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Abstract: Male infertility is an emerging problem in both humans and animals, and the knowledge
of its causes is the first step to identifying new diagnostic and therapeutic strategies. In humans,
alteration of sperm DNA methylation have been related to poor quality semen, impaired seminal
parameters, azoospermia and reduced fertility. Although semen analysis is routinely used to evaluate
the male reproductive potential in the canine species, no authors have attempted to relate semen
characteristics to the sperm global DNA methylation (SGDM). The aim of this study was to evaluate
the SGDM level in healthy dogs and to correlate it with semen parameters that are currently used
in dog semen analyses. Conventional and unconventional (sperm DNA fragmentation and SGDM)
seminal parameters of thirty dogs from different breeds were evaluated. A positive correlation was
found between SGDM and sperm concentration (r = 0.41; p < 0.05), and total sperm count (r = 0.61;
p < 0.001); SGDM was significantly lower in oligozoospermic vs non-oligozoospermic dogs (4.3%
vs. 8.7%; p < 0.005). Our findings suggest that SGDM levels are related to conventional seminal
parameters, and could be used as a marker of testis function and spermatogenesis in dogs.

Keywords: dog semen; epigenetic; sperm quality parameters; spermatozoa

1. Introduction

Reproduction and fertility are the most important traits in domestic animals; thus, a
lot of studies are aimed at identifying the causes of reproduction failure in domestic species.
Among the most investigated fields there are the disorders of sex development [1–6] and
reproductive performance [7–12]. As regards dog species, the occurrence of male infertility
is an emerging problem and the knowledge of its causes is the first step to identifying
new diagnostic and therapeutic strategies. To date, the main analyses used to evaluate the
semen in domestic animals are divided into qualitative (semen volume, aspect, viscosity
and pH) and quantitative (sperm concentration/count, motility, morphology, vitality, DNA
fragmentation, morphometric) [13–15]. However, it has been observed that in humans
also when these parameters are normal, semen may not be fertile, and it has been proven
that sperm global DNA methylation (SGDM) is related to human fertility rate also inde-
pendently from other seminal parameters, such as sperm count, progressive motility and
morphology [16]. Early evidence for a link between epigenetic markers and male fertility
was provided by studies in rodent models, which revealed that exposure to 5-azacytidine
triggers a dose-dependent DNA hypomethylation in spermatozoa [17]. Moreover, rats
treated with 5-aza-2′-deoxycytidine showed impaired testicular histology, reduced sperm
counts and infertility [18]. DNA methylation is an epigenetic modification consisting
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in changes, sometimes heritable, influencing gene expression that do not cause changes
in DNA sequence [19]. Epigenetic changes not only have an impact on developmental
processes and fetal growth [20], but are also relevant in many different areas of biology
and medicine, including cancer, aging and environmental toxicology [21–24]. As regards
spermatogenesis, epigenetic changes are involved in the proper arrangement and main-
tenance of the sperm genome and exert crucial effects on sperm quality and function
and fertilization potential. A complex and precise epigenetic reprogramming takes place
starting from germ cells during migration to the genital ridge and is essential for spermato-
genesis completion [25,26]. In humans, alteration of both SGDM and gene-specific (i.e.,
H19, MEST, BRDT, MTHFR) DNA methylation patterns have been related to poor quality
semen, impaired seminal parameters, azoospermia and reduced fertility [27–32]. The first
association between methylation levels and infertility was reported by Benchaib et al. [33],
who demonstrated that SGDM levels above an arbitrary threshold were seemingly linked to
high pregnancy rates, suggesting that SGDM status independently affects embryogenesis.
Urdinguio et al. [16] showed significant differences in SGDM levels between fertile and
unexplained infertile patients, with significantly lower methylation levels in spermatozoa
from infertile individuals. El Hajj et al. [34] found a significantly lower methylation level in
semen samples resulting in abortions, compared to those leading to a delivery. Indepen-
dently from the cause and the time of occurrence of the epigenetic alterations (in utero vs
prepubertal vs adulthood), it has been demonstrated that the sperm epigenetic landscape
has transgenerational effects and is likely influential in the developing embryo. Indeed,
mature sperm provide epigenetic marks that drive the activation/inactivation of specific
genes by contributing to the pluripotency of the embryonic cells and by influencing its
future adult health status, including fertility and reproductive disorders [29,32,35]. All
these studies support the hypothesis that the sperm DNA methylation pattern of both
imprinted and non-imprinted genes is essential for normal sperm function, fertility and
embryo development. An improved knowledge of sperm epigenetics is not only nec-
essary to understand the physiology of reproduction, but also to provide clues on the
potential causes of male infertility of unknown origin. The owned dog is considered as
an advantageous model of study for human biology and disease [36]; in fact, it generally
cohabitates with its human owner, thus reducing differences due to environmental effects,
and it receives medical care almost like a human [37]. The aim of this study was to evaluate
the SGDM level in healthy dogs and to correlate it with conventional and unconventional
semen parameters used in semen analysis of this species.

2. Materials and Methods
2.1. Sampling and Evaluation of Semen Quality

Thirty dogs from different breeds, clinically healthy, with normal weight considering
the breed, and with at least one litter in the latter 12 months were involved in this study
(Table 1). To exclude external factors that could alter DNA methylation, only dogs housed
under standard conditions and not taking drugs were included in the study. After three
days of abstinence, obtained by a previous controlled manual manipulation, the semen was
collected by manual stimulation as described by Kutzler [38]. The first and second fractions
of the ejaculate were collected in the same tube, while the third fraction was collected in
another tube using glass funnels. Semen quality was evaluated in the combined first and
second fractions. Volume (mL) was determined using a graduated tube. Sperm count was
evaluated with the Makler Counting Chamber; sperm motility was visually assessed under
a phase contrast microscope (Nikon Eclipse 80i) at ×200 magnification; sperm morphology
was evaluated at the optical microscope (×1000) by Giemsa staining. Sperm concentration
(×106/mL), followed by calculation of the total sperm count (sperm concentration× semen
volume), and percentage of motile spermatozoa (%) were determined according to the
WHO (World Health Organization) guidelines and procedures by classifying spermatozoa
motility in progressive motility, in situ sperm motility and immotility [39]. Dogs are
defined normozospermic when the sperm count is greater than 300× 106, the percentage of
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progressively motile spermatozoa is 70% or greater and the percentage of morphologically
normal spermatozoa is 60% or greater [40]. Dogs are defined oligozoospermic when the
sperm count is <300 million and non oligozoospermic when the sperm count is greater
than 300 million.

Table 1. Breed and age of the analyzed dogs. (Y = year).

Breed N◦ of Animals Age Range (Y)

Neapolitan Mastiff 8 2–4
German shepherd 5 1–6
English Bull dog 4 2–5

Dachshund 2 2–9
Beagle 1 8

Caucasian Shepherd dog 1 4
Maremmana Sheepdog 1 5

Pointer 1 3
Kangal 1 2

Labrador retriever 1 2
Half-breed 5 2–8

2.2. Head Area Analysis

Among morphometric parameters, sperm head area is of great interest because it has
been related to fertility parameters [41–44]. It is, in fact, an index of chromatin condensation.
At least 200 spermatozoa (50 per slide) from each ejaculate were observed in a bright field
under a Nikon Eclipse 80i microscope (100×), captured with a digital camera (Nikon
DS-Ri1) and analyzed with the software Nis Elements Imaging Software 4.00.02 (Nikon,
Tokyo, Japan) for head area measurement.

2.3. Leukocytes Depletion and Spermatozoa Purification

Semen samples were processed with Dynabeads® CD45 magnetic beads (Invitrogen,
Carlsbad, CA, USA) in order to obtain purified spermatozoa samples, free from contam-
inating leukocytes. Thereafter, spermatozoa were separated from somatic cells using
discontinuous two-layer (40:80: vol./vol.) density gradient (PureSperm) (Nidacon Interna-
tional AB, Molndal, Sweden). After centrifugation for 30 min at 300× g, the spermatozoa
pellet was collected and washed twice with phosphate-buffered saline (PBS). Purified
spermatozoa were subsequently used for DNA extraction.

2.4. DNA Extraction

Each spermatozoa sample was washed twice in 10 mL of Wash Buffer containing
150 mM NaCl and 10 mM EDTA (ph 8.0) in DNAse and RNAse free water, and centrifuged
at 750× g for 10 min. Subsequently, samples were incubated for 2 h in water bath at 56 ◦C
in DNA Extraction Buffer (4,24 M guanidine thiocyanate, 100 mM NaCl, 1% Sarkosyl,
150 mM DTT and 200 µg/mL proteinase K in DNAse and RNAse free water). DNA was
precipitated in isopropanol, spooled with a U-shaped Pasteur pipette and transferred to a
tube containing Sodium Citrate in 10% EtOH. DNA was then washed twice in 70% EtOH.
DNA samples were resuspended in 500 µL of 10 mM Tris-HCl pH 8.0 and stored at 4 ◦C
until use [45].

2.5. 5-mC DNA ELISA

SGDM was evaluated by using an EZ DNA Methylation™ Kit (Zymo research,
Irvine, CA, USA), according to the manufacturer instructions. Briefly, the percentage
of 5-Methylcytosine (% 5-mc), a surrogate marker of SGDM, was evaluated in each DNA
sample by loading 100 ng of denatured, single-stranded DNA in a 96-well plate coated
with an anti-5-mc monoclonal antibody and the HRP-conjugated secondary antibody. De-
tection of % 5-mc was performed after addition of the HRP developer and quantitation
was performed by reading absorbance at 405–450 nm using an ELISA plate reader and
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the logarithmic equation of the line from the standard curve that was constructed with
negative and positive controls and standards with known % 5-mc. Each DNA sample was
assessed in duplicate.

2.6. Determination of DNA Integrity

Sperm DNA fragmentation (SDF) was evaluated by Halosperm® kit (Halotech® DNA
SL, Madrid, Spain), according to manufacturer instructions. The slide was left to dry at
room temperature and therefore stained for direct microscopic observation under light
microscopy. A minimum of 500 spermatozoa per sample were analyzed and scored.

2.7. Statistical Analysis

Results were analyzed using IBM SPSS for Windows software package version 22.0
(SPSS Inc., Chicago, IL USA). Dogs were divided in two groups according to their size:
medium (<25 kg) and large (<45 kg). This classification was performed since size affects
semen volume and total sperm count [46]. Groups were analyzed separately and then
grouped two by two (medium and large). Skewness test, Kurtosis test, Z value and Shapiro
test were performed to verify parameters distribution (parametric/non-parametric). Data
are presented as medians and interquartile (IQRs). The independent-sample t-test (Mann–
Whitney test) was used to compare medians of quantitative variables. Spearman’s test was
used to assess correlation between SGDM level and other seminal parameters. Statistical
significance was set at p ≤ 0.05.

3. Results

Median and IQR (5◦–95◦ percentile) body weight and age of the analysed dogs were
40 (15–60) kg and 3 (1.3–8.5) years, respectively. Median and IQR values for qualitative and
quantitative seminal parameters were as follow: semen volume 7 (2.3–11.5) mL; sperm con-
centration 50 (14.2–157.5) × 106/mL; total sperm count 334.5 (114.2–996.1) × 106/ejaculate;
progressive sperm motility 75 (25.5–95) %; normal sperm morphology 76 (50–82)%; sperm
head area 17.1 (12.9–18.9) µm2; SDF 2.6 (0.9–8.7) % (Table S1). Prevalence of oligozoosper-
mia, asthenozoospermia and teratozoospermia were 46% (14/30), 34% (10/29) and 20%
(6/29), respectively. When evaluating SGDM we found a value of 6.8 (1.3–24.9) %, ranging
from 1.2 and 30.5% (Table S1). When analyzing data dividing the dogs according to their
size (medium and large) a statistical difference was observed in body weight (p < 0.0001),
as expected, and in total sperm count (p < 0.05) (Table S2). The Skewness test, Kurtosis test
and Z value and Shapiro test showed that data were non-parametric distributed. According
to Spearman’s rank coefficient (Table S3), a regular positive correlation was found between
body weight and sperm concentration (r = 0.5; p < 0.005) and between body weight and
total sperm count (r = 0.6; p < 0.05) (Figure S1) while a regular positive correlation and a
strong positive correlation were found between SGDM percentage and sperm concentration
(r = 0.4; p < 0.05), and total sperm count (r = 0.6; p < 0.001), respectively (Figure 1). SGDM
percentage was significantly lower in oligozoospermic dogs, when compared to those with
total sperm counts above the normality threshold (4.3% vs. 8.7%; p < 0.005) (Figure 2),
whereas no significant difference was found in SGDM percentage when stratifying animals
based on progressive sperm motility or sperm morphology normality thresholds. A further
analysis, performed dividing the samples according to dog’s size (medium and large),
showed a strong positive correlation between SGDM percentage and sperm concentration
in medium (n = 11) and large (n = 19) sized dogs (r = 0.6, p < 0.05; r = 0.4, p < 0.05) and
a strong positive correlation between SGDM percentage and total sperm count in large
(n = 19) sized dogs (r = 0.7, p < 0.0001) (Figure 3). Based on the same dog’s size grouping,
SGDM was assessed in oligozospemic and non-oligozospemic dogs. The prevalence of
oligozoospermia in medium sized and large sized was 63% (7/11) and 36.8% (7/19), re-
spectively. The SGDM percentage was overall lower in oligozoospermic dogs compared to
those with total sperm counts above normality threshold in all groups, with a statistically
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significant difference in large sized dogs (4% vs. 9.8%; p < 0.005), but not in medium sized
(4.6% vs. 7.2%) (Figure 4).
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significant difference (** p < 0.005).

4. Discussion

Defects of SGDM level have been related in humans and in animal models (i.e.,
rodents) to sperm DNA damage and defective spermatogenesis [18,47]. Houshdaran
et al. [48] reported that poor semen quality samples displayed an abnormal global DNA
sperm hyper-methylation, as assessed by the analysis of repetitive elements, and locus-
specific sperm DNA at imprinted and non-imprinted genes. Conversely, the majority
of studies showed an abnormally reduced SGDM in poor semen quality samples. Most
studies demonstrated that SGDM level is associated not only with sperm concentration
but also with sperm motility: oligozoospermic and severely asthenozoospermic men have
significantly lower levels of SGDM, compared to normozoospermic men or men with
moderately impaired motility [35,47,49].

Sperm Global DNA hypomethylation, in particular, is associated with fertility alter-
ations in humans with normal and abnormal seminal parameters [47]. Up to now no
data are available about SGDM in dogs, a species whose breeding is of strong interest,
and which at the same time is considered an important study model for human with
which it often shares domestic environment, lifestyle and exposure to pollutants. The first
main data were the absence of statistical differences among average age of the dogs when
grouped according to their size, indicating that the groups were homogeneous by age.
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This prevented that aging could impact the differences eventually observed among groups
in SGDM percentage (Table S1) [50]. Data reported in this study showed a relationship
between dog size and sperm concentration and total sperm count; thus, the larger the
dog is, the higher is the number of produced spermatozoa. As regards sperm head area,
no significant differences were found among dogs grouped according to their size, and
values of this parameter ranged between 12.2 and 19.4 µm2. The relationship between dog
size and sperm concentration and total sperm count is in line with previous observation
and it is due to the higher volume of testes of the larger dogs [51]. Moreover, this study
showed, for the first time, a relationship between SGDM measured as % 5-mc and seminal
parameters in healthy dogs which had fathered at least one litter. According to statistical
analysis overall levels of SGDM correlated positively to sperm concentration and total
sperm count, both in the general population and in dogs grouped according to size. SGDM
was significantly lower in oligozoospermic dogs, compared to those with total sperm
counts above the normality threshold (>300 × 103), in the general population, as well
as in both the group of medium and large sized dogs. SGDM percentage was lower in
oligozoospermic vs non-oligozoospermic medium sized dogs, although this difference was
not statistically significant, probably due to small sample size of the two groups; in fact, in
the group of large dogs which had double the number of dogs, SGDM was significantly
different between oligozoospermic vs non-oligozoospermic dogs, with oligozoospermic
dogs displaying a significantly lower SGDM percentage.

These results suggest that epigenetic changes, specifically SGDM, might be used
as a marker of testis function and spermatogenesis in dogs. It can be hypothesized
that higher SGDM levels might correspond to improved spermatogenesis. This is in
line with data reported in humans, showing a lower level of SGDM in oligozoospermic
men [16,30,33–35,47,52]. The positive correlation, found in this study, between SGDM and
sperm concentration and total sperm count suggest that improper DNA methylation might
be associated with spermatogenesis alterations that reduce the number of spermatozoa.
This is also confirmed by the differences in methylation percentage observed between
oligozoospermic and non-oligozoospermic.

5. Conclusions

To the authors’ knowledge, this is the first report in which a correlation of SGDM
percentage with conventional semen parameters in dogs is shown. The finding of a similar
correlation between methylation levels and seminal parameters in humans and dogs shows
that the latter can be used as a valid animal model for sperm methylation studies. In
particular, it would be interesting to verify also in this species the correlation between
SGDM percentage and outcome of assisted reproduction techniques, recurrent pregnancy
loss, etc. Finally, future studies should be aimed at evaluating the relationship between
SGDM and other factors potentially affecting dog semen quality and fertility, to verify if
it could be used as further analysis to be added to conventional seminal parameters in
order to increase their predictive value for the dog reproductive performances. Moreover,
considering that aberrant DNA methylation and chromatin compaction may result in
inherited genomic errors, a wider implication of study results might comprise the role of
epigenetic changes in congenital diseases affecting the offspring.
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