

In the evaluation of the predictive models in this study, a suite of 
indices was deployed to measure performance, encompassing both the 
calibration and prediction phases. This array of indices included the 
corrected correlation coefficient (Rc

2) for calibration, the root mean 
square error of calibration (RMSEC), and the root mean square error of 
cross-validation (RMSECV), which are all pivotal in the model calibra-
tion phase. Higher Rc

2 and lower RMSEC and RMSECV values indicate a 
model with better stability and calibration performance. The prediction 

Fig. 2. Workflow of overall methodology for proposed the evaluation models.
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determination coefficient (Rp
2), root mean square error of prediction 

(RMSEP), and residual predictive deviation (RPD) are the benchmarks 
during transitioning to the prediction phase. Rp

2 gauges the accuracy of 
the model in terms of predictive capacity, reflecting the correlation 
between the observed values and the model’s predictions, with values 
closer to 1 indicating greater accuracy. The RMSEP quantifies the pre-
cision of the model predictions by measuring the average discrepancy 
between the predicted and observed values; a lower RMSEP denotes 
enhanced precision. Finally, the RPD serves as a metric for the accuracy 
of the model by comparing the standard deviation of the reference 
laboratory values against the RMSEP, with values greater than three 
indicating high predictive accuracy and model robustness. These pa-
rameters were determined with the following formulas: 

Rc
2,Rcv

2,Rp
2 = 1 −

∑n

i=1
(yi − Yi)

2

∑n

i=1
(yi − ym)

2
(1) 

RMSEC,RMSECV,RMSEP =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(yi − Yi)

2

√

(2) 

RPD =
SD

RMSEP
(3) 

where yi and Yi denote the measured and predicted values for the i-th 
sample in the calibration or prediction set, respectively, ym is the mean 
of the protein concentration of all samples in the calibration or predic-
tion set, and n is the number of samples in the calibration or prediction 
set. And, SD is the standard deviation of the reference protein concen-
trations in the calibration or prediction set.

All chemometric analyses were conducted using the Scikit-learn 
machine-learning package in Python version 3.10.12. Scikit-learn is an 
open-source package that operates on top of the scientific and numerical 
libraries Scipy and Numpy.

2.8. Chemical visualization

Hyperspectral imaging offers a distinct advantage, namely, a spatial 
imaging capability, which is superior to conventional spectroscopy. To 
comprehensively and directly understand the differences in protein 
content from spot to spot in the same dried laver, the optimized model 
for each quality index was applied to individual pixels of the original 
ROI image. The protein distribution in a dried seaweed sample can be 
determined by calculating the dot product between the spectrum of each 
pixel in the image and the regression coefficient of the best model to 
generate a color map, where pixels exhibiting similar spectral features at 
the information wavelength are assigned quality index values corre-
sponding to the same predicted value. This was visualized with the 
naked eye. Data analysis and visualization were conducted using Python 
version 3.10.12. We utilized Pandas for data handling, NumPy for nu-
merical computations, and Matplotlib for generating visualizations. File 
operations were managed with the os module.

3. Results and discussion

3.1. Statistical protein contents

In this study, we predicted the protein content of 90 dried laver 
samples. To do so, a total of 72 samples (80 % of the total) were 
randomly chosen to form a training set for the calibration and internal 
validation of the model. Table S2 presents statistical data for both 
calibration and prediction sets, detailing mean, maximum, minimum, 
median, range, and standard deviation (SD). The protein values’ range 
in the calibration set encompasses the range in the prediction set, and 
the mean, median, and SD of protein values in the calibration set closely 

align with those in the prediction set. This indicates a suitable distri-
bution of samples between the calibration and validation sets. This 
training set underwent five-fold cross-validation to assess the model’s 
performance across a range of preprocessing types and hyperparameters 
for each machine learning algorithm. The results from the cross- 
validation represented the average outcomes from all five folds. The 
remaining 18 samples (20 %) were designated as an independent testing 
set for external model validation. Based on the results of the internal 
validation, we selected the model that demonstrated the best perfor-
mance in terms of preprocessing and hyperparameters. The selected 
model was then evaluated using the independent test set.

3.2. Predicting protein content based on full wavelength

A comprehensive study of dried laver samples using SWIR hyper-
spectral imaging within the 900–1700 nm range was conducted, with a 
specific emphasis on the protein content. This study encompassed a 
large dataset comprising 215 spectra. We applied a variety of pre-
processing techniques along with sophisticated machine learning 
models to decode intricate relationships within the data. Through a 
detailed examination, this study explored the interplay between pre-
processing methods and five cutting-edge algorithms: PLSR, SVR, ENR, 
GBR, and RFR. It meticulously navigated through 12 spectral variations, 
including Raw, SNV, SG, OSC, SNV-SG, and SNV-OSC, evaluated both 
with and without the application of StandardScaler. The results of the 
preprocessing and regression model training, which assess how various 
preprocessing techniques affect the performance of each model using the 
full spectrum, are presented in Table 1.

The impact of different preprocessing techniques varied across the 
models. SNV preprocessing significantly improved the performance of 
the SVR model because SVR is sensitive to the scales of the input vari-
ables, and SNV normalizes each spectrum to have a mean of zero and a 
standard deviation of one, reducing variability caused by scatter effects. 
However, for PLSR and ENR, SNV did not show significant effects, likely 
because these models are less affected by scatter-related variability. In 
contrast, GBR and RFR models showed a significant decrease in Rp

2 with 
SNV preprocessing, which could be attributed to the removal of essential 
information or reduced model fit, as observed in studies by Jin et al. and 
Aheto et al. (Aheto et al., 2020; Jin et al., 2022). OSC demonstrated 
significant performance enhancement in all models since OSC removes 
variations in the spectral data that are orthogonal to the response var-
iable, focusing the model on pertinent spectral features. This normali-
zation helps all models to better capture the spectral signatures relevant 
to protein content, leading to improved accuracy and robustness in 
predictions (J. Zhang et al., 2023; Zhu et al., 2021). SS preprocessing 
showed significant performance improvements, especially in SVR and 
ENR. SS standardizes the data across all samples, ensuring each spectral 
feature contributes equally to the analysis. This normalization is crucial 
for models like SVR and ENR, which are sensitive to the scales of the 
input variables. By balancing the scales, SS enhances the regularization 
applied by ENR and improves model performance (Zou & Hastie, 2005). 
SG filtering improved performance across most models but did not result 
in substantial gains. This method smooths noisy spectral data while 
preserving important spectral features, which is beneficial but not 
transformative for all models. For decision tree-based ensemble models 
like GBR and RFR, SG filtering can negatively impact performance by 
removing critical variations needed for accurate predictions. This phe-
nomenon was also observed in the study by Loggenberg et al., where SG 
filtering led to decreased performance in decision tree-based models due 
to the loss of important signal variations (Loggenberg et al., 2018). 
When SNV and SS were combined, the performance sometimes 
decreased, similar to the effect observed with SG filtering. This is likely 
because both SNV and SS normalize the data, which, when combined 
with other preprocessing techniques, could overly smooth the data and 
remove essential variations needed for complex models like GBR and 
RFR. In contrast, models like PLSR and SVR benefited from these 
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preprocessing combinations due to their ability to handle normalized 
and linearized data more effectively. Notably, the application of a series 
of redundant preprocessing using SNV, OSC, and StandardScaler led to 
improvements in prediction accuracy in all models. This preprocessing 
combination ensured that all the models achieved RPD values above 3.0, 
signifying their reliable predictive capacity (Mishra et al., 2022). Among 

these, the SVR model exhibited exceptional predictive properties after 
the application of SNV-OSC-StandardScaler preprocessing. With metrics 
such as Rp

2 of 0.9588, RMSEP of 0.4539 %, and RPD of 4.9287, the model 
showed paramount efficiency in predicting protein content in dried 
laver. The scatter plots shown in Fig. S1 visually illustrate the predictive 
performance of these machine-learning models against the validation 

Table 1 
Quantitative protein prediction performance based on full band spectra wavelengths.

Models Preprocessing Calibration set Validation set Prediction set RPD

Rc
2 RMSEC Rcv

2 RMSECV Rp
2 RMSEP

PLSR Raw 0.9943 0.1579 0.7564 1.0306 0.8644 0.8237 2.7159
SNV 0.9927 0.1789 0.7906 0.9556 0.8517 0.8615 2.5966
SG 0.9772 0.3152 0.7953 0.9447 0.8828 0.7658 2.9212
OSC 1.0000 0.0003 0.9730 0.3428 0.9045 0.6913 3.2358
SNV_SG 0.9774 0.3136 0.8175 0.8920 0.8704 0.8055 2.7773
SNV_OSC 1.0000 0.0000 0.9791 0.3018 0.9090 0.6749 3.3146
Raw_SS 0.9195 0.5925 0.6555 1.2256 0.8010 0.9979 2.2417
SNV_SS 0.9700 0.3616 0.8263 0.8703 0.8785 0.7797 2.8691
SG_SS 0.8928 0.6835 0.6915 1.1597 0.8151 0.9620 2.3253
OSC_SS 0.9997 0.0333 0.9570 0.4331 0.9056 0.6874 3.2540
SNV_SG_SS 0.9553 0.4413 0.8729 0.7444 0.8666 0.8171 2.7376
SNV_OSC_SS 0.9999 0.0219 0.9600 0.4175 0.9581 0.4577 4.8875

SVR Raw 0.6479 1.2391 0.2633 1.7922 0.7151 1.1939 1.8736
SNV 0.9765 0.3200 0.7221 1.1007 0.8754 0.7896 2.8331
SG 0.6450 1.2441 0.2566 1.8004 0.7144 1.1954 1.8712
OSC 0.8424 0.8291 0.8251 0.8734 0.9044 0.6917 3.2341
SNV_SG 0.8640 0.7699 0.7685 1.0047 0.8297 0.9231 2.4233
SNV_OSC 0.9857 0.2496 0.9506 0.4642 0.9207 0.6298 3.5518
Raw_SS 0.8777 0.7302 0.7151 1.1146 0.7950 1.0129 2.2084
SNV_SS 1.0000 0.0011 0.8261 0.8707 0.8451 0.8804 2.5408
SG_SS 0.8860 0.7049 0.7407 1.0633 0.8142 0.9643 2.3198
OSC_SS 1.0000 0.0010 0.9789 0.3034 0.9006 0.7053 3.1718
SNV_SG_SS 0.9978 0.0978 0.8455 0.8208 0.8410 0.8919 2.5080
SNV_OSC_SS 1.0000 0.0010 0.9833 0.2697 0.9588 0.4539 4.9287

ENR Raw 0.4321 1.5735 0.0632 2.0211 0.4855 1.6046 1.3941
SNV 0.6469 1.2407 0.0905 1.9914 0.5929 1.4273 1.5673
SG 0.4320 1.5737 0.0632 2.0210 0.4854 1.6047 1.3940
OSC 0.7235 1.0979 0.6222 1.2835 0.7787 1.0523 2.1257
SNV_SG 0.6191 1.2887 0.0435 2.0421 0.5805 1.4489 1.5440
SNV_OSC 0.9082 0.6328 0.8967 0.6711 0.9480 0.5100 4.3860
Raw_SS 0.8782 0.7289 0.6196 1.2879 0.8087 0.9785 2.2862
SNV_SS 0.9930 0.1743 0.8287 0.8643 0.8767 0.7856 2.8473
SG_SS 0.8623 0.7749 0.6430 1.2476 0.8076 0.9813 2.2796
OSC_SS 0.9583 0.4266 0.9141 0.6121 0.9096 0.6725 3.3263
SNV_SG_SS 0.9779 0.3103 0.8564 0.7914 0.8668 0.8163 2.7402
SNV_OSC_SS 0.9999 0.0237 0.9630 0.4014 0.9443 0.5279 4.2373

GBR Raw 0.9992 0.0592 0.1332 1.9440 0.6644 1.2958 1.7262
SNV 0.9999 0.0233 0.2244 1.8390 0.2606 1.9236 1.1629
SG 0.8945 0.6783 0.2185 1.8459 0.6995 1.2262 1.8242
OSC 0.9859 0.2478 0.7957 0.9439 0.9023 0.6991 3.1998
SNV_SG 1.0000 0.0000 0.0320 2.0544 0.3755 1.7678 1.2654
SNV_OSC 1.0000 0.0001 0.8787 0.7271 0.9390 0.5526 4.0481
Raw_SS 0.8962 0.6727 0.2052 1.8616 0.7018 1.2216 1.8312
SNV_SS 1.0000 0.0001 0.2292 1.8332 0.2724 1.9081 1.1723
SG_SS 0.8945 0.6783 0.2311 1.8310 0.6989 1.2276 1.8223
OSC_SS 0.9859 0.2478 0.7972 0.9402 0.9028 0.6973 3.2082
SNV_SG_SS 1.0000 0.0000 0.0165 2.0708 0.4470 1.6634 1.3448
SNV_OSC_SS 1.0000 0.0000 0.8557 0.7933 0.9417 0.5400 4.1428

RFR Raw 0.9277 0.5614 0.1655 1.9075 0.7107 1.2033 1.8591
SNV 0.9568 0.4341 0.0463 2.0392 0.3663 1.7807 1.2562
SG 0.9238 0.5765 0.1707 1.9016 0.7267 1.1694 1.9129
OSC 0.9613 0.4110 0.7985 0.9374 0.8727 0.7982 2.8026
SNV_SG 0.9525 0.4553 − 0.1206 2.2104 0.4281 1.6916 1.3224
SNV_OSC 0.9851 0.2547 0.9031 0.6502 0.9207 0.6301 3.5501
Raw_SS 0.9257 0.5691 0.1842 1.8860 0.7318 1.1584 1.9311
SNV_SS 0.9553 0.4416 0.0087 2.0790 0.3665 1.7805 1.2564
SG_SS 0.9289 0.5568 0.1863 1.8836 0.7247 1.1738 1.9058
OSC_SS 0.9617 0.4089 0.8030 0.9269 0.8939 0.7287 3.0699
SNV_SG_SS 0.9548 0.4437 − 0.1260 2.2158 0.3849 1.7545 1.2750
SNV_OSC_SS 0.9842 0.2628 0.9019 0.6540 0.9206 0.6305 3.5479

PLSR – partial least squares regression; SVR - Support vector regression; ENR - Elastic Net regression; GBR - Gradient Boosting regression; RFR - Random Forest 
regression; SNV – standard normal variate; SG – Savitzky-Golay filtering; OSC – orthogonal signal correction; SS – StandardScaler; Rc

2 – correlation coefficient of 
calibration; Rcv

2 – correlation coefficient of cross validation; Rp
2 – correlation coefficient of prediction; RMSEC – root square error of calibration; RMSECV – root mean 

square error of cross validation; RMSEP – root mean square error of prediction; RPD – residual predictive deviation.
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set.
The relatively inferior performance of ensemble models such as GBR 

and RFR could be attributed to the following reasons. The variation in 
effectiveness could be due to the complexity of the GBR and RFR algo-
rithms, which seem more prone to overfitting in datasets with inherently 
linear relationships between spectral data and protein content. It ap-
pears that the spectral linearity characteristics of the SWIR hyper-
spectral imaging dataset related to protein content might not have been 
complex enough to fully exploit the modeling capabilities of GBR and 
RFR. According to the research conducted by Kästner et al., RFR showed 
superior performance compared to PLSR in learning from heterogeneous 
samples. This implies that, in some cases, simpler models may be more 
effective, particularly when dealing with dried laver manufactured by 
homogenization and subsequent drying (Kästner et al., 2022). Thus, the 
algorithms’ complexity might not align well with the simpler, linear 
nature of the dataset in question. Additionally, the relatively small 
dataset could have impeded the ability of these models to effectively 
generalize, potentially making simpler models such as SVR and PLSR 
more suitable for this specific context (Tian et al., 2023).

These results suggest the importance of carefully selecting modeling 
techniques and preprocessing methods that align with the dataset’s 
nature and the analytical objectives, indicating that such a meticulous 
approach can notably enhance model performance.

3.3. Informative wavelength selection by CARS

The application of CARS in this study facilitated the meticulous se-
lection of informative wavelengths from the raw SWIR spectra of dried 
laver samples, focusing on protein content analysis. This precision en-
sures that the analysis remains aligned with the protein’s chemical 
makeup, thereby enhancing the robustness of subsequent analyses.

The methodology adopted involved Monte Carlo sampling with a 
total of 50 runs. This optimization process is graphically represented in 
Fig. 3, which details the variation in the selection of wavelengths, the 
progression of RMSECV values, and the evolution of regression co-
efficients through the increase in Monte Carlo sampling runs. The pro-
cedure of wavelength selection via CARS was methodically divided into 

two stages: an initial aggressive reduction and a subsequent precise 
refinement, depicted in Fig. 3a. At the outset, a sharp decrease in the 
number of selected wavelengths was observed, particularly noticeable 
when the number of sampling runs was low. This reduction then tran-
sitioned to a more moderate decline. This pattern was a result of 
employing an exponentially decreasing function aimed at swiftly iden-
tifying and discarding the less informative wavelengths, thereby stabi-
lizing the selection process as the number of sampling runs approached 
15. The RMSECV’s trajectory, as showcased in Fig. 3b, underscores a 
declining trend as the sampling runs progressed up to the 15th iteration, 
marking the point where the lowest RMSECV of 0.1348 was achieved. 
This optimal juncture signifies the efficacy of the wavelength selection 
up to this point, beyond which any additional exclusion of wavelengths 
risked omitting potentially significant spectral features, justifying the 
cessation of the selection process at this stage. Fig. 3c illustrates the 
critical role of the regression coefficient trajectories of each wavelength 
throughout the sampling process, showcasing how each contributes 
differently across stages. A distinct blue line highlights the optimal 
subset of wavelengths that yielded the minimum 5-fold RMSECV, 
underlining their pivotal role in enhancing model precision. Through 
the CARS algorithm, 56 wavelengths were identified as significant, 
including 921.6 nm, 978.5 nm, and extending through to 1690.8 nm, 

Fig. 3. Informative wavelength screening by CARS (a) change trend of the variables number in the change process diagram of CARS algorithm, (b) 5-fold RMSECV 
values, (c) the regression coefficient path of each wavelength with the increase of Monte-Carlo sampling runs, and (d) raw spectra with the region of wavelengths 
selected by CARS.

Table 2 
Effective wavelengths selected from full spectrum (900–1700 nm) using 
competitive adaptive reweighted sampling (CARS) for prediction of protein in 
dried laver.

Method Number of 
wavelengths

Wavelength (nm)

Raw 215 900–1700
CARS 56 979, 982, 997, 1010, 1020, 1037, 1044, 1048, 

1062, 1073, 1141, 1161, 1181, 1242, 1246, 1250, 
1262, 1291, 1299, 1307, 1323, 1332, 1336, 1352, 
1356, 1395, 1403, 1407, 1411, 1442, 1449, 1464, 
1468, 1479, 1483, 1486, 1504, 1518, 1522, 1525, 
1539, 1553, 1559, 1562, 1566, 1572, 1579, 1594, 
1607, 1610, 1621, 1655, 1668, 1671, 1676, 1691
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which resulted in a notable reduction of spectral data by 74.0 % 
(Table 2). This reduction underscores the efficiency of CARS in isolating 
the most pertinent spectral features for protein analysis, as depicted in 
Fig. 4d, where both the entire raw spectra and precise locations of the 
selected wavelengths are illustrated.

In the presented analysis, the absorption characteristics within the 
Short-Wave Infrared (SWIR) region, particularly around 1050, 1250, 
and 1400–1650 nm, offer significant insights into the presence and 
structural properties of proteins. The absorption near 1050 nm is largely 
attributed to the C–H stretching vibrations, common in organic com-
pounds and indicative of the protein’s structural framework. At 1250 
nm, the observed absorption peaks are due to O–H and N–H bending 
vibrations, highlighting the specific molecular interactions within pro-
tein molecules (Rodríguez-Pulido et al., 2014). Furthermore, the broad 
range between 1400 and 1650 nm encompasses critical absorption 
bands associated with amide I and II vibrations, which are directly 
related to the protein’s secondary structure, including aspects like 
α-helices and β-sheets (Golovynskyi et al., 2023; Niemi et al., 2023). 
These spectral regions, therefore, provide a robust basis for the detection 
and analysis of proteins, leveraging their unique molecular vibrations to 
elucidate protein content and structural information in various samples.

3.4. Predicting protein content based on informative wavelengths

In the analysis of dried laver for protein content prediction using 
SWIR hyperspectral imaging, the CARS methodology was pivotal in 
distilling the dataset to 56 significantly informative wavelengths from 
an initial set of 215 spectra. This strategic reduction optimized the 
analytical process and highlighted the efficiency of CARS in identifying 
the most relevant spectral features for protein estimation. The results of 
preprocessing and regression model training utilizing the wavelengths 
selected by CARS are presented in Table 3. And, In Fig. 4, scatter plots 
depict the comparison between measured and predicted protein content 
using the selected wavelengths by CARS, employing optimal pre-
processing methods and regression models, including PLSR, SVR, ENR, 

GBR, and RFR.
The CARS implementation for wavelength selection was instru-

mental in enhancing the performance of the PLSR and SVR models. 
Notably, among the various model configurations examined, the SVR 
model preprocessed with StandardScaler after SNV and OSC trans-
formations (SNV-OSC-StandardScaler-SVR) stood out, delivering supe-
rior performance when trained on CARS-selected wavelengths 
compared to the full spectrum approach. This refined model configu-
ration significantly improved the key performance metrics, including Rp

2, 
RMSEP, and RPD. Specifically, the SNV-OSC-Standard Scaler-SVR model 
achieved an Rp

2 of 0.9673, indicating its accuracy in predicting protein 
content. Furthermore, the model attained an RMSEP of 0.4043, 
reflecting its precision in estimating protein levels in the dried laver 
samples. The RPD value of 5.533 further underscores the robustness and 
reliability of the model in prediction, indicating a substantial enhance-
ment over the results obtained from the models trained on the full 
spectral data. Similarly, for PLSR and ENR, although Rc

2 slightly 
decreased, Rp

2 increased when using CARS-selected wavelengths. This 
indicates that using only the most effective wavelengths prevented 
overfitting and enhanced the robustness of the models.

The notable performance enhancement observed with the ENR 
model, specifically when the dataset was preprocessed with Stand-
ardScaler and informed by wavelengths selected through CARS, in-
dicates the inherent modeling strengths of ENR. By design, ENR is adept 
at handling situations with high-dimensional data, where the number of 
predictors exceeds the number of observations. This is achieved by 
incorporating both L1 and L2 regularization, which facilitates feature 
selection and shrinkage. Applying StandardScaler to the CARS-selected 
wavelengths normalized the dataset, ensuring that each feature 
contributed evenly to the predictive capability of the model. This 
normalization was crucial for models such as ENR, in which the regu-
larization terms were sensitive to the scale of the variables. By balancing 
the scale, StandardScaler ensures that the regularization applied by ENR 
is more effective, leading to improved model performance, even with a 
reduced feature set. This highlights the capability of the model to 

Fig. 4. Scatter plots of the measured vs predicted protein content using the selected wavelengths by CARS under the optimal preprocessing methods and regression 
models: (a) PLSR, (b) SVR, © ENR, (d) GBR, and (e) RFR.
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leverage distilled yet highly relevant spectral information, enhancing its 
predictive precision for protein content in dried laver samples. This 
demonstrates the nuanced interplay among feature selection, model 
complexity, and data preprocessing to achieve optimal model 

performance.
The GBR and RFR did not exhibit performance improvements across 

the various preprocessing techniques, including those processed with 
StandardScaler. In contrast, these models sometimes showed decreased 

Table 3 
Quantitative protein prediction performance based on informative wavelengths.

Models Preprocessing Calibration set Validation set Prediction set RPD

Rc
2 RMSEC Rcv

2 RMSECV Rp
2 RMSEP

PLSR Raw 0.9999 0.0246 0.9949 0.1493 0.8125 0.9687 2.3092
SNV 0.9874 0.2348 0.8949 0.6769 0.8993 0.7097 3.1519
SG 0.9689 0.3684 0.8716 0.7481 0.8700 0.8064 2.7740
OSC 0.9999 0.0163 0.9977 0.1000 0.9095 0.6729 3.3245
SNV_SG 0.9609 0.4127 0.8576 0.7879 0.8149 0.9624 2.3243
SNV_OSC 0.9968 0.1184 0.9762 0.3225 0.9570 0.4639 4.8217
Raw_SS 0.9898 0.2108 0.9432 0.4978 0.7938 1.0159 2.2020
SNV_SS 0.9811 0.2871 0.9141 0.6120 0.8805 0.7733 2.8929
SG_SS 0.9543 0.4464 0.7762 0.9878 0.8342 0.9110 2.4556
OSC_SS 0.9994 0.0499 0.9894 0.2145 0.9016 0.7018 3.1874
SNV_SG_SS 0.9645 0.3936 0.8762 0.7347 0.8112 0.9719 2.3017
SNV_OSC_SS 0.9959 0.1340 0.9748 0.3317 0.9643 0.4224 5.2956

SVR Raw 0.5878 1.3406 0.2862 1.7642 0.6852 1.2551 1.7823
SNV 0.9463 0.4841 0.7474 1.0494 0.8825 0.7669 2.9169
SG 0.5886 1.3392 0.2844 1.7664 0.6864 1.2526 1.7858
OSC 0.8395 0.8364 0.8229 0.8786 0.9024 0.6988 3.2011
SNV_SG 0.8484 0.8129 0.6961 1.1511 0.7894 1.0266 2.1790
SNV_OSC 0.9556 0.4400 0.9287 0.5574 0.9623 0.4341 5.1535
Raw_SS 0.9998 0.0286 0.9955 0.1408 0.8125 0.9687 2.3092
SNV_SS 0.9820 0.2805 0.9104 0.6249 0.8956 0.7227 3.0953
SG_SS 0.9631 0.4012 0.8525 0.8020 0.8801 0.7747 2.8877
OSC_SS 0.9999 0.0156 0.9964 0.1251 0.9178 0.6412 3.4885
SNV_SG_SS 0.9567 0.4347 0.8802 0.7227 0.8415 0.8906 2.5118
SNV_OSC_SS 0.9948 0.1508 0.9758 0.3251 0.9673 0.4043 5.5334

ENR Raw 0.2710 1.7828 − 0.0849 2.1749 0.2877 1.8879 1.1849
SNV 0.0000 2.0881 − 0.1933 2.2810 − 0.0097 2.2478 0.9952
SG 0.2708 1.7830 − 0.0850 2.1750 0.2876 1.8881 1.1848
OSC 0.5355 1.4232 0.3073 1.7379 0.5641 1.4769 1.5147
SNV_SG 0.4808 1.5046 − 0.1332 2.2228 0.4335 1.6836 1.3287
SNV_OSC 0.6187 1.2893 0.4513 1.5467 0.7111 1.2023 1.8605
Raw_SS 0.8291 0.8631 0.6079 1.3074 0.7781 1.0538 2.1227
SNV_SS 0.9799 0.2958 0.8990 0.6638 0.8888 0.7458 2.9993
SG_SS 0.8136 0.9016 0.6002 1.3203 0.7735 1.0647 2.1010
OSC_SS 0.9446 0.4914 0.9183 0.5967 0.9293 0.5948 3.7610
SNV_SG_SS 0.9593 0.4210 0.8635 0.7715 0.8557 0.8499 2.6321
SNV_OSC_SS 0.9974 0.1070 0.9772 0.3155 0.9640 0.4244 5.2714

GBR Raw 0.7273 1.0903 0.2146 1.8505 0.6140 1.3898 1.6095
SNV 0.9997 0.0332 − 0.2356 2.3211 0.2440 1.9450 1.1501
SG 0.8785 0.7278 0.1919 1.8770 0.7064 1.2122 1.8454
OSC 0.9839 0.2648 0.7979 0.9388 0.8925 0.7335 3.0495
SNV_SG 1.0000 0.0045 − 0.2735 2.3564 0.2023 1.9979 1.1197
SNV_OSC 1.0000 0.0068 0.8797 0.7242 0.9271 0.6042 3.7025
Raw_SS 0.7273 1.0903 0.1841 1.8861 0.6123 1.3929 1.6060
SNV_SS 1.0000 0.0040 − 0.2400 2.3252 0.2344 1.9573 1.1429
SG_SS 0.8785 0.7278 0.2072 1.8592 0.7050 1.2150 1.8411
OSC_SS 0.9839 0.2648 0.7979 0.9387 0.8924 0.7338 3.0483
SNV_SG_SS 1.0000 0.0001 − 0.2966 2.3777 0.2830 1.8942 1.1810
SNV_OSC_SS 1.0000 0.0000 0.8753 0.7374 0.9173 0.6432 3.4778

RFR Raw 0.9162 0.6045 0.1436 1.9324 0.6735 1.2783 1.7500
SNV 0.9587 0.4242 − 0.2457 2.3305 0.1541 2.0574 1.0873
SG 0.9098 0.6273 0.2007 1.8668 0.6988 1.2278 1.8220
OSC 0.9587 0.4242 0.8097 0.9108 0.8897 0.7430 3.0107
SNV_SG 0.9516 0.4593 − 0.1957 2.2833 0.0879 2.1364 1.0471
SNV_OSC 0.9871 0.2368 0.8942 0.6792 0.9243 0.6155 3.6345
Raw_SS 0.9237 0.5769 0.1814 1.8892 0.6886 1.2483 1.7920
SNV_SS 0.9372 0.5232 − 0.2281 2.3140 0.1597 2.0505 1.0909
SG_SS 0.9184 0.5963 0.1801 1.8908 0.6982 1.2290 1.8202
OSC_SS 0.9586 0.4246 0.8108 0.9083 0.8906 0.7397 3.0240
SNV_SG_SS 0.9394 0.5142 − 0.1941 2.2817 − 0.0016 2.2388 0.9992
SNV_OSC_SS 0.9873 0.2349 0.9054 0.6422 0.9210 0.6287 3.5583

PLSR – partial least squares regression; SVR - Support vector regression; ENR - Elastic Net regression; GBR - Gradient Boosting regression; RFR - Random Forest 
regression; SNV – standard normal variate; SG – Savitzky-Golay filtering; OSC – orthogonal signal correction; SS – StandardScaler; Rc

2 – correlation coefficient of 
calibration; Rcv

2 – correlation coefficient of cross validation; Rp
2 – correlation coefficient of prediction; RMSEC – root square error of calibration; RMSECV – root mean 

square error of cross validation; RMSEP – root mean square error of prediction; RPD – residual predictive deviation.
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performance, as evidenced by key metrics, such as Rp
2, RMSEP, and RPD. 

For instance, in the case of OSC-SNV-StandardScaler-GBR, the best 
performance noted was an Rp

2 of 0.9417, an RMSEP of 0.5400, and an 
RPD of 4.1428, whereas after applying CARS-selected wavelengths and 
preprocessing, these performance indicators decreased to an Rp

2 of 
0.9173, an RMSEP of 0.6432, and an RPD of 3.478.

The lack of performance improvement or degradation of the GBR and 
RFR models can be attributed to several factors. The complexity of the 
GBR and RFR algorithms, which are more prone to overfitting in data-
sets with inherently linear relationships between spectral data and 
protein content, could be a significant factor. The spectral linearity 
characteristics of the SWIR hyperspectral imaging dataset might not 
have been complex enough to fully exploit the modeling capabilities of 
GBR and RFR. Furthermore, ensemble learning methods like GBR and 
RFR may not align well with the reduced feature sets provided by CARS, 
as they often require more diverse data to generalize effectively. In 
contrast, SVR’s application of structural risk minimization and its suit-
ability for smaller sample sizes make it more appropriate for this context 
than GBR or RFR, as it can more effectively address collinearity issues 
(Meiyan et al., 2023). Furthermore, the potential under- or over-fitting 
issue with GBR and RFR when dealing with a smaller set of selected 
wavelengths could also contribute to the observed performance dip. 
Although these models handle high-dimensional data by constructing 
numerous decision trees to improve prediction accuracy, the narrowed- 
down feature set may not provide sufficient diversity in the data for 
them to generalize well (Shafagh-Kolvanagh et al., 2022).

This analysis underscores the importance of matching the charac-
teristics of predictive models with the nature of the processed data, 
highlighting that more sophisticated or complex models are not always 
the most suitable choice for every dataset or analytical goal. These 
findings suggest the need for further research to optimize model selec-
tion and feature set refinement to enhance predictive modeling in the 
context of hyperspectral imaging for food quality assessment.

3.5. Visualization of protein in dried laver

Employing the developed imaging algorithm, the CARS-SNV-OSC- 
Standard Scaler-SVR model was applied across the entire pixel matrix 
of the image ROIs for the dried laver samples. This resulted in the cre-
ation of color maps that sharply delineated the protein distribution; 
illustrative examples are presented in Fig. 5. The color spectrum within 
these maps transitioned from purple to red, indicating ascending mean 
protein content values. Thus, the color maps rendered the protein con-
tent variation and distribution in the samples readily apparent, enabling 
direct visual assessment. In essence, this innovative combination of 
predictive modeling and visual mapping allows for a more objective and 
precise evaluation of the protein content of dried laver.

4. Conclusions

The exploratory study presented here sheds light on the efficacy of 
SWIR hyperspectral imaging, spanning the 900–1700 nm spectrum, as a 
rapid, non-destructive analytical tool for assessing multiple quality pa-
rameters in dried laver. Spectral data preprocessed using a combination 
of SNV, OSC, and StandardScaler proved to be highly effective for pro-
tein prediction. SVR models leveraging the SNV-OSC-StandardScaler 
preprocessed spectra exhibited commendable predictive capabilities 
with an Rp

2 of 0.9588, an RMSEP of 0.4539, and an RPD of 4.9287. 
Furthermore, a CARS method was utilized to select 56 informative 
wavelengths from the raw spectra. The refined CARS-SNV-OSC- 
Standard Scaler-SVR models demonstrated superior performance with 
enhanced predictive abilities for protein content, achieving an Rp

2 of 
0.9673, RMSEP of 0.4043, and RPD of 5.533. Hyperspectral imaging 
within the 900–1700 nm range holds substantial promise for the quality 
assessment of dried laver. The results of this study pave the way for the 
broader adoption of SWIR hyperspectral imaging as a reliable, non- 
invasive method for determining the nutritional components of sea-
weeds, underpinning its potential as a cornerstone technology for the 
expansion of seaweed and marine food industries.

Fig. 5. Example of visualization maps of protein content in dried lavers.
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