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Abstract
As computer science and complex network theory develop, non-cooperative games and

their formation and application on complex networks have been important research topics.

In the inter-firm innovation network, it is a typical game behavior for firms to invest in their

alliance partners. Accounting for the possibility that firms can be resource constrained, this

paper analyzes a coordination game using the Nash bargaining solution as allocation rules

between firms in an inter-firm innovation network. We build an extended inter-firm n-player

game based on nonidealized conditions, describe four investment strategies and simulate

the strategies on an inter-firm innovation network in order to compare their performance. By

analyzing the results of our experiments, we find that our proposed greedy strategy is the

best-performing in most situations. We hope this study provides a theoretical insight into

how firms make investment decisions.

Introduction
Game theory plays a significant role in economics with many economic phenomena having
been modelled as games [1–4]. There are many different types of games and these can differ in
two main dimensions; games can differ in the number of participants–for instance two-player
or n-player games [5,6]–and whether the participating players can credibly commit to a set of
actions, more generally known as cooperative and non-cooperative games [7]. One core prob-
lem of any game is to compute the Nash equilibrium—one of the most fundamental and cen-
tral concepts in game theory which provides a solid foundation for generalizing game theory.
The Nash equilibrium concept is named after John Nash who provided the first existence proof
in finite games by using Brouwer’s fixed point theorem.

After the establishment of the Nash equilibrium concept, researchers have provided many
methods for calculating the Nash equilibria in games; a non-linear optimization model was
proposed to compute Nash equilibria in finite games, and the algorithm based on the quasi-
Newton technique was coded in MATLAB by using sequential quadratic programming [8]. A
method for computing the Nash equilibrium within a class of generalized Nash equilibrium
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problems with shared constraints through fixed point formulation has also been developed [9].
Finally, another method to solve generalized Nash equilibrium problems uses parametrized
variational inequality approaches [10].

In this paper, we study the Nash equilibrium on a complex innovation network. An innova-
tion network is a social network with specific meanings and objectives—a network formed
among firms for the purpose of innovation and knowledge sharing [11]. The firms in an inno-
vation network are connected by way of alliances, with the alliance being able to enhance their
own accumulation of knowledge and skill level [12]. Therefore, innovation networks can also
be referred to as alliance networks. With the development of complex network research, schol-
ars have been able to find complexity in innovation networks; empirical research by Verspagen
and Duysters confirmed that innovation networks based on a strategic alliance have the so-
called small-world property [13]. There are other measures characterizing the structural prop-
erties of networks including entropy and distance measures [14–16]. In this paper, we refer to
an innovation network that satisfies the small-world property and is scale free as a complex
innovation network.

Innovation networks are able to achieve a solution in which resources are allocated opti-
mally [17]. Social network structure is the key of information dissemination and innovation
[18]. A lot of researchers have concentrated on the relationship between innovation network
structure and the level of innovation within the network [19–21]. In order to carry out empiri-
cal research in this area, researchers compared the alliance network structure in different
industries and as a consequence been able to make recommendations about how to use differ-
ent databases, how to combine first-hand and secondary data as well as exploring data sam-
pling issues [22,23]. Some specific network structures which are more regular were studied by
Lovejoy and Sinha. They point out that a complete graph and network structure with a core
can promote the early formation of ideas for innovation [24]. Through research on innovation
networks, it may be possible to understand the relationship between network attributes and the
degree of innovation, and can provide a theoretical basis for improved strategic decisions. This
paper has constructed and simulated a game in order to study innovation networks from the
perspective of firms.

In game theory, a strategy refers to a specific set of actions taken by a player, with different
strategies potentially leading to different outcomes or payoffs. Strategies have been studied in
different fields such as economics, politics and warfare. One widely studied strategy is known
as the Tit For Tat (TFT) strategy [25]. Especially in repeated games, the TFT is an efficient
strategy that can be used to promote cooperation. In the TFT strategy, a player always chooses
cooperation during the first round of a game, and then imitates its opponent’s strategy in sub-
sequent rounds. The TFT strategy which gives a solution to 2-player prisoner's dilemma game
is based on the unrealistic assumption that all players observe the actions of all other players.
To overcome this shortage, Nakai and Muto proposed the us-Tit For Tat (us-TFT) strategy
that requires a player to regard another player who cooperated with himself or his partners as a
friend and showed that this strategy lead to an emergence of a mutually cooperative society
[26]. This is more realistic as players playing us-TFT need only observe what has occurred to
himself and his allies rather than the entire set of players. If the players use responsive strategies
such as TFT, Roberts and Sherratt find that it is difficult to solve the fundamental question of
how altruistic one should be when they simulate the prisoner's dilemma game. They propose
the 'raise-the-stakes' (RTS) strategy based on a variable investment [27]. This strategy proposes
that players offer a small amount in the first round and then, if matched, the firm raises its
investment, something that no strategy in the discrete model can do. The analysis has also been
extended to study cooperation in different kinds of social dilemmas from a dynamic, rather
than static, perspective [28–30].
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It is possible to express network games more compactly than normal games. The scale index
of a network game is restricted by its adjacent node, if compared to a normal game. Research
related to networks is based on graph theory, a branch of discrete mathematics, now largely
used to understand the formation of all kinds of networks and the effect network structure has
on member behavior. Network games are also widely applied within the field of economics.
Jackson uses a game to study how economic networks are formed [31]. When a network game
is applied to describe different environments, the features of the network structure and the
position of network members have different effects on members’ behavior and payoff [32]. A
complex network game can be used to study how local externalities shape the strategic behavior
of players when the underlying network is volatile and complex [33]. Some scholars have
researched how players should choose payoff-maximizing strategies within the setting of a
complex network [34–36]. In a network game, every agent is regarded as a player in a non-
cooperative game. Each player rationally chooses the strategy to maximize the object function
(pursue maximum payoff). In doing so, all players can achieve a Nash equilibrium whereby the
network reaches a steady state and no player can benefit by deviating from his optimal strategy.

In this paper, we present an extended n-player game under non-idealized conditions,
namely that players are resource-constrained. In real social situations, firms do not tend to
invest in their allies according to the theoretical unconstrained Nash equilibrium solution
because of financial, human or other resource constraints. This means that firms need to
change their investment strategies based on the resource constraints they face. This paper pro-
vides four extreme strategies for allocating resources among alliance partners including an
average strategy, a proportional strategy, a greedy strategy and a random strategy. The advan-
tages and disadvantages of the four strategies are compared in order to determine which strat-
egy should be used in the firms’ investment decision process. For each strategy, we establish
and simulate an experimental model and draw the conclusion that, most often, a greedy strat-
egy offers the best performance.

Methods
In this section we extend the classic business partnership game to allow for a variable project
return ratio and describe and analyze its Nash equilibrium. Thereafter we extend the two-
player case to an n-player network game in which alliance firms must choose how to allocate
their resources among partner firms under both idealized and nonidealized conditions.

An extended two-player game and its Nash equilibrium
Allying with other firms can promote innovation for a firm, but some investment is required in
order to form strategic alliances. The level of investment that is required does not only depend
on the firm itself but is also influenced by how much the partner firm is planning to invest—a
typical game behavior. In this section, we extend the classic business partnership game (see S1
File for a description of the game and equilibrium strategies) to allow for differences in the
return ratios of their investments.

Assume two firms, 1 and 2, which are cooperating on a mutual project. Assume that for this
project to be successful both firms need to invest, but having done so they divide any profits
equally–a kind of win-win relationship. In the classic partnership game, the return ratio of the
investment is set to 4. Van Zandt sets this parameter to 16 in his partnership game [37]. We set
this parameter as a variable γ giving income as Eq (1)

I ¼ g ðS1 þ S2 þ bS1S2Þ ð1Þ
S1 and S2 are the both firms’ investment respectively. Let parameter b, known as the
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complementary coefficient, be non-random and common knowledge among the firms. Fur-
ther, let the complementary coefficient be restricted to values between 0 and 1

4
, that is let

b 2 0; 1
4

� �
. From Eq (1), we see that the total payoff received by the two firms depends on both

firms’ strategies S1 and S2 and the synergy, or cooperative effect given by bS1S2, that is gener-
ated by the two firms working together. In reality, firms have different competitive advantages
and are skilled at different projects. This is why mutual investment and cooperation may lead
alliances to generate additional income as compared to the income they could have generated
individually. Assuming income I is split equally between the two firms and that investment
cost is quadratic in the level of investment, the payoff expressions P1 and P2 corresponding to
firm 1 and firm 2 are given by the system of equations in (2).

P1 ¼
1

2
� g ðS1 þ S2 þ bS1S2Þ � S21

P2 ¼
1

2
� g ðS1 þ S2 þ bS1S2Þ � S22

ð2Þ

8>><
>>:

Given their payoff functions, firms need to choose their optimal strategies ðbS1 ; bS2Þ in such a
way that any firm’s strategy is a best response to the other firm’s strategy. The first firm needs

to find the best response strategy bS1 based on the strategy S2 that the second firm chooses. Simi-

larly, the second firm needs to find the best response strategy bS2 based on the strategy S1 of the
first firm.

In order to find the best responses for both firms, let us first compute the first-order partial
derivative of Pi with respect to Si, giving

P0
i ¼

1

2
� g ð1þ bSjÞ � 2Si ð3Þ

Setting the derivatives in (3) to zero, P0
i ¼ 0, we find that each firm’s best-response function

is given by Si ¼ 1
4
� g � 1þ bSj

� �
. Let BRi(Sj) denote the best response that i takes when j

adopts strategy Sj, then the best response functions of 1 and 2 are given by (4).

BR1ðS2Þ ¼ bS1 ¼ 1

4
� g � ð1þ bS2Þ

BR2ðS1Þ ¼ bS2 ¼ 1

4
� g � ð1þ bS1Þ

ð4Þ

8>><
>>:

As can be seen from (4), if Si <
1
4
� g � 1þ bSj

� �
, firm i does not have the resources to

achieve the maximum, theoretical payoff. On the other hand, if Si> 1 + bSj, firm jmay not be
able not increase its level of investment Sj and the resources that firm i invested are wasted. This

means that only if Si ¼ 1
4
� g � 1þ bSj

� �
can firm i achieve the maximal payoff. Let S�i denote

the Nash equilibrium solution, then we can easily verify the Nash equilibrium given by (5).

S�1 ¼ S�2 ¼
g

4� gb
ð5Þ

In this state, no firm can benefit by deviated from its strategy given the strategy of the other
firm and hence the current set of strategies ðS�1; S�2Þ constitute a Nash equilibrium.

From this result, we see that when the complementary coefficient b diminishes, meaning
that the returns to collaboration diminish, the payoffs will decline for both sides. The firm that
invests more incurs a higher marginal cost but only receives half of the marginal return.
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Increasing the return ratio γ has a similar effect to increasing the complementarity coeffi-
cient as increasing the return to any of the firms participating in a joint project increases the
level that the firms with to invest in the partnership.

The flow chart of an extended two-player game is shown in Fig 1.

An extended n-player network game under idealized conditions
The n-player game has a certain number of players and we will use a network to represent the
relationships between these players. LetV = {1,2, . . ., n} be the set of nodes and let E = {eij}(i,j 2 V)
be the set of edges. A network can be thought of as an undirected graph and represented as
G = {V,E}. The set V is also a set of players. Let eij = {0,1}. Then eij = 1 represents an edge
between the node i and j. V(i) = {j|eij = 1} shows all the neighbors connected with i, and the
number of the direct neighbors is called the degree of i, di = |V(i)|. In this model, each node
represents a firm. Firm i plays strategy Xi, where xi denotes the realization of Xi and is a non-
negative real number. The payoff of firm i can be represented as a vectormi(xi,xV(i)) where xV(i)
is the vector of actions taken by the partners of firm i. As before, the payoff of firm i depends
on the actions of its partners and on its own actions. Letting di = k, the payoff vector of firm i

Fig 1. Flow chart of investment income of two firms.

doi:10.1371/journal.pone.0145407.g001
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and its action vector Xi is given by Eq (6).

miðxi; x1; . . . ; xkÞ ¼ f ðxi þ l
Pk

j¼1xjÞ � cðxiÞ ð6Þ

In Eq (6), let f(�) be a non-decreasing function and c(�) the cost function associated with the
investment of firm i. The parameter λ is set to 1. Then the network game is fully characterized
by (G,X,mi).

Assume that under idealized conditions, each firm has enough resources and can fully meet
the needs of its partners. This network can reach a Nash equilibrium; Assume that firm i and
its partner j 2 V(i) can reach Nash equilibrium with the heterogeneous return ratios γij and

complementary coefficients bij. As before, S�ij ¼ gij
4�gijbij

is the best investment strategy within

each partnership. As for firm Fi, S�ij denotes the Nash equilibrium solution between firm Fi and

Fj. Therefore, the total investment Ri of firm i is given by Eq (7).

Ri ¼
PdegreeðFiÞ

j¼1;j 6¼i S�ij ¼
PdegreeðFiÞ

j¼1;j 6¼i

gij
4� gijbij

ð7Þ

Also, the payoff expression Pi is given by (8).

Pi ¼
PdegreeðRiÞ

j¼1;j 6¼i Pij ¼
PdegreeðRiÞ

j¼1;j6¼i ½1
2
� gij ðSij þ Sji þ bijSijSjiÞ � S2ij� ð8Þ

As shown in Fig 2, we take the G2001 innovation network diagram for the automobile indus-
try during 2001–2003 as an example and firms No.1 to No.5 happen to constitute a complete
graph of five elements.

Let us look at firm No.1, the degree d1 of which is 4. Assuming that the return ratios of firm
No.1 are γ12, . . ., γ15 and the complement coefficients are b12, . . ., b15 we can calculate the required

Fig 2. The network diagram of the first five firms ofG2001.

doi:10.1371/journal.pone.0145407.g002
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initial investments of firm No.1 R1 ¼ S�12 þ S�13 þ S�14 þ S�15 and the payoff P1 = P12 + P13 + P14 +
P15 given that the level of initial investments are the Nash equilibrium solution S�12; . . . ; S

�
15.

An extended n-player network game under non-idealized conditions
Non-idealized conditions: resource constraints. Under idealized conditions, the total

investment Ri a firm would like to invest is merely the theoretical value given by the Nash equi-
librium solution given in (7). In reality, some firms’ resource reserves cannot fully meet the the-
oretical Ri for various reasons. When firm i’s resources Ti cannot meet partners’ resources
requirements in a Nash equilibrium state (Ti < Ri), a firm’s investment to its partners accord-
ing to the Nash equilibrium will be greater than its own resources reserves. This kind of situa-
tion is called a resource shortage or constraint. Let the extent of the resource shortage Δi be
defined as in (9) and the average resource shortage per degree θi as in (10).

Di ¼ jTi � Rij ð9Þ

yi ¼ Di=di ð10Þ

Under a resource shortage, firms will employ different strategies to cope with the shortage of resources

and control their total level of investment. During the process of adjustment of these firms, their partners

will also adjust their strategies to maintain the best countermeasures to the new Nash equilibrium.

Assume that two allied firms i and j have the initial strategies given by S�ij ¼ S�ji and that each firm’s level of

resources T is common knowledge. If firm j changes its strategy to a new investment strategy S0ji due to a

resource shortage then according to Eq (4) firm i’s best response given the new strategy is BRiðS0jiÞ. So for
firm i, the required total investment R0

i will be adjusted accordingly, as shown by Eq (11).

R0
i ¼ Ri � ðS�ij � BRiðS0jiÞÞ ð11Þ

In this paper, we propose four investment strategies when firms face a shortage of resources
and through simulation of a real alliance network we assess the outcomes of the four strategies
by analyzing total investment, total payoff, the average return ratio, the degree of the average
return ratio and assess their overall advantages and disadvantages.

Strategy 1: the average strategy. The idea of the average strategy is that when a firm faces
a shortage of resources it will assign all of its resources equally to its partners, namely the inputs

to each partner are S0ij ¼ Ti
di
. Additionally, each partner j will optimally adjust its own invest-

ment. The average strategy algorithm is given below:

Step 1: Initialize the network based on the Nash equilibrium of every partnership;

Step 2: Mark all the firms with a shortage of resources as i, find out the extent of the resource
shortage Δi and the average resource shortage per degree θi;

Step 3: Sort the average resource shortage per degree θi in descending order;

Step 4: Take the largest θi firm i, invest its resources equally to its partners according to S0ij. At
the same time adjust the investment of its partners j to BRiðS0jiÞ and modify the total

resource investment to R0
j. Mark i as a treated firm.

Step 5: For the remaining firms complete Steps 2–4, until there is no shortage of resources in the
network.

The time complexity of the average strategy is O(n2). Under the assumption that each firm’s
available resources are common knowledge the allies of a resource constrained firm will be able
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to change their own strategies to a firm playing the average strategy. For the firms which face a
resources shortage in the first allocation, after adjusting, the total investment may turn out to
be within acceptable limits and the firm’s resource budget is sufficient again. From a practical
point of view, the firm whose shortage of resources is more serious has to take the lead in the
adjustment process.

Strategy 2: the proportional strategy. The proportional strategy is when a firm with a
shortage of resources reduces the investment to its partners according to the fixed proportion

q ¼ Ti
Ri
, and the reduced investment becomes S0ij ¼ Sij � q where Sij is the initial, unconstrained

Nash equilibrium. The algorithm for calculating the outcome of the proportional strategy is
given below:

Steps 1-3: As in Strategy 1.

Step 4: Take the largest θi firm i and with the same proportion q reduce its investment to all
partners to S0ij. At the same time adjust the investment of its partners j to BRiðS0jiÞ
and modify the total resource investment to R0

j. Mark i as a treated firm.

Step 5: As in Strategy 1.

The time complexity of the proportional strategy is O(n2).
Strategy 3: the greedy strategy. The greedy strategy is when a firm’s investment strategy is

equal to the needs prescribed by the unconstrained Nash equilibrium, each time meeting the
needs of the partner whose return ratio is highest, until the investing firm finally runs out of
resources.

Assume that under idealized conditions firm i’s investment into firm j is S�ij and that the cur-

rent investment is Sij. Further, let firm j’s investment into firm i be Sji. The current total invest-
ment is Rj. Depending on the firms’ situation, specific allocation strategies are shown in Table 1.

The algorithm for calculating the greedy strategy is given below;

Step 1: For each firm in the network, sort its partners in descending order according to the
return ratio γ (if equal then sort in descending order according to complementary
coefficient b) in order to obtain the sequence of investment List(i). Every firm invests
in turn according to the sequence List(i) on the basis of the Nash equilibrium. Pro-
ceed until completed or resources run out.

Steps 2-3: As in Strategy 1.

Step 4: Take the largest θi firm i, invest in turn according to the sequence in List(i). Mark i
as a treated firm.

Step 5: For the remaining firms, complete Steps 2–3, until there is no shortage of resources
in the network.

Table 1. Greedy strategy investment-adjustment table.

Situation Firm i Firm j Processing Method

1 Sij = S�
ij Sji = S�

ij Do not adjust

2 0<Sij<S�
ij Sji = S�

ij Sij does not adjust; Rj adjusts to R0
j (Eq 11, the same below)

3 Sij = S�
ij 0<Sji<S�

ij Sij adjusts to BRi(Sji); Rj adjusts to R0
j ; DSij allocate in turn as List(i)

4 0<Sij<S�
ij and Sij > BRi(Sji) 0<Sji<S�

ij Sij adjusts to BRi(Sji); Rj adjusts to R0
j ; DSij allocate in turn as List(i)

5 0<Sij<S�
ij and Sij < BRi(Sji) 0<Sji<S�

ij Sij does not adjust; Rj adjusts to R0
j ;

doi:10.1371/journal.pone.0145407.t001
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Steps 6: For any remaining untreated firm i (with sufficient reserves) fix the level of invest-
ment. If its partner j is the treated firm, and firm i’s investment into firm j is S0ji
right now, revise firm i’s investment to the best response BRiðS0jiÞ.

The time complexity of the greedy strategy is O(n3).
Strategy 4: the random strategy. In contrast to the three allocation strategies above, the

random strategy selects random partners to invest resources in all of its relationship and the
sum of the investments is equal to the firm’s resource reserves value. The algorithm for calcu-
lating the random strategy is given below;

Steps 1-3: As in Strategy 1.

Step 4: For all firms i facing a resource shortage, invest S0ij randomly in the relationship with

firm j. The total value of the investments is the firm’s resource reserves. At the same
time adjust the investment of its partners j to BRjðS0ijÞ, and modify the total resource

investment to R0
j. Mark i as a treated firm;

Step 5: For the reaming firms complete Steps 2–4, until there is no shortage of resources in
the network.

The time complexity of the random strategy is O(n2).
These four strategies can all be seen as extreme adjustment strategies. In the real world,

because there are many factors to consider, firms cannot completely adjust according to these
strategies. However, we believe that these strategies provide a reference point for the firm’s
adjustment strategy and that firms can make investment strategies based on these.

Results and Discussion

Data and experiment
The data used in the experiment is for the automotive industry innovation network of Chinese
automobile manufacturing firms G2001 and is taken from the Thomson Reuters SDC Platinum
database for the 2001–2003 period. The data is manually compared with Chinese news to add
any missing data and correct any issues in the existing data [38]. The G2001 network is built
from this data in the 3 year interval using the fast innovation network building method
described in [39]. The data and a corresponding description can be found in S2 File and S3 File
respectively.

The network consists of a total of 54 node firms and 66 cooperative relationships. The
parameters needed for conducting the experiment are the return ratio γ, the complementary
coefficient b, each firm’s resource reserves T and each firm’s total investment R. In the G2001

data, the return ratio, the coefficient of complementary or firm resource budget information
are all unavailable, so we set these parameters through randomization.

The return ratio γ and the complementary coefficient b depict each edge of the network and
the parameters of each edge should be different. The return ratio and complementary coeffi-
cient data between the alliance is not available and we cannot use other indicators in their
place. For the resource budget of the firm, we need to consider the firm’s own resources and
the amount the firm is willing to invest into the network. In this section, we use the firm’s
degree in the alliance to adjust the resource budget T. Each firm’s total investment R in the
innovation network can be calculated through each relationship’s γ and b parameters.

In previous studies, the value of the return ratio γ is typically 2 but because the value of
parameter γ on every edge in the innovation network should be different, in this experiment
we assign γ randomly. The random space of parameter γ includes 1000 random values, these
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random values are drawn from a normal distribution (μ = 2, σ = 1), the values are mainly con-
centrated between 0 and 4 (p = 0.9545) and we replace the randomly generated negative values
with 0. Fig 3 depicts the parameter space of γ.

In previous research, the value of the complementary coefficient b is typically set to 1
4
but in

this experiment parameter b comes from a random parameter space containing 1000 values.
These random values are drawn from a normal distribution (m ¼ 1

4
; s ¼ 1

8
), the values are

mainly concentrated between 0 to 1/2 (p = 0.9545) and again we set negative values to 0. Fig 4
depicts the parameter space of b.

The resource budget of each firm is independent of the parameters γ and b. The resource
budget is the value of a firm’s capital input to the alliance and the firm can set it according to
its own willingness. However, the capital firm’s typically allocate is both uncertain and unpre-
dictable. One simple way is to relate a firm’s capital allocation towards alliance investment as a
function of the number of firms within each firm’s current alliance (that is, the degree of the
firm in the innovation network). In this experiment, we randomly generate a resource budget
for each node and adjust the random value through the degree of the node. We draw random
resource budgets from a normal distribution and assuming that the degree of the firm node is
d, we let the resource budget of the firm node be concentrated on the interval [0,d]. If we set
(m ¼ d

2
; s ¼ d

4
) then the probability that the value of resources budget randomly generated

within [0,d] is 0.9545. Again, we set negative values to 0. Fig 5 shows the parameter space of T
under 4 different degree values.

Fig 3. The parameter space of parameter γ.

doi:10.1371/journal.pone.0145407.g003

Fig 4. The parameter space of parameter b.

doi:10.1371/journal.pone.0145407.g004
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The investment demand of the network can be calculated by the Nash equilibrium of each
relationship. After generating the return ratio γ, complementary coefficient b, firm resource
budget T and a firm’s total investment demand R, we can analyze and discuss the advantages
and disadvantages of these four resource allocation strategies.

In this experiment, we used the controlling variable method. We made single variable changes
to the return ratio γ, complementary coefficient b, firm resource budget T respectively, and ana-
lyze the possible impact of these single factor changes on the results of the experiment. In order
to improve the credibility of the experiment and improve accuracy, this experiment is replicated
multiple times to make the results more representative (each individual group experiment is rep-
licated 50 times). This experiment prepared 3 groups with a total of 150 times the initial data.

Experimental results
The change in the experimental parameters—return ratio γ, complementary coefficient b and
firm resource budget T, can substantially influence each firm’s investment and income. When
we modify the return ratio γ or complementary coefficient b, each firm’s total investment
expenditure R will change according to the formula g

4�gb, and subsequently, the income can be

calculated according to the allocation strategy. When we instead modify the firm resource bud-
get T the degree to which a firm faces a resource shortage will change. We can obtain the corre-
sponding income levels according to the allocation strategy.

Figs 6–9 graph the experimental results and show the expected value of income and
expenses for the four allocation strategies proposed earlier. In these figures, the solid icons
show the firm’s mathematical expectation of the level of investment whereas hollow icons rep-
resent the mathematical expectation of the income.

Fig 5. The parameter space of T under different node degrees.

doi:10.1371/journal.pone.0145407.g005

Fig 6. Investment and income for the average strategy.

doi:10.1371/journal.pone.0145407.g006

Extended Network Game & Simulation on Innovation Network

PLOS ONE | DOI:10.1371/journal.pone.0145407 January 8, 2016 11 / 18



1. Experimental results of every firm node for the average strategy

2. Experimental results of every firm node for the proportional strategy

3. Experimental results of every firm node for the greedy strategy

4. Experimental results of every firm node for the random strategy

Innovation networks are composed of alliance firms and their allied relationships. On the
one hand, the members of an organized network always want to pursue the best interests of the
alliance; On the other hand, the firm also wants to prioritize the status and interests of the firm
itself. Therefore, we can compare and analyze the experimental results from the point of view
of the whole network and the network node, the firm.

Contrast and analysis of network level. First of all, from the perspective of the whole net-
work, we compare the total payoff expectations of the three groups of parameters for the initial
game for each of the four strategies. The results are shown in Fig 10.

As we can see from Fig 10, the return ratio γ, complementary coefficient b and firm resource
budget T have little impact on the whole innovation network. No matter which of the parame-
ters γ, b, T we modify, out of the four strategies, the total profit of the random strategy always
performs the worst, the average strategy second worst, the proportional strategy the second
best and the greedy allocation strategy the best. This suggests that greedy strategy is able to
bring the biggest income for the entire network.

Thereafter, we compare the profit rate of the three groups of the initial game for each of the
four strategies. The results are shown in Fig 11.

As we can see from Fig 11, changing the return ratio γ, complementary coefficient b or firm
resource budget T again has little impact on the whole innovation network. No matter which

Fig 7. Investment and income for the proportional strategy.

doi:10.1371/journal.pone.0145407.g007

Fig 8. Investment and income for the greedy strategy.

doi:10.1371/journal.pone.0145407.g008
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of the parameters γ, b, T we modify, out of the four strategies, the total profit of the random
strategy always performs the worst, the average strategy second worst, the proportional strategy
the second best and the greedy allocation strategy the best. This suggests that the greedy strat-
egy gives the highest profit rate for the alliance when the alliance’s total investment is fixed or
total income is fixed.

Contrast and analysis of firm level. The degree of the node is the key value which cap-
tures a firm’s status in the network. The degree of the 54 firms used in the G2001 network is
shown in Table 2. There is no firm of degree 6 within the network. In order to better relate the
payoff value to the degree, the degree of 6 will not be listed in the following comparison.

Here, we present a comparison of the profit expectations and profit rate expectations for
firms of different degrees under our four different allocation strategies. The results are shown
in Figs 12 and 13 respectively.

As can be seen from Fig 12, regardless of which strategy the firms choose, firm profits and
degree are positively correlated. As before, for a firm of given degree, the greedy strategy always
brings the highest profit, the proportional strategy second highest, the average strategy second
least and the random strategy the least profit. It can also be seen from Fig 13, that regardless of
which strategy you choose, degree and profit rate are negatively related. This suggests that the

Fig 9. Investment and income for the random strategy.

doi:10.1371/journal.pone.0145407.g009

Fig 10. Profit expectations under four allocation strategies.

doi:10.1371/journal.pone.0145407.g010
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Fig 11. Profit rate contrast under four allocation strategies.

doi:10.1371/journal.pone.0145407.g011

Table 2. 54 firm node degree distribution table.

Degree of node 1 2 3 4 5 6 7

Number of firms 17 14 10 10 2 0 1

doi:10.1371/journal.pone.0145407.t002

Fig 12. Profit expectations of different degrees of firms under four allocation strategies.

doi:10.1371/journal.pone.0145407.g012
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higher the degree of a firm, the greater the profit of the firm but that the profit rate is not neces-
sarily higher.

Conclusion
Based on the above analysis, in this experimental environment in which we study innovation
networks, we are able to draw the following conclusions:

(1) The greedy strategy is the most suitable resource allocation strategy in order to pursue
maximum payoff for the whole network. It always brings the highest payoff for the alliance net-
work. In second place is the performance of the proportional strategy which also performs
well. This strategy is also worth considering when making allocation decisions. Although the
performance of the average strategy is better than the random strategy, the average strategy is
still worse than the first two strategies and is therefore not recommended.

(2) When the total investment of the alliance is a fixed value, or more extremely, the total
income of the alliance is a fixed value, we need to select the appropriate strategy according to
the profit rate. If the total investment of the alliance is a fixed value then selecting the greedy
strategy, which has the highest profit rate, can bring a higher payoff for the alliance. If the total
income of the alliance is a fixed value, then selecting the greedy strategy which has the highest
profit rate can help keep the total investment for the alliance to a minimum so that the alliance
has more resources available to meet other needs.

(3) The more partners a firm has the higher status the firm obtains but the more the firm
has to invest into the alliance. No matter which strategy is chosen, the firms that have higher
status can always obtain a higher payoff.

(4) No matter which strategy is chosen, the firms with higher status will always obtain a
lower profit rate. This is because the more partnerships a firm has, the higher the costs of the

Fig 13. Profit rate expectations of different degree of firms under four allocation strategies.

doi:10.1371/journal.pone.0145407.g013
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investing firm, for example to maintain the partnership. Therefore, the profit rate is not high.
However, for business, achieving the maximum profit rate is perhaps not necessary with a
higher payoff instead being more important.

From the point of view of practical significance, the average strategy is not as good as the
proportional strategy or the greedy strategy. This is because the latter two have a higher ten-
dency to pursue the maximization of benefit than does the average strategy. The greedy strategy
always seeks to allocate to the project with the highest return ratio and reduces the investment
accordingly in order to obtain the highest profit rate. The proportional strategy retains the
same allocation relationships as the unconstrained Nash equilibrium but it allocates less to
high profit rate partners than does the greedy strategy. Thus the payoff of the proportional
strategy is lower than the greedy strategy.

For possible future work, it should be noted that although the experimental environment is
based on a real innovation network, some of the parameters are randomly generated. So the
conclusions presented in this paper may not be applicable for all cases. In addition, the partner-
ship game between firms still has a lot of additional factors that need to be considered and this
model only gives certain experimental conclusions in a handful theoretical extreme situations
to offer theoretical reasons for firms’ allocation decisions. Additionally, we believe our model
could be extended to study the way in which liquidity shocks to alliance firms affect the net-
work as a whole and whether a liquidity shock to one or more members of the alliance puts the
existence of the entire alliance at risk.
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