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Abstract: The determination of mycotoxins content in food is not sufficient for the prediction
of their potential in vivo cytotoxicity because it does not reflect their bioavailability and mutual
interactions within complex matrices, which may significantly alter the toxic effects. Moreover,
many mycotoxins undergo biotransformation and metabolization during the intestinal absorption
process. Biotransformation is predominantly the conversion of mycotoxins meditated by cytochrome
P450 and other enzymes. This should transform the toxins to nontoxic metabolites but it may
possibly result in unexpectedly high toxicity. Therefore, the verification of biotransformation and
bioavailability provides valuable information to correctly interpret occurrence data and biomonitoring
results. Among all of the methods available, the in vitro models using monolayer formed by epithelial
cells from the human colon (Caco-2 cell) have been extensively used for evaluating the permeability,
bioavailability, intestinal transport, and metabolism of toxic and biologically active compounds. Here,
the strengths and limitations of both in vivo and in vitro techniques used to determine bioavailability
are reviewed, along with current detailed data about biotransformation of mycotoxins. Furthermore,
the molecular mechanism of mycotoxin effects is also discussed regarding the disorder of intestinal
barrier integrity induced by mycotoxins.

Keywords: permeability; bioavailability; intestinal transport; metabolism; mycotoxins; biotransformation;
cytochrome

Key Contribution: The paper overviews the biotransformation of mycotoxins in order to transform
the toxins to harmless metabolites. However, it may possibly generate products exerting unexpectedly
high toxicity.

1. Introduction

Mycotoxins are toxic secondary metabolites secreted by fungi and frequently occurring in food
and feed worldwide [1–3]. The major fungal genera producing foodborne mycotoxins are Fusarium,
Aspergillus, Penicillium, and Alternaria [4,5]. Fusarium is one of the most important producers of
toxins falling into the three major classes of mycotoxins, such as fumonisins (FBs), zearalenone (ZEA),
trichothecenes (deoxynivalenol (DON), nivalenol (NIV), and T-2 and HT-2 toxins, and also emerging
mycotoxins involving beauvericin (BEA) and enniatins (ENNs) [6,7]. Ochratoxin A (OTA), the major
mycotoxin of the ochratoxins, is produced by various species of the Aspergillus and Penicillium genus [8].
In addition, Penicillium species are known to produce mycophenolic acid (MPA) [9] and patulin
(PAT) [10,11]. Aflatoxins, including aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin M1 (AFM1),
aflatoxin M2 (AFM2), aflatoxin G1 (AFG1), and aflatoxin G2 (AFG2), are the most studied group of
mycotoxins produced by Aspergillus flavus [12,13]. Alternaria fungi contaminate a wide variety of food
items, such as cereals, fruits, wheat, barley, and sorghum, producing several toxins, with alternariol
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(AOH), alternariol monomethyl ether (AME), tentoxin (TEN), tenuazonic acid (TeA), altenuene (ALT),
and altertoxins (ATXs) being the most relevant ones [14,15]. The effects of mycotoxins on cell functions
are listed in Table 1.

Table 1. Toxic effects of mycotoxins.

Mycotoxins Effects LD50 (mg/kg) References

T-2 and HT-2 Inhibition of DNA, RNA and protein synthesis.
Induction of mutations and apoptosis.

T-2
Rodents: 5–10

Pig: 5
Chicken: 2–6
Shrimp: 30
Mice: 2–5

HT-2
Rodents: 5–10

[16–21]

DON Inhibition of DNA, RNA and protein synthesis.
Decrease of the cell proliferation.

Mice: 46–78
Duck: 27

Chicken: 140
[22–26]

ZEA
Activation of the estrogen receptor.

Inhibition of DNA and protein synthesis.
Triggering lipid peroxidation and cell death.

Mice: 2000–20,000
Rat: 4000–10,000

Pig: 5000
[27–29]

BEA
Increase of the biological membrane permeability.

Loss of ionic homeostasis.
Induction of lipid peroxidation.

Mice: 100 [30–32]

ENNs Increase of the membrane permeability for cations. No acute in vivo toxicity data [32,33]

FB1 Inhibition the activity of ceramide synthase. >1000 [34]

AOH and AME Single and double strand DNA breaks.
Decrease of the cell proliferation. Mice: 400 for AOH and AME [35–37]

ATXs DNA strand breaks. Mice: 0.2 [37,38]

TeA Inhibition of protein synthesis.
Inhibition of photosynthetic activity.

Mice: 81(female), 186–225 (male)
Rat: 168 (female), 180 (male) [39–42]

AFB1

Damage of DNA
Inhibition of protein synthesis through interfering with

RNA transcription and translation.
Induction of oxidative stress.

Swine: 0.62
Duck: 0.37

Turkey: 0.5–1
Chicken: 6.5–12.5

Quail: 19.5

[22,43]

MPA
Inhibition of inosine 5′-monophosphate dehydrogenase.
Blocking of the DNA synthesis and proliferation of both

T and B lymphocytes.

Rat: 450
Mice: 1900 [40,44]

OTA

Inhibition the activity of many enzymes which use
phenylalanine as a substrate.

Disruption of phenylalanine metabolism.
Production of reactive oxygen species

Lipid peroxidation, cell membranes and DNA damage

Dog: 0.2
Pig: 1

Chicken: 3.3
Rat and mouse: 20–50

[34,45]

T-2 toxin (T-2), HT-2 toxin (HT-2), deoxynivalenol (DON), zearalenone (ZEA), beauvericin (BEA), enniatins (ENNs),
fumonisin B1 (FB1), alternariol (AOH), alternariol monomethyl ether (AME), altertoxins (ATXs), tenuazonic acid
(TeA), aflatoxin B1 (AFB1), mycophenolic acid (MPA), and ochratoxin A (OTA). LD50: Median lethal dose.

The naturally ubiquitous occurrence of mycotoxins in food has been widely documented (Table 2).
Thus, mycotoxins can contaminate a variety of foodstuffs, such as grain-based products (wheat, oats,
barley, maize, and rye), nuts, dried fruits, spices, cocoa, coffee, beer, wine, fruits, meat, and animal
products (eggs, milk, and cheese) [14,46–50]. Some mycotoxins are thermostable, allowing them to
endure most food processes [51]. DON is stable up to 120–180 ◦C and was degraded after 40 min
at 210 ◦C [52]. For ZEA, heat treatment at temperatures up to 160 ◦C had no significant effect and
85% reduction of the toxin concentration in barley flours was achieved after 60 min at 220 ◦C [53].
DON content in whole and white breads decreased by 49% and 39%, respectively, compared to
the original flours [51]. According to Generotti et al. [54], increasing pH and baking time in an
acceptable technological range can reduce DON concentration in the final product [54]. T-2 and
HT-2 are relatively stable during the thermal process up to 170 ◦C and about 45% of T-2 and 20%
HT-2 were thermally degraded during biscuit-making [55]. Similarly, the loss of OTA, ZEA, AFB1,
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BEA, and ENNs in the products showed that thermal processing effectively decreased the content
of these mycotoxins [52,56,57]. The 54% AOH reduction was reported for treatment at 110 ◦C for
20 min, whereas no significant effect was found for AME at the same temperature [58]. Based on
Stadler et al. [59], the parent mycotoxin can be structurally modified during food processing, including
isomerization, decarboxylation, rearrangements, and the reaction with other small molecules [59].
In summary, food processing such as brewing, cooking, baking, frying, canning flaking, nixtamalization,
and extrusion, in general, reduced concentrations of some mycotoxins but did not eliminate them
completely [52,59,60].

Table 2. Occurrence of mycotoxins in food commodities.

Mycotoxins Commodity Concentration Range (µg/kg) Country References

T-2 and HT-2

Barley grain 26–787 Italy

[61,62]Maize 146 Hungary
Cereal-based products <LOD-209 Tunisia

Wheat 6.7–15.2 Spain

DON

Cereal and corn 96–1790 Portugal

[63,64]Wheat-based product 333–1821 Portugal
Maize grain ND-700 Ethiopia

Sorghum grain 40–112 Ethiopia

ZEA
Corn 59–505 Philippines

[63–65]Cereal and corn 5–930 Portugal
Sorghum grain 7.2–382 Ethiopia

BEA
Rice 3800–26,300 Morocco [46]

Cereal 0.1–10,600 Morocco

ENN A Rice 8400–119,500 Morocco

[46]ENN A1 Rice 56,200–448,700 Morocco
ENN B Rice 4400–26,200 Morocco

ENN B1 Rice 3600–23,700 Morocco

FB1

Maize ND-1106 Zimbabwe

[3,63]
Industrial processed food 43–836 Nigeria
Dried sweet potato chips 29.34–628.78 Tanzania

Corn 113–1162 Portugal
Corn products 183–2026 Portugal

AOH

Tomato sauce 1.2–20.8 Europe

[46,64,66]
Sunflower oil 0.7–2.9 Europe

Sorghum grain 75–1090 Ethiopia
Cereal 0.75–832 Germany

Fruit juices 15–100 Germany

AME

Tomato sauce <LOQ-4.7 Europe

[46,64,66]
Sunflower oil <LOQ-7.1 Europe

Sorghum grain 13–257 Ethiopia
Cereal 0.3–905 Germany

Fruit juices 0.13–4.9 Germany

ALT
Tomato products 6.1–62 Belgium [46]

Fruit juices 1.18–18.4 Germany

ATXs
Tomato sauce 0.5–3.7 Europe [66]
Sunflower oil 2–4.7 Europe

TeA

Tomato sauce <LOQ-691 Europe

[46,66]Sunflower oil 24–458 Europe
Fruit juices 1.1–250 Germany
Infant food 0.8–1200 Germany
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Table 2. Cont.

Mycotoxins Commodity Concentration Range (µg/kg) Country References

TEN
Tomato sauce 0.2–1.2 Europe

[46,66]Sunflower oil <LOQ-21.8 Europe
Fruit juices 0.5–10.7 Germany

AFB1
Polished rice 1–2546 Philippines [64,65]

Sorghum grain <7.5–359 Ethiopia

PAT
Apples 3.2–1500 Portugal [63]

Quince jam 9.7–28.7 Portugal

OTA
Cereals 0.27–7.97 Portugal

[63–65]Coffee beans 8-36,561 Philippines
Sorghum grain 3.7–163 Ethiopia

LOQ: Limit of quantitation; ND: Not detected.

Ingestion of contaminated food is considered as a major route for exposure to many mycotoxins [51].
Upon ingestion, mycotoxins may induce local toxicity or cross the intestinal barrier to enter the
bloodstream and reach target organs [2]. Nevertheless, to achieve any effect in a specific tissue or
organ, the mycotoxins must be available in effective concentration at certain location, which refers
to the compound’s tendency to be extracted from the food matrix, and they must then be absorbed
from the gut via the intestinal cells [67]. The term bioaccessibility refers to the fraction of a mycotoxin
liberated from a food matrix that passes unmodified through complex biochemical reactions related to
the gastrointestinal digestion and thus becomes available for absorption in the small intestine [68,69].
Bioaccessibility can be considered as an indicator for the maximal absorption of the toxin, which can be
used for realistic worst-case risk assessment of the toxin in a consumer product [70]. In fact, foodborne
mycotoxins can be degraded or modified by metabolic processes of the human body, and only a fraction
of the initial content can pass the intestinal membrane to enter the bloodstream [71]. In this sense,
bioavailability is defined as the portion of ingested contaminant in food that reaches the systemic
circulation [72].

To determine the bioavailability of mycotoxins, different in vitro models or in vivo experiments
have been carried out. In vivo experiments would be the best way to evaluate the efficacy of
binding capacities [73]. However, to avoid the ethically questionable use of animals in the in vivo
experiments, the in vitro models have been used instead. The bioavailability studies carried out in
animals are complex, expensive, and lengthy, while the in vitro experiments can be simple, rapid,
and cost-effective [72]. The advantages and disadvantages of each procedure are summarized in Table 3.
Most of the in vitro studies of the gut were done with human colon tumorigenic cell lines Caco-2, T84,
TC7, and HT-29 [74]. The brief description of the expression of transporters, enzymes, and other relevant
proteins of available cell lines used for the in vitro biotransformation and bioavailability of drugs and
xenobiotics is stated in Table 4. Among commercially available cell lines, Caco-2 cells have been widely
used to study absorption, metabolism, and bioavailability of drugs and xenobiotics [2,74]. This model
is generally suitable for screening drug and nutrient compounds due to a good in vitro–in vivo
correlation [75].
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Table 3. Advantages and disadvantages of in vivo and in vitro models in the evaluation
of bioavailability.

Models Advantages Disadvantages

In vitro models

Simulation of gastrointestinal
transformation

Similar to the physiological processes in the
human body

Suitable for high-throughput format
Ability of testing a specific mechanisms of action

Focus on small number of components
Validation with reference material

No hormonal and nervous control
Lack of feedback mechanisms

Absence of mucosal cell activity
Deficiency of complexity of peristaltic

movements, and involvement of the local
immune system

Homeostatic mechanisms are not present
Difficult to achieve the anaerobic

assay conditions

Caco-2 cells

Reproducibility of results
Provides information about efficiency of

digestion, absorption
Ability of studying transport mechanisms

Phenotypically similar to absorptive
epithelial cells

Suitable for high-throughput format

Human colonic adenocarcinoma origin
Higher TEER value than human intestine

Lack of mucin, microflora, biofilms,
and epithelial cell types

Variation of efflux transporters
expression levels

Incapability of simulating the changes of pH

In vivo models

In vivo condition
Well-known biology

Selection of specific subjects
Better-understanding kinetic of mycotoxins

High-throughput limitation
Extremely complex functional systems

Influence of different
factors-phenotypic variation

Lack of certified reference standards
Ethical issues and high cost

Time consuming and labor intensive

TEER: Transepithelial electrical resistance.

Table 4. Available human and animal cell lines used for in vitro biotransformation and bioavailability
of drugs and xenobiotics.

Cell line Origin Transporters, Enzymes and Other
Relevant Proteins References

Caco-2 Human colon
adenocarcinoma

CYP1A1, 1A2
GST, UGT, SULT, NAT

P-gp, MRP-2, BCRP
[76–78]

HT-29 Human colon
adenocarcinoma

CYP2C8, CYP2J2, CYP3A4
GST, UGT

MRP1, MRP2, p-gp, BCRP
[79–81]

TC-7 Caco-2 subclones Similar to Caco-2 [82]

T84 Human colonic carcinoma P-gp, MRP2, MRP3 [83,84]

H4 Human small foetal intestine CYP3A4 [85]

IPEC-J2 Neonatal pig small intestine CYP1A1, 1A2, 3A29
P-gp, MRP1, BCRP [86,87]

P-glycoprotein (P-gp), multidrug resistance protein (MRP), breast cancer resistance protein (BCRP),
uridinediphosphoglucuronosyl transferase (UGT), sulfotransferase (SULT), N-acetyltransferase (NAT),
glutathione–S–transferase (GST), and cytochrome P (CYP).

This review mainly focuses on the biotransformation of mycotoxins via the expression regulation of
some critical enzymes and the currently available data regarding the in vitro study of the bioavailability
of mycotoxins using the Caco-2 monolayer. Furthermore, the usefulness and limitations of this model
are also discussed.

2. Biotransformation of Mycotoxins

Mycotoxins biotransformation is defined as all the complex modifications which alter the structure
of mycotoxins by chemical reactions within the body [88]. Biotransformation is often referred to
detoxification, but biotransformation enzymes can also convert certain chemicals into highly toxic
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metabolites (Figure 1) in a process known as bioactivation [89]. Biotransformation of mycotoxins
involves two distinct stages, namely phase I and phase II. The biotransformation process allows
metabolites created during phase I to enter conjugation processes (phase II), but in some cases,
the substances may be eliminated directly after phase I [90].
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Figure 1. Major biotransformation and adverse cellular effects of mycotoxins. CYP450: Cytochrome
P450; UGT: Uridine 5′-diphospho-glucuronosyltransferase; GST: Glutathione S-transferase; ROS:
Reactive oxygen species.

In phase I, the mycotoxin could be oxidized, reduced, or hydrolyzed based on their chemical
structure [90]. The enzymes involved in detoxification belong to the cytochrome P (CYP) superfamily.
The CYP superfamily contains the enzymes involved in oxidative metabolism, such as monooxygenases,
prostaglandin synthases, amine oxidases and alcohol dehydrogenases; and reductive metabolism
mainly governed by epoxide hydrolases, and aldehyde or ketone reductases [91]. CYP450 enzymes
play an important role in the oxidative and reductive metabolism of many endogenous or exogenous
chemical compounds [34], including most mycotoxins (Table 5). In mammals, CYPs are present in the
endoplasmic reticulum and mitochondria of most cells [89]. Among CYPs, CYP3A with an average
content from 50–70% of total enteric CYPs is the major subfamily expressed in the human small
intestine [92].
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Table 5. CYP450 isoforms induced by mycotoxins and their phase I and II metabolites.

Mycotoxins Induced CYP450 Phase I Biotransformation Phase II Biotransformation References

T-2 and HT-2
CYP3A46, 3A29 and 3A22 in pig

CYP1A5, 3A37 in chicken
CYP1A1 in human

NEO, 3′-OH-T-2,
3′-OH-HT-2, T-2 triol, T-2

tetraol, and some
C12,13-deepoxy products

T-2 glucuronides
HT-2 glucuronides [34,93–101]

DON CYP2B1 and 2B2 DOM-1

DON-3-gluccoside, DON-,
DOM- and DON

-3-Glucoside-sulfonates,
DON-3-, DON-7-, DON-8-

and DON-15- glucuronides

[34,102]

ZEA
CYP1A1, 1A2, 2B6, 2C9, 3A4 and

3A5 in human
CYP2C7, 2E1, 3A1 and 3A2 in rat

α-ZEA and β-ZEA

ZEA, α-ZEA and
β-ZEA-glucuronides
ZEA-14-Glucoside,
α-ZEA-14-Glucoside,
β-ZEA-14-Glucoside,
ZEA-14-Sulfate and
ZEA-16-Glucoside

[34,103–106]

BEA CYP3A4/5 and CYP2C19 in human
CYP3A1/2 in rat No metabolites detected No metabolites detected [107,108]

ENNs CYP3A4, 2C9, 1A2 in human
CYP3A and 1A in rat and dog

M1–M12 with rat, dog and
human liver microsomes

M1–M5, M9–M13 in chicken

No sulfated or
glucuronidated of ENN B

and B1 detected
[109–115]

FB1 CYP 1A1 and 4A1 in rat
CYP1B1 in human HFB1 and pHFB1 Unknown [34,116]

AOH and AME CYP1A1 OH-AOH and OH-AME
AOH-3-glucoside,

AOH-9-glucoside and
AME-3-glucoside

[117–120]

ATXs CYP1A1 ATX I No metabolites detected [121]

ALT Unknown OH-ALT ALT-glucuronide [121]

TeA Unknown No metabolites detected No metabolites detected [121]

TEN CYP3A4
Monooxidized,

mono-methylated and
di-methylated metabolites

Unknown [121]

AFB1 CYP1A1, 1A2, 2B6, 2C9, 3A4 and
3A5 in human liver

AFBO, AFM1, AFL, AFQ1
and AFP1

AFB1-glutathiones,
glucuronides and sulfates [34,122,123]

OTA CYP1A1, 1A2, 2B6, 2C9, 3A4 and
3A5 in human liver

Lactone-open OTA, OTα,
OTB, 4-OH-OTA and

10-OH-OTA

OTA-glutathiones,
OTA-hexose/pentose,

OTA-sulfates
[34,124–129]

PAT CYP1A1, 1A2, 2B6, 2C9, 3A4 and
3A5 in human hepatocytes

E-ascladiol, Z-ascladiol,
hydroascladiol and
deosypatulinic acid

PAT-glutathiones [34,130]

T-2 toxin (T-2), HT-2 toxin (HT-2), neosolaniol (NEO), deoxynivalenol (DON), zearalenone (ZEA), beauvericin
(BEA), enniatins (ENNs), fumonisin B1 (FB1), alternariol (AOH), alternariol monomethyl ether (AME), altenuene
(ALT), altertoxins (ATXs), tenuazonic acid (TeA), Tentoxin (TEN), aflatoxin B1 (AFB1), mycophenolic acid (MPA),
ochratoxin A (OTA), patulin (PAT), 3′-hydroxy-T-2 (3′-OH-T-2), 3′-hydroxy-HT-2 (3′-OH-HT-2), hydroxy-alternariol
(OH-AOH), hydroxy-alternariol monomethyl ether (OH-AME), deepoxy-deoxynivalenol (DOM-1), α-zearalenone
(α-ZEA), β-zearalenone (β-ZEA), hydroxy-altenuene (OH-ALT), AFB1–8,9-epoxide (AFBO), aflatoxin M1 (AFM1),
aflatoxicol (AFL), aflatoxin Q1 (AFQ1), aflatoxin P1 (AFP1), ochratoxin α (OTα), ochratoxin B (OTB), 4-hydroxy-OTA
(4-OH-OTA) and 10-hydroxy-OTA (10-OH-OTA), cytochrome P (CYP).

Phase II reactions are known as conjugation reactions, which usually refer to covalent binding of
endogenous hydrophilic substances such as glucuronic acid and sulfate. The reactions provide more
hydrophilic compounds, which are quickly eliminated. In general, phase II reactions decrease the
toxicity [89]. Uridine 5′-diphospho-glucuronosyltransferase (UDP-glucuronosyltransferase–UGT) and
glutathione S-transferase (GST) enzymes play an important role in the phase II metabolism [89,91].

Although the liver is the main detoxification organ, extrahepatic tissues in the gastrointestinal
tract (GI tract), kidney, and bladder also show metabolic activity. The GI tract is a first physical
barrier for mycotoxins but it also influences the biotransformation process and bioavailability of
mycotoxins in other ways. Microorganisms from guts have been reported to exhibit the capacity for
degrading mycotoxins [131–134]. Additionally, P-glycoprotein (P-gp) and multidrug resistance protein
(MRP), members of the ATP–binding cassette (ABC) superfamily of transport proteins, are able to
pump mycotoxins out of the intestinal cells, leading to limit bioavailability of the substrates [71,135].
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Both CYP450 and P-gp in the gut play a crucial role in defense mechanisms against mycotoxins that
reach the intestinal mucosa [92].

Previous biotransformation studies mainly focused on AFB1, OTA, trichothecenes (T-2 and DON),
ZEA, and FBs. Recently, emerging Fusarium and Alternaria mycotoxins have gained more interest [46],
although in vivo metabolization data are still limited. The biotransformation products of mycotoxins
are summarized in Table 3. These studies revealed that mycotoxins can induce the expression of
CYP450 enzymes in animal and human cell lines.

2.1. Biotransformation of Aflatoxins

Native AFB1 itself is not toxic, but the bioactivation by cytochrome CYP450 leads to AFB1-8,9-
epoxide (AFBO), which is acutely toxic, mutagenic, and carcinogenic (Figure 2) [34]. Additionally,
the metabolic pathway of AFB1 can also give rise to moderately toxic aflatoxicol (AFL) by ketoreduction,
mildly toxic AFM1 and relatively nontoxic aflatoxin Q1 (AFQ1) by hydroxylation, and relatively
nontoxic aflatoxin P1 (AFP1) by demethylation [123,136]. Their formation is thus considered as a
detoxification pathway [137]. CYP enzymes, particularly CYP1A2 and CYP3A4, are predominant
in the metabolic activation of AFB1 [122]. The detoxification of AFBO and AFM1 is realized by
conjugation with glutathione catalyzed by GST. Otherwise, the unconjugated AFBO is alternatively
hydrolyzed to AFB1-dihydrodiol, which is reversibly converted to AFB1-dialdehyde [34,90,138].
AFB1-dialdehyde is metabolized by the enzymes of aldo-keto reductase subfamily 7 (AKR7) and
microsomal epoxide hydrolase (mEH) to form the nontoxic AFB1-dialcohol metabolite in humans, rats,
mice, and pigs [123,139,140].

2.2. Biotransformation of Ochratoxin A

In animals and humans, OTA can be metabolized by both phase I and phase II enzymes to
many different products in the liver, kidney, and intestine (Figure 3). Poor biotransformation and
slow elimination of metabolites contribute to the toxicity, carcinogenicity, and organ specificity of
OTA [139,141]. In the gut, ochratoxin α (OTα), a major metabolite and is formed by carboxypeptidases,
which cleave the peptide bond in OTA [34]. Other types of major metabolites of OTA are 4-hydroxy-
ochratoxin A (4-OH-OTA) and 10-hydroxyochratoxin A (10-OH-OTA) have been identified from the
urine of rats and are also produced by human, pigs, goat, chicken, rat, and rabbit liver microsomes
or human bronchial epithelial cells in vitro [142–144]. Most of the metabolites of OTA, such as OTα,
OTB, 4-OH-OTA, and 10-OH-OTA, are less toxic than the original compound [129,139]. However,
opening the lactone ring under alkaline conditions (called the lactone-opened OTA), found in rodents,
leads to more toxic metabolites than OTA itself [126]. These phase I-type reactions probably relate to
the action of the CYP450 enzyme family, including CYP1A1, CYP1A2, CYP3A1, CYP3A2, CYP3A4,
CYP3A5, CYP2B6, and CYP2C9 [124–126]. Phase II biotransformation mainly occurs in the liver with
conjugation of OTA with sulfate, glucuronide, hexose/pentose, and glutathione [127–129].
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144]. Most of the metabolites of OTA, such as OTα, OTB, 4-OH-OTA, and 10-OH-OTA, are less toxic than the 
original compound [129,139]. However, opening the lactone ring under alkaline conditions (called the lactone-
opened OTA), found in rodents, leads to more toxic metabolites than OTA itself [126]. These phase I-type 

Figure 2. The major metabolic pathways of aflatoxin B1 (AFB1): (A) Aflatoxin M1 (AFM1) and (B)
aflatoxin Q1 (AFQ1) by hydroxylation; (C) Aflatoxin P1 (AFP1) by demethylation; (D) AFB1–8,9-epoxide
(AFBO) by epoxidation; (E) Aflatoxicol (AFL) by ketoreduction; (F) AFB1-8,9-dihydrodiol by microsomal
epoxide hydrolase (mEH); (G) AFB1-dialcohol by aflatoxin-aldehyde reductase (AFAR); and (H)
AFBO-glutathione (AFBO-GSH) by conjugation with glutathione. CYP: Cytochrome P; GSTs:
Glutathione S-transferases [123].
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DON is not substrate of phase I metabolism [145]. Major metabolites of DON include the glucuronide and 
sulphate conjugates of DON (Figure 4) and deepoxy-deoxynivalenol (DOM-1) [146]. DOM-1 showed lower 
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Figure 3. The biotransformation of ochratoxin A (OTA): (A) OTα by cleavage of the peptide bond of
OTA; (B) lactone-opened OTA by lactone hydrolysis; (C) OTA-quinone by oxidation; (D) 4-hydroxy-
ochratoxin A (4-OH-OTA) and (E) 10-hydroxyochratoxin A (10-OH-OTA) by hydroxylation; (F) OTB
by dechlorination; (G) OTA-glutathione, OTA-glucuronide and OTA-sulfate by conjugation with
glutathione (GSH), glucuronic acid, and sulfate; (H) Hexose/pentose-OTA by conjugation with
hexose/pentose, (I) OTA-glutathione by conjugation with glutathione. CYP450: Cytochrome P450;
GSTs: Glutathione S-transferases; UGTs: Uridine 5′-diphospho-glucuronosyltransferases [129].

2.3. Biotransformation of Deoxynivalenol

DON is not substrate of phase I metabolism [145]. Major metabolites of DON include the
glucuronide and sulphate conjugates of DON (Figure 4) and deepoxy-deoxynivalenol (DOM-1) [146].
DOM-1 showed lower cytotoxicity in pigs [147]. DON conjugates with glycosides or sulfonates to
form DON-3-gluccoside (D3G); DON-, DOM- and D3G-sulfonates; and DON-3-, DON-7-, DON-8-,
and DON-15- glucuronides identified in porcine, rat, chicken, bovine, and human [34,102,148–150].
Other DON-biotransformation products, including DON-glutathione conjugates and the products of
glutathione degradation, such as DON-S-cysteinyl-glycine and DON-S-cysteine, have been reported in
cereals. Thanks to intestinal microflora, DON could be metabolized in animals and humans but not
deposited in the tissues [151,152].
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(Figure 5) [153]. The typical metabolites of T-2 in human and animals are HT-2 toxin (HT-2), neosolaniol (NEO), 
3′-OH-T-2, 3′-OH-HT-2, T-2 triol, T-2 tetraol, and some C12,13-deepoxy products [99,154]. The contributions of 
the CYP450 enzymes to T-2 metabolism follow the descending order of CYP3A4, CYP2E1, CYP1A2, CYP2C9, 
and CYP2B6 or CYP2D6 or CYP2C19, in which CYP3A4 contributes the most [93]. In addition, CYP1A1 in 
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Figure 4. Phase II biotransformation of deoxynivalenol (DON): (A) Deepoxy-deoxynivalenol (DOM-1)
by deepoxidation; (B) DON-3-sulfate, (D) DON-10-sulfate, (G) DON-3-glucoside sulfonate and
(H) DOM-1-10-sulfonate by sulfation; (C) DON-glutathiones by conjugation with glutathione;
(E) DON-3-glucuronide, DON-7-glucuronide, DON-8-glucuronide, and DON-15-glucuronide by
conjugation with glucuronic acid; and (F) DON-3-glucoside by conjugation with glucose. GSTs:
Glutathione S-transferases; UGTs: Uridine 5′-diphospho-glucuronosyltransferases [102].

2.4. Biotransformation of T-2 and HT-2

The major metabolic pathways of T-2 include hydroxylation, hydrolysis, deepoxidation,
and conjugation (Figure 5) [153]. The typical metabolites of T-2 in human and animals are HT-2 toxin
(HT-2), neosolaniol (NEO), 3′-OH-T-2, 3′-OH-HT-2, T-2 triol, T-2 tetraol, and some C12,13-deepoxy
products [99,154]. The contributions of the CYP450 enzymes to T-2 metabolism follow the descending
order of CYP3A4, CYP2E1, CYP1A2, CYP2C9, and CYP2B6 or CYP2D6 or CYP2C19, in which CYP3A4
contributes the most [93]. In addition, CYP1A1 in human [34]; CYP3A46, CYP3A29, and CYP3A22
in pig [94–96]; and CYP1A5 and CYP3A37 in chicken [97,98] mainly convert T-2 to 3′-OH-T-2 and
HT-2 to 3′-OH-HT-2 [145]. The carboxylesterase is also an important phase I enzyme, contributing to
the rapid metabolism of T-2 to HT-2 [100]. A recent study revealed that cholic acid supplementation
promotes the T-2 metabolism through activation of the farnesoid X receptor, which was found to
have significantly increased the expression of CYP3A37 [99]. In phase II, glucuronidation of T-2
toxin, HT-2 toxin, and further phase I metabolites essentially contribute to the metabolism and
excretion. The transformation of T-2 to T-2-3-glucuronide and HT-2 to HT-2-3-glucuronide and
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HT-2-4-glucuronide occurs in liver microsomes of rats, mice, pigs and humans [155]. The activities
of GSTs and sulfotransferases can be also attributed to the conjugation reaction as a response to T-2
exposure [100,101].
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Figure 5. Metabolic pathway of T-2 toxin (T-2): (A) HT-2 toxin (HT-2), (B) Neosolaniol (NEO), (C) 4-deacetyl-
NEO, (D) 15-deacetyl-NEO, (E) T-2 triol and (F) T-2 tetraol by hydrolysis; (G) 3′-hydroxy-T-2, (H) 3′-hydroxy-
HT-2 and (I) 3′-hydroxy-T-2 triol by hydroxylation; (J) Deepoxy 3′-hydroxy-T-2 triol, (K) Deepoxy-3′-hydroxy-
HT-2; (L) Deeopoxy-T-2 Tetraol by deepoxiadtion; and (M) T-2-3-glucuronide, (N) HT-2-3-glucuronide, and (O) 
HT-2-4-glucuronide by conjugation with glucuronic acid. UGTs: Uridine 5′-diphospho-glucuronosyltransferases 
[154]. 

2.5. Biotransformation of Fumonisins 

After oral ingestion, FB1 are excreted primarily in the feces, either in the intact form or converted into 
aminopentol (HFB1) and partially hydrolyzed FB1 (pHFB1) by the intestinal microbiota (Figure 6) [116]. The 
supplementation with fumonisin carboxylesterase FumD results in the gastrointestinal degradation of FB1 and 
is considered as an effective strategy to detoxify FB1 in the digestive tract of turkeys and pigs [156]. The 
findings of Daud et al. [157] provided evidence that human fecal microbiota are capable of FB1 degradation, 
and LC-MS/MS fragmentation patterns indicated microbial biotransformation to hydrolyzed and partially 
hydrolyzed FB1 [157]. FB1 is not metabolized by CYPs. Moreover, it is a selective inhibitor of CYP2C11 and 

Figure 5. Metabolic pathway of T-2 toxin (T-2): (A) HT-2 toxin (HT-2), (B) Neosolaniol
(NEO), (C) 4-deacetyl-NEO, (D) 15-deacetyl-NEO, (E) T-2 triol and (F) T-2 tetraol by hydrolysis;
(G) 3′-hydroxy-T-2, (H) 3′-hydroxy-HT-2 and (I) 3′-hydroxy-T-2 triol by hydroxylation; (J) Deepoxy
3′-hydroxy-T-2 triol, (K) Deepoxy-3′-hydroxy-HT-2; (L) Deeopoxy-T-2 Tetraol by deepoxiadtion;
and (M) T-2-3-glucuronide, (N) HT-2-3-glucuronide, and (O) HT-2-4-glucuronide by conjugation with
glucuronic acid. UGTs: Uridine 5′-diphospho-glucuronosyltransferases [154].

2.5. Biotransformation of Fumonisins

After oral ingestion, FB1 are excreted primarily in the feces, either in the intact form or
converted into aminopentol (HFB1) and partially hydrolyzed FB1 (pHFB1) by the intestinal microbiota
(Figure 6) [116]. The supplementation with fumonisin carboxylesterase FumD results in the
gastrointestinal degradation of FB1 and is considered as an effective strategy to detoxify FB1 in
the digestive tract of turkeys and pigs [156]. The findings of Daud et al. [157] provided evidence
that human fecal microbiota are capable of FB1 degradation, and LC-MS/MS fragmentation patterns
indicated microbial biotransformation to hydrolyzed and partially hydrolyzed FB1 [157]. FB1 is not
metabolized by CYPs. Moreover, it is a selective inhibitor of CYP2C11 and CYP1A2, while the activities
of CYP2A1:2A2, CYP2B1:2B2, CYP3A1:3A2, and CYP4A are not significantly affected. The significant
inhibition of CYP2C11 might be related to suppressed protein kinase activity as a result of the inhibition
of sphingolipid biosynthesis caused by FB1 [158–160]. FB1, HFB1, and pHFB1 can be acetylated to
form N-acetylated fumonisins with fatty acid of various lengths, and N-acyl forms proved to be more
toxic than the parent FB1 [161–163].
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hydrolyzed FB1 (pHFB1) by hydrolysis; (C) N-acyl-HFB1 and (D) N-acyl-FB1 by N-acylation [161–163].

2.6. Biotransformation of Zearalenone

ZEA is mainly biotransformed into α-zearalenol (α-ZEA), which shows the highest binding
affinity to human and porcine estrogen receptors, whereas in broilers and rats, β-zearalenol (β-ZEA)
with the low affinity to the receptor is predominantly produced [103–105]. ZEA upregulates mainly
mRNA levels of CYP2B6, CYP3A4, CYP1A2 and CYP1A1, followed by CYP3A5 and CYP2C9,
together with activation of their transcriptional regulators—aryl the hydrocarbon receptor (AhR),
constitutive androstane receptor (CAR), and pregnane X receptor (PXR) [106]. It is well known that
ZEA, α-ZEA, and β-ZEA are substrates of UGT, the enzyme responsible for the glucuronidation
(Figure 7) [78,105,164,165]. However, the UGT was not only saturated but also inhibited by high
concentration of ZEA [166]. Although zearalenone-14-glucoside (ZEA14Glc) has lower toxicity than
ZEA due to inability to interact with estrogen receptors, the possible systemic hydrolysis and further
activating metabolism of ZEA14Glc leads to ZEA-mediated toxicity [167]. Due to the adverse effect
of ZEA on human and animal health, microorganisms have gained great interest in the modulation
of ZEA adsorption and transformation [168,169]. Eukaryotic cells were able to biotransform ZEA to
α-ZEA and β-ZEA, while prokaryotic cells only absorbed ZEA without any metabolization of this
mycotoxin and sequestered ZEA by binding to the cell wall [170,171].
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microsomes (Figure 8): M1–M5 were monohydroxylated and M6 and M7 were N-demethylated, whereas M8–
M12 were the result of multiple oxidations [110]. However, only eight metabolites could be detected in the case 
of chicken liver microsomes, particularly five hydroxylated (M1–M5) and three carboxylated (M9, M11 and 
M12) metabolites. Moreover, M4 and M13 were major metabolites in egg samples, while M11 and M13 were 
found in liver and serum samples collected after broilers and hens were given contaminated feed containing 
ENN B [111]. Similarly, ENN B1 is mainly metabolized by CYP3A4 [112]. In vitro incubation with minipig and 
slaughter swine liver microsomes resulted in the detection of ten ENN B1 metabolites (M2–M11) and M1 
occurred only in the minipig assays, while six metabolites (M5–M8) were detected also in vivo [113]. Rumen 
microbiota also proved to be able to degrade ENN B up to 72% after 48 h of incubation [114]. Any sulfated or 
glucuronidated phase II metabolites of ENN B or ENN B1 were detected (Figure 9) [115]. 

Figure 7. Metabolic pathway of zearalenone (ZEA): (A)α- zearalenol (B) (α-ZEA) andβ- zearalenol (β-ZEA)
by hydroxylation; (C) Zearalenone-glucuronide, (D) α-zearalenol-glucuronide and (E) β-zearalenol-
glucuronide by glucuronidation; (F) Zearalenone-14-glucoside (ZEA14Glc), (G) Zearalenone- 16-glucoside
(ZEA16Glc), (H) α- zearalenol-14-glycoside and (I) β-zearalenol-14-glucoside by glycosidation; and (J)
Zearalenone-14-sulfate by sulfation. UGTs: Uridine 5′-diphospho-glucuronosyltransferases [170].

2.7. Biotransformation of Enniatins

For ENNs, the most information is currently available for ENN B and B1. In vitro and in vivo
studies demonstrated that CYP3A4, CYP2C19, and CYP1A2 play the major role for ENN B metabolism
in human microsomes and CYP3A and CYP1A are also included in this process in rats and dogs [109].
The 12 biotransformation products were characterized after the incubation of ENN B with rat, dog,
and human liver microsomes (Figure 8): M1–M5 were monohydroxylated and M6 and M7 were
N-demethylated, whereas M8–M12 were the result of multiple oxidations [110]. However, only eight
metabolites could be detected in the case of chicken liver microsomes, particularly five hydroxylated
(M1–M5) and three carboxylated (M9, M11 and M12) metabolites. Moreover, M4 and M13 were major
metabolites in egg samples, while M11 and M13 were found in liver and serum samples collected after
broilers and hens were given contaminated feed containing ENN B [111]. Similarly, ENN B1 is mainly
metabolized by CYP3A4 [112]. In vitro incubation with minipig and slaughter swine liver microsomes
resulted in the detection of ten ENN B1 metabolites (M2–M11) and M1 occurred only in the minipig
assays, while six metabolites (M5–M8) were detected also in vivo [113]. Rumen microbiota also proved
to be able to degrade ENN B up to 72% after 48 h of incubation [114]. Any sulfated or glucuronidated
phase II metabolites of ENN B or ENN B1 were detected (Figure 9) [115].
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2.8. Biotransformation of Beauvericin

Very few studies have been carried out on BEA (Figure 10) in this regard. No BEA metabolites
were detected in the mice feed with BEA in the study of Rodríguez-Carrasco et al. [107], suggesting
a higher metabolic stability for BEA [107]. Mei et al. [108] reported that BEA is a potent inhibitor
of diverse CYP450 enzymes, including CYP3A4/5 and CYP2C19 in human liver microsomes and
CYP3A1/2 in rat liver microsomes [108].
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2.9. Biotransformation of Alternaria Mycotoxins

AOH and AME form the metabolites hydroxylated at C-2, C-4, and C-8 by activation of the CYP1A1
enzyme (Figure 11) [172,173]. AOH and AME activate the AhR pathway, which induces CYP1A1
expression [117,118]. AOH is known for its genotoxicity [118]. However, the phase I metabolites,
4-OH-AOH and 4-OH-AME, had minor effect compared to AOH or AME in topoisomerase inhibition
and DNA strand-breaking effects [174]. Phase II metabolism includes conjugation with glucuronic acid
and sulfate [119]. AME and AOH were enzymatically glycosylated using whole-cell biotransformation
system, producing highly effective rates of 58% AOH-3-glucoside, 5% AOH-9-glucoside, and 24%
AME-3-glucoside [120]. However, human gut microbiota was not capable of metabolizing AOH,
AME, and ALT [175]. The conversion of ATX-II, significantly more genotoxic than AOH, to ATX-I
by de-epoxidation in Caco-2 cells did not showed an adequate detoxification but an attenuation of
genotoxicity [176]. The metabolic pathway of AOH, AME and other Alternaria mycotoxins, such as
TEN, TeA, ALT and ATXs, are summarized in Figure 11.
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Figure 11. Biotransformation pathway of Alternaria mycotoxins: Alternariol (AOH), alternariol
monomethyl ether (AME), hydroxy-alternariol (OH-AOH), hydroxy-alternariol monomethyl ether
(OH-AME), tenuazonic acid (TeA), altertoxins (ATXs), Tentoxin (TEN), altenuene (ALT), hydroxyl-
altenuene (OH-ALT). (A): Demethylation; (B,C,H): Hydroxylation; (D,I): Methylation; (E,F): Sulfation,
glycosylation, and glucuronidation; (G): Epoxide reduction. CYP: Cytochrome P; and UGTs: Uridine
5′-diphospho-glucuronosyltransferase [71,117,121,172–174,177–181].
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2.10. Biotransformation of Patulin

PAT induces the upregulation of PXR and AhR accompanied by the enhancement of CYP1A1,
CYP1A2, CYP2B6, CYP2C9, CYP 3A4, and CYP3A5 expression [130]. Moreover, PAT reacts with
intracellular glutathione in gastrointestinal mucosa cells [182,183]. The extracellular enzymes of
Lactobacillus casei YZU01 induced by PAT mainly degrades PAT, and the cell wall of this bacteria can also
absorb a small amount of PAT [184]. Similarly, the degradation of PAT was observed by Saccharomyces
cerevisiae during cider fermentation into E-ascladiol and Z-ascladiol (Figure 12), which are not toxic
to human [185]. The biotransformation of PAT in humans and animals is not well understood and
remains to be established.
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3. Assessment of Bioavailability of Mycotoxins Using Caco-2 Cell Monolayer

The Caco-2 cell line is the most common and extensively used in vitro model to study the intestinal
absorption of mycotoxins via the intestinal membrane enterocytes [2,10,187,188]. It was originally
derived from a heterogeneous human epithelial colorectal adenocarcinoma cells established by Fogh
and coworkers in 1977 [189]. The Caco-2 cells have the ability to spontaneously differentiate into a
monolayer of cells, expressing many properties typical of absorptive enterocytes with a brush border
layer, tight junctions, and efflux and uptake transporters as found in the small intestine [190–192].
Moreover, several phenolic compounds (e.g., kaempferol) are able to regulate the MAPK pathway,
which is beneficial to the barrier functions [193]. Kaempferol treatment showed significant an increase
in claudin 3, claudin 4, and occluden [194]. On the other hand, several mycotoxins—deoxynivalenol,
zearalenone, fumonisin B1, T-2 toxin, aflatoxin M1, and ochratoxin A—have a deleterious effect on
tight junctions of claudin 3, claudin 4, claudin 7, and occluden [195–198].

The Caco-2 cells have been shown to be a suitable model for biotransformation study because
they express various phase-I hydroxylation and phase-II conjugation enzymes, and transport proteins
of the ATP-Binding Cassette (ABC) superfamily [166]. Furthermore, a good correlation has been found
for data on oral absorption in humans and the results in the Caco-2 model [199].

To closer mimic the intestinal barrier in vivo, Caco-2 cells were seeded on permeable membranes
to form a confluent monolayer with a well-defined tight junction for approximately 21 days
post-seeding [78]. The integrity of the Caco-2 monolayer was monitored by measuring the transepithelial
electrical resistance (TEER), or by examining the permeability of paracellular markers, such as mannitol,
inulin, Dextran, PEG 4000, Lucifer yellow, and phenol red [191,200]. Studies that have investigated the
bioavailability of mycotoxins by Caco-2 cells are listed in Table 6. The results of these studies show
that mycotoxins are transported through Caco-2 monolayer in different efficiencies.
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Table 6. Studies investigating bioavailability of mycotoxins by Caco-2 cells.

Mycotoxins Concentration (µM) Incubation Time (h) Major Findings References

AOH and AME 20 1–3 22.7–25.8% and 3–7.1% applied AOH and AME reached the basolateral
compartment (including their metabolites). [119]

ATXs 10 0.5
6% and 0.3% applied ATX I and ATX II found in basolateral compartment.

ATX I were not metabolized.
13 and 4% metabolites of ATX II found in apical and basolateral compartments.

[201]

AFB1 1–25 24–48 CYP1A2 and 3A4 were the main CYP450 isoforms for AFB1 activation into the
genotoxic metabolite aflatoxin-exo-7-8-epoxyde. [9]

AFB1, FB1, OTA and T-2 100 24 AFB1, FB1, T2 and OTA disrupted the intestinal barrier permeability. [198]

BEA 1.5–3 4 Bioavailability was from 50.1–54.3 for BEA

DON 5-30 24
DON transcellular passage was either by passive/facilitated diffusion or by

active transport.
DON was a substrate for both P-gp and MRP2.

[202]

ENNs 1.5–3 4
48

Duodenal bioavailability: 57.7–76.8% for ENN A, 68.8–70.2% for ENN A1,
65.0–67.0% for ENN B, and 62.2–65.1% for ENN B1.

Colonic bioavailability: 17.3–33.3% for ENN A, 40.8–50.0% for ENN A1,
47.7–55.0% for ENN B, and 52.4–57.4% for ENN B1

[67]

MPA 0–780 - Decrease in the barrier function of Caco-2 cell monolayer. [9]

NIV 5 6
Bioavailability: 32.6%

NIV would not be metabolized in Caco-2 cells.
NIV was a substrate for P-gp and MRP2.

[203]

OTA 1–100
5–45

1
3–24

OTA was a substrate for MRP2 and BCRP
Metabolites were OTB, OTA methyl ester, OTA ethyl

ester and the OTA glutathione conjugate.

[204]
[205]

ZEA 25 4 ZEA was substrates for ABCC1, ABCC2 and metabolites into α- and
β-zearalenol and glucuronides. [206]

Alternariol (AOH), alternariol monomethyl ether (AME), altertoxin (ATXs), aflatoxin B1 (AFB1), fumonisin B1 (FB1), ochratoxin A (OTA), T-2 toxin (T-2), beauverincin (BEA), deoxynivalenol
(DON), enniatins (ENNs), mycophenolic acid (MPA), nivalenol (NIV), zearalenone (ZEA), cytochrome P (CYP), P-glycoprotein (P-gp), multidrug resistance protein (MRP), breast cancer
resistance protein (BCRP), ATP-Binding Cassette (ABC).
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DON, NIV, ZEA ENNs, and BEA cross easily the cell barrier. DON is efficiently transported
through the intestinal barrier possibly either by passive/facilitated diffusion [202] or by paracellular
passage through intercellular tight junctions [207]. All of the apparent permeability (Papp) values
greater than 1 × 10−6 cm/s suggest that these mycotoxins were absorbed efficiently [208]. Papp values
for DON have been reported by many researchers. Sergent et al. [207] reported an average Papp

value of 5.02 × 10−6 cm/s for absorption (apical (AP)–basolateral (BL) compartment) and excretion
(BL–AP direction) [207]. In other study, absorption and excretion Papp values ranged 1.23–2.06 × 10−6

and 2.68–2.8 × 10−6 cm/s, respectively [202]. Finally, Papp value of 3.3 × 10−6 and 2.8 × 10−6 cm/s
for absorption and excretion, respectively, were determined in study of Kodota et al. [209]. A faster
bidirectional transport of DON in the mixture comparing to pure DON was observed, suggesting that
the presence of other mycotoxins including AFB1, FB1, and OTA may promote intestinal transport of
DON [210]. For NIV, transcellular transport probably occurred by passive diffusion in the absorptive
direction, and Papp values were also higher than 10−6 cm/s [203]. The Papp values obtained with
a concentration of 20 µM ZEA in the apical compartment and an incubation time of 1 h were
10.47 ± 4.7 × 10−6 cm/s [211]. About 30% of initial ZEA crossed the cell monolayer after 3 h of exposure,
and 40% of ZEA was absorbed by the intestinal after 8 h [78]. ZEA presented higher bioavailability
than its metabolites, α-ZEA, ranging from 10% to 36% (0–4 h; 30 µM) [72]. Unlike DON-3-glucoside
(neither absorbed or cleaved by Caco-2 cells), ZEA-14Glc and ZEA-16Glc could cross the cell barrier
and be absorbed by Caco-2 cells, resulting in further cleavage and the subsequent release of their parent
deglycosylated forms [212]. BEA bioavailability was variable from 50% to 54% [213]. Higher duodenal
bioavailability compared to colonic bioavailability of ENNs was observed. Particularly, the duodenal
bioavailability of ENNs ranged from 58% to 77% for ENN A, from 69% to 70% for ENN A1, from 65%
to 67% for ENN B, and from 62% to 65% for ENN B1. Colonic bioavailability ranged from 17% to 33%
for ENN A, from 41% to 50% for ENN A1, from 48% to 55% for ENN B, and from 52% to 57% for ENN
B1 [67]. In contrast, FB1 was not absorbed by Caco-2 cells [214].

Berger et al. [215] showed that OTA was absorbed by the human intestinal mucosa by passive
diffusion of the undissociated form of OTA and it was not appreciably metabolized by Caco-2
cells [215]. DON and NIV were not significantly metabolized or accumulated in Caco-2 cells as
well [71,202,203,207,216,217]. Therefore, upon ingestion, these mycotoxins can be absorbed from
the gut via intestine cells, then entered into the systemic circulation and thus transported to the
whole body. Nevertheless, the intestinal absorption of OTA would be limited thanks to the presence
of the MRP2 [215] and breast cancer resistance protein (BCRP) [204]. An efflux of AFB1 was also
associated with BCRP [218], and DON was a substrate for both P-gp and MRP2 [202]. P-gp has
been shown to be involved in the efflux of FB1 [214], and NIV interacted with P-gp and MRP2 [203].
Several studies showed that DON transport was unaffected by the transporter [207,209]. However,
DON uptake and efflux are carrier-mediated processes, and P-gp and organic anion-transporting
peptides may be the major efflux/uptake transporters for DON in Caco-2 cells, respectively [219].
The stepwise c-Jun-N-terminal kinase–Akt–nuclear factor kappa-light-chain-enhancer of activated
B cells (JNK-Akt-NF-κB) pathway elaborates upon P-gp induction following DON exposure in
mammalian cells and provides a self-protection mechanism to resist exogenous toxic compounds such
as DON and T-2 [220]. These dissimilarities may be consequences of differences in exposure conditions
to the toxin. Particularly, transport experiments were performed in pH gradient, and the acidification
of the apical compartment may increase the fraction of the uncharged molecules facilitating diffusion
across the cell membrane and intracellular accumulation [221]. Furthermore, differences in the culture
medium, passage number, and time in culture before splitting may lead to significant differences in
ABC transporter expression and functionality [222].

Intestinal absorption of AOH was more extensive and faster than AME. About 23–26% of
the apically applied AOH reached the basolateral compartment, while only about 3–7% of the
initial amount of AME in the apical chamber reached the basolateral side. In basolateral medium,
several metabolites were also detected: Three AOH metabolites (3-O-sulfate, 3-, and 9-O-glucuronide)
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and AME-3-O-glucuronide [119]. Several authors have already shown the ability of Caco-2 cells to
metabolize ZEA into α- or β-ZEA, as well as into its glucuronidated and sulphated forms [78,166,211].
Videmann et al. [206] established that facilitated or active transport was involved in the transportation
of ZEA and its metabolites. Particularly, they were substrates for ABCC1–3 transporters. ZEA and
α-ZEA were mostly extruded by ABCC2 at the AP side and ABCC3 was able to transport β-ZEA at the
BL side [206].

Treatment of Caco-2 cells with mycotoxins at reasonable concentrations must have no significant
effect on cell viability, cell damage, and barrier integrity. FB1 at a concentration of up to 138 µM did
not induce variation on cell viability and differentiation [214]. Similarly, ZEA concentration of up to
200 µM had no significant effect on cell viability and cell damage [78,206], and the integrity of the cell
monolayers was preserved throughout the incubation with ZEA at a concentration of up to 40 µM,
indicating that ZEA does not have detrimental effects on epithelial integrity in vitro [212]. Moreover,
Caco-2 cells exposure to 5 µM of NIV showed neither a significant increase in the sucrose flux nor a
significant decrease in TEER values [203]. DON also had no significant effect on Caco-2 cell viability at
a concentration of up to 33 µM [202,209].

However, other studies reported that mycotoxins such as ZEA, DON, FB1, T-2, PAT, AFB1,
and OTA decreased the TEER of intestinal epithelial cell lines in porcine as well as in human
epithelium [10,195,196,198,223–227]. A reduction in TEER can cause an increase in the paracellular
permeability, changes in transcellular flux through altered plasma channels or pumps, and uncontrolled
cell death within the monolayer [228]. Pfeiffer et al. [211] showed that 20µM of ZEN was able to affect the
apparent permeability coefficients of Caco-2 cells, leading to their quick absorption from the intestinal
lumen into the portal blood [211]. Moreover, the important indicators of intestinal permeability are tight
junction proteins, which are comprised of several multiprotein complexes, including transmembrane
proteins (claudin, occludin, and junctional adhesion molecule) and cytoplasmic scaffolding protein
and signaling proteins, including zonula occludens [229]. DON, ZEA, FB1, T-2, AFM1, and OTA have
a deleterious effect on tight junctions of claudin 3, claudin 4, claudin 7, and occluden [195–198].

Tight junction structure and function can be regulated by signaling molecules involved in the
mitogen-activated protein kinase-dependent (MAPK) pathways [230]. Therefore, the rapid activation of
MAPK, ZEA, and DON decreased the expression of tight junction proteins, resulting in intestinal barrier
impairments [134,197]. DON and other trichothecenes are known for their binding of the ribosomal
peptidyltransferase, inhibition of protein synthesis, and rapid activation of MAPK via inducing two
signal transduction pathways of a process named the ribotoxic stress response [227,231–233]. The first
pathway consists of the double-stranded RNA-activated protein kinase, leading to stimulation of JNK
and p38 [25]. The second pathway involves hematopoietic cell kinase belonging to the Src tyrosine
kinase family, which are upstream transducers of activation of MAPK. Among the primary MAPK
subfamilies, such as p44/42 extracellular signal-regulated protein kinase (ERK), p38, and JNK [234],
p44/42 ERK can be involved in intestinal epithelial cell morphology and in the structure of tight
junctions. It was reported that the DON-induced activation of the p44/42 ERK signaling pathway
inhibits the expression of claudin-4, which leads to reduces the barrier function of the intestine
evaluated by TEER, paracellular permeability [197,227]. Treatment with 10 µM of DON also increased
ERK, P38, JNK, and c-Jun phosphorylation levels by 2-fold, 30-fold, 61-fold, and 5-fold, respectively,
and altered the gene expression levels of occludin, claudin-3, and the composition of tight junction
proteins (Figure 13) [235]. The activation of p44/42 MAPK was partially involved in the detrimental
effects of the integrity of tight junction caused by AFM1 and OTA [224].
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Figure 13. The effects of DON and other trichothecenes on the tight junction through activation of
the MAPK pathway. MAPK: Mitogen-activated protein kinase-dependent, ERK: Extracellular signal
regulated protein kinase, JNK: C-Jun-N-terminal kinase. The colored curves represent junction proteins.

In addition to the tight junction, the maintenance of intestinal barrier-related paracellular secretions,
such as cytokines and chemokines, are important as well. ZEA metabolites, α- and β-ZEA, can be
beneficial to the intestine by decreasing the expression of both interleukin-8 (IL-8) and interleukin-10
in a dose-dependent manner. Its metabolites have a rather anti-inflammatory effect on the epithelial
intestinal cells [225]. However, cytokines are related to the impairment of intestinal integrity when
exposed to ZEA and FB1 [225,226,236]. Moreover, the correlation between permeability and IL-8
secretion induced by DON in the intestine was investigated by the authors of [209]. IL-8 was examined
as a factor affecting intestinal barrier function, and the increased IL-8 secretion may be involved
in the TEER decrease [237]. Similar results were reported by the authors of [238]. Consequently,
exposure to certain mycotoxins, particularly DON, may cause damage to the intestinal integrity and
lead to various chronic intestinal inflammatory diseases, such as inflammatory bowel disease [195].
In addition, the synergic effects of OTA and AFM1 that might exacerbate intestinal inflammation were
also reported [239].

Although the Caco-2 cells model offers several advantages, such as the reproducibility of results,
controlled environment, and in-depth mechanistic insight [240], some limits of Caco-2 for assessing
the bioavailability were also reported [241]. The main disadvantages of these models are the lack
of the regulatory processes of the complex mucosal barrier and inability to accurately calculate the
fractional transport and flux rate through the static transport conditions [242]. Moreover, it has been
shown that significant variation of the expression level of efflux transporters, such as BCRP, MRP2,
and MDR1 in the Caco-2 cell monolayer in human small and large intestines, affect the results as
well [243,244]. The Caco-2 cell monolayer is somewhat unsuccessful in simulating in vivo intestinal
environment due to lack of expression of CYP3A4, which is responsible for the biotransformation of
many compounds in the human epithelial cell [245]. Further drawbacks of these models include the
incapability of simulating the changes of intestinal pH system, since it is performed at constant pH
conditions. In addition, variations in TEER and permeability were also reported to be related to the
source of Caco-2 cell and interlaboratory differences in protocol design [192].
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To reduce the heterogeneity of the Caco-2 parental cell line and to improve the performance
and the stability of this cellular model, some clonal derivative of Caco-2 cells have been established.
The Caco-2/TC7 cell line, which was isolated from a late passage of the parental Caco-2 line, is suitable
for intestinal absorption model due to a less heterogenic cellular population, resulting in better
reproducibility of results [246]. The human intestinal HT-29 cell line is another cell line from colorectal
origin with epithelial morphology and has a large proportion of mature goblet cells that can produce
mucins. Therefore, the co-culture of Caco-2 and HT-29 with a ratio of 9:1 was used to provide a better
representation of the intestinal tract [247]. In addition, the human colon carcinoma (HCT-116) and
human colon adenocarcinoma (SW480) cells used in unraveling cancer-related mechanisms and the
human duodenum adenocarcinoma (HuTu-80) cell line simulating duodenal cells are less popular [191].
More recently, a combination of in vitro digestion and Caco-2 absorption was used to simulate the
physiological settings in the gastrointestinal tract and determine the bioaccessibility and bioavailability
of the ZEA reaction products [72].

4. Conclusions

Scientific insights in the production of mycotoxins, their toxicities, biotransformation,
and metabolism in different organisms have greatly contributed to a more detailed understanding of
the chemical hazards in food. Mycotoxins can notably biotransform and detoxify in the liver, as well
as in the digestive tract. The results obtained with Caco-2 monolayer are useful in the prediction
of mycotoxins’ intestinal permeability, transport mechanism, and gene regulation of transporters
and enzymes in humans, and may help interpret properly data of mycotoxins’ absorption for better
comprehension of their possible adverse effects. Furthermore, the combined usage of in vitro digestion
models with in vitro intestinal absorption models using Caco-2 cells may offer more complete picture
during digestion in the intestinal tract. However, the correlation between in vitro Caco-2 data and
in vivo situation necessitates further investigation.
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Abbreviations

3′-OH-HT-2 3′-hydroxy-HT-2
3′-OH-T-2 3′-hydroxy-T-2
4-OH-OTA 4-hydroxy-ochratoxin A
10-OH-OTA 10-hydroxy-ochratoxin A
α-ZEA α-zearalenone
β-ZEA β-zearalenone
ABC ATP–binding cassette
AFB1 aflatoxin B1
AFB2 aflatoxin B2
AFBO Aflatoxin B1–8,9-epoxide
AFBO-GSH Aflatoxin B1–8,9-epoxide-glutathiones
AFG1 aflatoxin G1
AFG2 aflatoxin G2
AFL aflatoxicol
AFM1 aflatoxin M1
AFM2 aflatoxin M2
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AFP1 aflatoxin P1
AFQ1 aflatoxin Q1
AhR aryl the hydrocarbon receptor
AKR7 aldo-keto reductase subfamily 7
ALT altenuene
AME alternariol monomethyl ether
AOH alternariol
AP apical compartment
ATX I altertoxin I
ATX II altertoxin II
ATXs altertoxins
BCRP breast cancer resistance protein
BEA beauvericin
BL basolateral compartment
Caco-2 caucasian colon adenocarcinoma
Caco-2/TC7 TC7 clone was isolated from a late passage of the parental Caco-2 line
CAR constitutive androstane receptor
CYP cytochrome P
D3G deoxynivalenol-3-glucoside
DNA Deoxyribonucleic acid
DOM-1 deepoxy-deoxynivalenol
DON deoxynivalenol
ENN A enniatin A
ENN A1 enniatin A1
ENN B enniatin B
ENN B1 enniatin B1
ENNs enniatins
ERK extracellular signal regulated protein kinase
FB1 fumonisin B1
FBs fumonisins
GI gastrointestinal
GSH glutathione
GST glutathione S-transferase
HCT-16 human colon carcinoma
HFB1 aminopentol
HT-2 HT-2 toxin
HT-29 human colorectal adenocarcinoma
IL-8 Interleukin-8
JNK c-Jun-N-terminal kinase
LD50 median lethal dose
LOQ limit of quantitation
MAPK mitogen-activated protein kinase-dependent
mEH microsomal epoxide hydrolase
MPA mycophenolic acid
MRP multidrug resistance protein
NAT N-acetyltransferaseND (not detected)
NEO neosolaniol
NF-κB nuclear factor kappa–light–chain–enhancer of activated B cells
NIV nivalenol
OH-ALT hydroxy-altenuene
OH-AME hydroxy-alternariol monomethyl ether
OH-AOH hydroxyl-alternariol
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OTα ochratoxin α

OTA ochratoxin A
OTB ochratoxin B
Papp apparent permeability
P-gp P-glycoprotein
PAT patulin
pHFB1 partially hydrolyzed fumonisin B1
PXR pregnane X receptor
RNA Ribonucleic acid
ROS reactive oxygen species
SULT sulfotransferase
SW480 human colon adenocarcinoma
T-2 T-2 toxin
TeA tenuazonic acid
TEER transepithelial electrical resistance
TEN tentoxin
UGT: uridine 5′-diphospho-glucuronosyltransferase
ZEA zearalenone
ZEA14Glc zearalenone-14-glucoside
ZEA16Glc zearalenone-16-glucoside
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