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ABSTRACT: We show that accurate exchange−correlation hybrid functionals
give very physically optimized effective-correlation potentials, capable of correctly
describing the quantum oscillations of atoms and molecules. Based on this analysis
and on understanding the error cancellation between semilocal exchange and
correlation functionals, we propose a very simple, semilocal correlation potential
model compatible with the exact exchange of density functional theory, which
performs remarkably well for charge densities and orbital energies.

1. INTRODUCTION

The ground-state Kohn−Sham (KS)1 self-consistent, orbital
formulation of density functional theory (DFT)2 is the most
used method for electronic structure calculations. In KS−DFT,
the noninteracting kinetic energy functional, representing
usually a dominant/important part of the total energy,3−5 is
treated exactly with KS one-particle orbitals, and only the
exchange−correlation (XC) energy Exc[ρ] must be approxi-
mated as a functional of the electronic density ρ(r). Even if the
XC energy is just a small fraction of the total energy, it contains
all the many-body effects beyond the Hartree method, having
crucial theoretical and computational importance.
Starting from the local density approximation (LDA),1 many

useful semilocal density functional approximations (DFA) such
as generalized gradient approximations (GGAs)6 and meta-
GGAs7 have been developed. Most of the standard semilocal
XC functionals work by mutual error cancellation effects
between the exchange and correlation parts.8,9 The error
cancellation is significantly diminished for the sophisticated
meta-GGA functionals (in comparison with the LDA), but this
problem is still important especially in the low-density regime,
where the correlation energy starts to behave as the exchange
energy under the uniform density scaling of the density.10

Noting that in most of the non-covalent molecular bonds, the
density is small,11 we may conclude that the error cancellation
issue plays important role in semilocal DFT calculations of
material science. To exemplify this problem, we show in Figure
1 the relative errors (RE) in % of jellium surface exchange,
correlation, and XC energies. Even if the LDA is one of the
most accurate functionals for jellium and metal surface
energies,12,13 its outstanding performance is based on a huge
error cancellation between exchange and correlation. The
popular PBE GGA14 improves the exchange and correlation

parts, as reported in the figure, but the total XC results are not
as accurate as the LDA ones. Another class of DFAs widely
applied in quantum chemistry calculation are the hybrid
functionals.17 They are mixture of a fraction of the Hartree−
Fock (HF) exchange energy with fractions of given semilocal
exchange and correlation functionals. Similar in popularity are
the functionals based on range-separation18,19 of Coulomb
electron−electron interaction wee(r12) = 1/r12 into the short-
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Figure 1. RE (in %) of the LDA and PBE jellium surface exchange,
correlation, and XC energies, vs the bulk parameter rs. The correlation
and exchange-only reference values are the diffusion Monte Carlo15

and the exact exchange (EXX)16 ones, respectively.
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range and long-range contributions (wee(r12) = wee
sr (r12) +

wee
lr (r12)). The former interaction is described by specially

developed short-range semilocal DFAs,20−23 whereas the later
one, in general, takes the form of long-range HF exchange
energy which captures the right −1/r dependence in the tail of
XC potential. From here on, we will refer to these two types of
functionals as hybrid functionals.
Because the HF optimum potential is non-local, the

calculations for both types of functionals (and meta-GGAs as
well) are typically done within the generalized KS frame-
work.24,25 However, in order to remain in the true KS self-
consistent scheme, the HF should be replaced with the KS
EXX that gives a local-multiplicative exchange potential
through the optimized effective potential (OEP) ap-
proach.26−29 The HF- and OEP-based hybrids give practically
the same accuracy for ground-state properties30−32 (see also
Figure S4 of ref 33), differing only for quantities involving
excited states, electron affinities, and band gaps.34 Moreover,
EXX satisfies the uniform scaling relation (Ex[ρλ] = λEx[ρ],
with ρλ(r) = λ3ρ(λr) being the uniformly scaled density and λ
≥ 0), in contrast to HF that (slightly) violates this condition.35

In the following, we show that XC hybrid functionals give
very physically optimized effective correlation potentials,
capable of correctly describing the quantum oscillations of
atoms and molecules. Moreover, based on the analysis of error
cancellation between semilocal exchange and correlation
functionals, we propose a very simple, semilocal correlation
potential model compatible with the EXX potential supported
by analysis of charge densities and orbital energies.

2. THEORY
In general, for a given KS orbital-(ϕpσ) and/or eigenvalue-(εpσ)
dependent XC energy functional, the OEP equation for the XC
potential reads26,27,29,36−40

Xr r r r rd ( , )v ( ) ( )xc, xc,∫ ′ ′ ′ = Λσ σ σ (1)

which is an integral equation (Fredholm of the first kind) with
the inhomogeneity given by
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The KS orbitals and eigenvalues are determined by solutions of
standard KS equations
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with vext(r) and vJ(r) being the external (nuclear) and the
Coulomb/Hartree potentials, respectively. In all equations, we
use the convention that i, j, ... label occupied KS orbitals, a, b,
... label virtual ones; the indexes p, q, ... are used otherwise,

while σ, τ denotes the spin degrees of freedom. In particular,
the corresponding OEP potential of EXX energy expression
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with (pσqσ|rσsσ) being a two-electron integral (in the Mulliken
notation) computed using KS orbitals. Let us now consider the
OEP-versions of several most popular hybrid functionals,
namely, the global hybrid B3LYP42 and PBE043 XC func-
tionals, and one example of range-separated XC functional,
that is, ωPBE,44,45 where only exchange-part of functional is
divided into the short- and long-range part and correlation is
kept in the original PBE14 form.
Now, using the OEP formalism, we are able to calculate the

correlation potential vc(r) = δEc[ρ]/δρ(r), where the
correlation energy functional is by definition

E E Ec xc x
EXX= − (7)

Keeping eq 7 in mind, the corresponding correlation energy
functionals (for all aforementioned XC functionals) have the
following expressions
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which, as one can note, depend explicitly on EXX energy.

3. COMPUTATIONAL DETAILS
All calculation have been carried out with locally modified
version of ACES II46 program. As in our previous
studies8,31,32,47−49 in order to solve OEP equation (eq 1), we
have employed the finite-basis set procedure of refs 50 and 51.
To calculate pseudo-inverse of density−density response
matrix, we have utilized a truncated singular-value decom-
position (TSVD). This step is essential for determining stable
and physically meaningful OEP solutions.48,52,53 The cutoff
criteria in the TSVD procedure was set to 10−6. For more
technical details on this type of calculations, we refer the reader
to refs 8 and 48.
In all calculations, we employed uncontracted triple zeta

quality basis sets as in refs 9 and 48, namely, an even tempered
20s10p2d basis set8 for He and He2, an uncontracted ROOS-
ATZP basis set54 for Ne atom and Ne2, and for Ar atom, we
used a modified basis set which combines s and p type basis
functions from the uncontracted ROOS-ATZP54 with d and f
functions coming from the uncontracted aug-cc-pwCVQZ
basis set.55 Remaining systems were treated in uncontracted
cc-pVTZ basis set of dunning.56 For all molecular systems, we
considered their equilibrium geometries from refs 57−59 also
used in our previous studies.8,48 To assess the results, we
considered the reference data from the Ab Initio DFT OEP2-
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sc method60,61 and CCSD(T)62 calculations. The reference
KS[CCSD(T)] correlation potentials (depicted on Figures 2

and 4) and CCSD(T) KS orbital energies (used to calculated
error statistics in Table 1) have been obtained using inverse KS
method from ref 41 taking as a starting point the relaxed
densities63−66 constructed using the Lagrangian approach.67−70

For more technical details, we refer the reader to refs 8, 41, 71.

4. RESULTS
The correlation potentials corresponding to eq 8 are shown on
Figure 2 for three representative cases of Ne and Ar atoms and
CO molecule. Inspection of Figure 2 reveals that:

(i) The B3LYP, PBE0, and ωPBE correlation potentials are
very physical, being in phase with and having the shape
of the reference (coupled cluster singles−doubles with

perturbative triples62 - CCSD(T)) and Ab Initio DFT
OEP2-sc60,61) curves in all the cases. Note that the
correlation potentials of, Ec

LYP, and Ec
VWN fail badly to

describe such a feature.8,9 Consequently, even if the
semilocal exchange is very accurate, as are Ex

B8872 and
Ex
PBE,14 they still contain correlation effects that are

crucial for the shape of the correlation potential.
(ii) Figure 2 additionally reveals the physics behind the

hybrid functionals and can be considered an elegant
proof on the hybrid functional construction. Until now,
the widely accepted rationale for mixing EXX with
semilocal functionals was based on the adiabatic
connection formula with a heuristic model for the
hybrid coupling-constant dependence given in eq 6 of
ref 73. We also note that the correlation potential vc is
well defined, entering the KS scheme, as shown in eq 4,
in sharp contrast to the correlation energy per particle ϵc
(defined by Ec = ∫ dr ρ(r)ϵc(r)) which is not unique,
being defined up to a gauge transformation.74 Thus, this
finding shows that inspection of OEP correlation
potentials should be seen as a powerful criterion in the
construction of new hybrid functionals, whose parame-
ters can be found such that to give the optimal
correlation potential.

(iii) In the tail of the density, the EXX potential behaves as
−1/r, while the semilocal exchange potentials are usually
vanishing much faster (e.g., B8872 and xPBE14 behave as
−1/r2 and e−r, respectively). This issue gives significant
errors of vc in the asymptotic region (see Figure 2)
directly transferring on the quality of ionization and
excited state energies. On the other hand, this region is
energetically evanescent, being not relevant for most of
ground state properties. Additionally, Figure 2 shows
that in the case of range-separated ωPBE functional, the
vc decays much faster in the tail, being similar to the
reference OEP2-sc and CCSD(T) potentials, thus
explaining the dramatically improvement upon global
hybrids XC functionals in the calculation of many
properties.75−77

In Figure 3 we report the correlation densities8,9,48 Δρc =
ρmethod − ρEXX obtained for same systems. All hybrid densities
are reasonably accurate everywhere, including the tail region.
Overall, B3LYP slightly outperforms PBE0 and ωPBE for these
systems being much more similar to reference CCSD(T)
results.
As shown above for the case of PBE0 and ωPBE hybrids, the

exchange potential difference 0.75(vx
PBE − vx

OEPx) and vx
sr,PBE −

vx
sr,OEPx, respectively, give the right phase of the correlation
potential, almost inverting the vc

PBE. Therefore, they can be
seen as EXX compatible functionals in some sense.
In several works,11,78−80 it has been observed that vc

PBE is out
of phase in comparison with the exact correlation potential. On
the other hand, the −vcPBE exhibits similar features as shown in
Figure 2. Thus, in the following, we combine vx

OEPx with
vc
GGA−OEPx, where we chose very simple test cases

v v v v, andc
GGA OEPx

c
PBE

c
GGA OEPx

c
ACSC= − = −− −

(9)

with vc
ACSC being the adiabatic connection semilocal correlation

(ACSC) GGA potential of ref 78 which gives a correlation
potential close to but smoother than the vc

PBE one, as shown in
Figure S5 of ref 33. We recall that the ACSC GGA correlation
functional has been constructed from the modified interaction

Figure 2. Correlation potentials of the Ne (upper panel), Ar (middle
panel) atoms, and CO molecule (lower panel) for various methods.
The reference KS[CCSD(T)] have been obtained using the method
from ref 41.
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strength interpolation method.78 Note that the GGA−OEPx
correlation potential of eq 9 is a stray potential (is not a
functional derivative of any correctly defined correlation
energy functional), failing the line-integral test proposed in
ref 81. This fact gives severe limitations, such as for electronic
excitation calculations.82 However, most of model XC
potentials that are very useful in DFT calculations (e.g.,
Becke−Johnson potential and its modifications83−85) are not
functional derivatives.81

In Figure 4, we compare the correlation potentials of vc
PBE

and −vcPBE with high-level Ab Initio OEP2-sc method and the
CCSD(T) reference curve. Indeed, vc

GGA−OEPx can remarkably
reproduce the features of the exact correlation potential, with
the exception of the inherent GGA divergence at the nucleus.
Nevertheless, comparing to the hybrid functionals behavior of
Figure 2, we observe a less prominent description of the
quantum oscillations, especially for the CO molecule, but with
a better performance in the density tail region (the decay is
similar to the one of ωPBE hybrid potential).
Next, in Figure 5, we show the correlation density Δρc(r)

obtained from the self-consistent OEPx method combined
with vc

GGA−OEPx correlation potential (denoted as OEPx−
PBEc/ACSC) and also (for comparison) with standard PBEc/
ACSC potentials (denoted as OEPx + PBEc/ACSC). The
OEPx−PBEc and OEPx−ACSC methods give the right shapes
of the correlation densities (reported for ACSC in ref 33) with
exception of nucleus region, while both OEPx + PBEc and
OEPx + ACSC fail badly. The compatibility between semilocal
correlation functionals and the EXX is one of the most difficult
DFT challenges.50,51,86−88 Even the sophisticated meta-GGA
non-empirical correlation functionals, developed to satisfy
many constraints of the exact correlation energy, do not
perform better than simple GGAs for various molecular
properties,89,90 and the reason behind that seems to be
intimately related to the shape of their OEP-based correlation
potentials which basically is GGA quality.91 (In Figure S1 of ref
33, we show for Ne atom that the vxc

92 of PBE GGA, TPSS
meta-GGA, and SCAN meta-GGA agree closely. All these
semilocal functionals give accurate densities,93 see also Figure
S2 of ref 33, because of a large error cancellation between
exchange and correlation parts, as proved in Figure S3 of ref
33.). In this respect, we recall that very complex, non-local, and

orbital-dependent hyper-GGA correlation functionals have
been developed,87,88 with the aim to be compatible with full
EXX, but still they do not achieve good overall accuracy.
To quantify the method accuracy, we consider several small

atoms and molecules (He, Ne, Ar, H2, He2, HF, CO, Cl2, N2,
Ne2, HCl, H2O, NH3, and C2H6) used in our previous
studies,9,48 and we calculate

• the integrated correlation density differences (ICDDs)
defined as

rr rICDD ( ) ( ) dc
method

c
CCSD(T)∫ δρ δρ= | − |

(10)

where δρc
method(r) = ρmethod(r) − ρxref(r), and xref denotes the

corresponding exchange method. ICDDs provide a direct test
of the quality of the correlation potential.9,48 Note that δρc is a
generalization of Δρc;

• the energy of the highest occupied molecular orbital
(HOMO), and we compare it with the results from ref
47

• the energy of the lowest unoccupied molecular orbital
(LUMO), and we use the CCSD(T) results as reference
values.94

• the HOMO−LUMO gap energies, considering the
CCSD(T) results as refs 94 and 95

The full results are reported in ref 33, while in Table 1, we
summarize them showing the error statistics. The vx

OEP +
vc
GGA−OEPx method gives a significant and systematic improve-
ment over the vx

OEP, vx
OEP + vc

GGA and PBE, for all the properties,
but it is not as accurate as the high-level Ab Initio OEP2-sc
method, with exception of the HOMO energies where it gives
the best performance. The ACSC results are in line with the
PBEc ones. Somehow, this was expected because the ACSC
construction is based on PBE functional.78 Similar trends can
also be observed for HOMO and HOMO−LUMO gap
energies (see Tables S5 and S6 of ref 33) obtained with
Becke−Johnson potential83 combined with PBEc and
vc
GGA−OEPx correlation potentials. This can be important from
the standpoint of further application of the potential model in
solid-state calculations.
To assess in detail the performance of these functionals, we

show in Figure 6 the correlation plots for HOMO and

Table 1. Error Statistics of Several Properties [∑i
MICDDi/(Ne)i))]/M

a

OEPx-

PBE +ACSC −ACSC +PBEc −PBEc OEPx OEP2-sc

ICDD
MAE 19.31 21.37 13.95 18.64 13.45 - 3.43
MAE/Ne 1.58 1.71 1.07 1.53 1.03 - 0.29

HOMO (IP)
MAE [eV] 6.17 1.78 0.51 1.81 0.50 0.90 0.66
MARE [%] 38.03 11.54 3.26 11.68 3.17 5.67 4.43

LUMO
MAE [eV] 4.04 1.66 0.91 1.65 0.85 1.30 0.64
MARE [%] 111.49 45.01 27.94 44.57 26.07 36.70 19.77

HOMO−LUMO Energy Gap
MAE [eV] 1.11 1.14 0.39 1.13 0.39 0.64 0.22
MARE [%] 8.38 10.96 4.50 10.76 4.46 6.56 1.91

aFor the ICDD of eq 10, we report the mean absolute error (MAE) in units of 10−2, and the MAE weighted with the number of electrons (MAE/
Ne = [∑i

MICDDi/(Ne)i))]/M, where (Ne)i is the number of electrons of the i-th system and M = 14 is the total number of systems). In case of
HOMO, LUMO and HOMO−LUMO gaps results, we report additionally the mean absolute RE (MARE) calculated with respect to the reference
data.47,94
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HOMO−LUMO gap energies, respectively, calculated with
respect to reference data. For all the benchmark systems,
OEPx−PBEc is remarkably accurate despite its simplicity.
We note that even for the exact HOMO−LUMO gap

energy, one needs to add the uniform shift Δ because of
derivative discontinuity of the KS potential when the particle
number changes, in order to obtain the band gap energy Eg.

96

The derivative discontinuity can be rigorously taken into
account by perturbation theory methods97 but can also be
modeled by non-local potentials of the generalized KS, in both
hybrid98,99 and meta-GGA calculations,84,85,100 and, to some
extent, even by the semilocal GGA potentials.101

5. CONCLUSIONS
We have shown that the correlation potential/densities of the
OEP-based hybrid functionals can reproduce the quantum

shell oscillations of the high-level reference CCSD(T)
correlation potential/densities, providing an alternative but
very physical explanation on the success of this type of
functionals. The presented analysis might shed some light on
how to overcome some current DFT limitations and face
challenges, as described in ref 102. Thus, for example, using the
reverse engineering method, one can build more accurate
hybrid XC functionals by fixing the functional parameters (e.g.,
the mixing fraction of EXX), eventually using the machine
learning techniques,103 to give the optimum OEP correlation
potential.
We have also explained the error cancellation between the

semilocal exchange and correlation functionals. Thus, as in the
case of popular PBE GGA,14 even if both exchange (Ex) and
correlation (Ec) energies are very accurate for a given system,
still only the XC potential is realistic, while the correlation
potential is out of phase. Based on these considerations, we

Figure 3. Correlation densities Δρc = ρmethod − ρEXX, of the Ne and Ar
atoms and CO molecule for various methods. The reference
CCSD(T) correlation density was calculated with respect to HF
density as Δρc = ρCCSD(T) − ρHF.

Figure 4. Correlation potentials for the He and Ne atoms and CO
molecule. The reference KS[CCSD(T)] have been obtained using
method from ref 41.
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have shown that the OEPx−PBEc potential method gives an
outstanding performance in spite of its simplicity, showing
accurate correlation densities and orbital energies.
Semilocal correlation potential models compatible with

OEPx are of utmost theoretical and computational importance,
having the ability to become the next generation method in
electronic structure calculations.104 The simplicity of the
semilocal correlation potential combined with the almost-exact
description of the many-electron self-interaction given by OEP
EXX can be of high interest for solid-state applications.
In this sense, the here developed vc

GGA−OEPx may open such a
path, but more accurate potential models can be built
considering exact conditions on correlation potentials (includ-
ing derivative discontinuity problem96,101), and right semilocal
ingredients, such as the Laplacian of the density (∇2ρ), which
is crucial for describing various quantum oscillations105 and to
impose exact properties in the bond and core regions.106,107
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(11) Buksztel, A.; Śmiga, S.; Grabowski, I. The Correlation Effects in
Density Functional Theory Along the Dissociation Path. Advances in
Quantum Chemistry; Elsevier, 2016; Vol.73; pp 263−283.
(12) Chiodo, L.; Constantin, L. A.; Fabiano, E.; Della Sala, F.
Nonuniform scaling applied to surface energies of transition metals.
Phys. Rev. Lett. 2012, 108, 126402.
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