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Abstract: Mucociliary clearance (MCC) is a dominant component of pulmonary host defense. In
health, the periciliary layer (PCL) is optimally hydrated, thus acting as an efficient lubricant layer
over which the mucus layer moves by ciliary force. Airway surface dehydration and production of
hyperconcentrated mucus is a common feature of chronic obstructive lung diseases such as cystic
fibrosis (CF) and chronic bronchitis (CB). Mucus hydration is driven by electrolyte transport activities,
which in turn are regulated by airway epithelial purinergic receptors. The activity of these receptors
is controlled by the extracellular concentrations of ATP and its metabolite adenosine. Vesicular and
conducted pathways contribute to ATP release from airway epithelial cells. In this study, we review
the evidence leading to the identification of major components of these pathways: (a) the vesicular
nucleotide transporter VNUT (the product of the SLC17A9 gene), the ATP transporter mediating
ATP storage in (and release from) mucin granules and secretory vesicles; and (b) the ATP conduit
pannexin 1 expressed in non-mucous airway epithelial cells. We further illustrate that ablation of
pannexin 1 reduces, at least in part, airway surface liquid (ASL) volume production, ciliary beating,
and MCC rates.

Keywords: ATP release; airway epithelia; mucociliary clearance; pannexin 1; vesicular nucleotide
transporter

1. Introduction

The mucus gel layer covering the airway surface periciliary layer (PCL) traps inhaled
materials and acts as a reservoir for water, buffering hydration of the PCL for needed cell
surface lubrication and efficient ciliary beating [1]. When the hydration of the airway sur-
face liquid (ASL) decreases, the mucus becomes hyperconcentrated, the PCL collapses, and
the “thickened” mucus layer adheres to the cell surface, causing plaque/plug formation.
Mucus stasis produces the airflow obstruction, infection, and inflammation characteristic
of chronic obstructive lung diseases, including cystic fibrosis (CF) and chronic bronchitis
(CB) [2–5]. Airway surface hydration is maintained by water fluxes mainly driven by active
Cl− and Na+ transport. Mutations in the CF transmembrane conductance regulator (CFTR)
gene that result in abnormal CFTR Cl− channel expression/activity are also associated with
exacerbated Na+ absorption [6] and lead to ASL volume depletion in CF. The processes
leading to mucus dehydration in non-CF lung diseases are incompletely described, but
recent evidence suggests that prolonged cigarette smoke exposure reduces CFTR expres-
sion, induces CFTR internalization, and disrupts CFTR channel function, leading to ASL
dehydration. Thus, cigarette smoke-induced CFTR dysfunction likely contributes to the
onset of CB [7–9].

2. Purinergic Receptors Promote MCC Activities

Cl− and Na+ transport activities in the airways are regulated by ASL concentrations
of ATP and its metabolite adenosine acting on Gq-coupled P2Y2 receptors (P2Y2R) and
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Gs-coupled A2BR, respectively, expressed in non-mucous cells [10]. As summarized in
Figure 1, the A2BR promotes cyclic AMP-regulated CFTR Cl− secretion, whereas the P2Y2R
promotes Cl− secretion [via Ca2+ activated Cl− channel (CaCC)/TMEM16 [11–13], protein
kinase C (PKC)-mediated CFTR activation [14], and Ca2+-activated adenylyl cyclase I
leading to cyclic AMP-mediated CFTR activation [15]]. In addition, the P2Y2R contributes
to airway surface hydration by inhibiting Na+ absorption via phospholipase C-catalyzed
depletion of phosphatidylinositol 4,5-bisphosphate [16–18].
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Figure 1. Purinergic regulation of mucus hydration and clearance The A2BR imparts cyclic AMP-regulated CFTR Cl−

channel activity, while the P2Y2R promotes Cl− secretion via CaCC/TMEM16 and inhibits Na+ absorption. The P2Y2R also
promotes CFTR-mediated Cl− secretion PKC as well as Ca2+-promoted cyclic AMP formation.

In addition to ion transport regulation, activation of A2B and P2Y2 receptors results in
increased ciliary beating [19–21]. The P2Y2R also promotes mucin secretion from goblet
cells [19].

3. Nucleotide Homeostasis in the Airways

Nucleotide release and hydrolysis rates must be finely balanced to control ATP and
adenosine levels in ASL. Once released, ATP can interact with P2Y2R and be rapidly
converted to adenosine by cell surface ectonucleotidases. Adenosine accumulates in ASL
at levels capable of promoting A2BR/CFTR-dependent water transport in normal cells [22].
Due to the CFTR defect, the A2BR/cyclic AMP/CFTR mechanism is impaired in CF and,
likely, in cigarette smoke-induced CB. Intriguingly, due to hydrolysis, ATP steady state
levels are suboptimal to promote P2Y2R-mediated fluid secretion and, therefore, the CFTR-
independent mechanism of airway hydration downstream of P2Y2R does not optimally
hydrate CFTR-deficient epithelia [23].

Initial evidence for the purinergic control of ion/water secretion emerged from
studies illustrating that: (a) baseline CFTR activity in Calu-3 lung epithelial cells was
blocked by A2BR antagonists [24]; (b) apical addition of adenosine deaminase to primary
cultures of naïve human bronchial epithelial (HBE) cells resulted in a CF-like ASL vol-
ume depletion [22]; and (c) the ASL height measured in CF HBE cells subjected to shear
stress-promoted ATP release is markedly reduced following the addition of the ATPase
apyrase [25]. Button and co-workers demonstrated that the hydration status of mucus
correlated directly with the luminal rates of ATP release [26].
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Relevant to CF, substantial literature, including our own studies, indicates that airway
epithelial ATP release rates are not reduced in CF [22,25,27–30]. Notably, ATP release
increased in HBE cells exposed to inflammatory stresses relevant to CF [27]. Furthermore,
total nucleotide levels, in particular ADP and AMP, were found markedly elevated in
CF lung secretions while ATP levels were reduced concomitantly with increased ATPase
activity [23]. ATP concentrations also were reduced in CB lung secretions due to increased
ATP hydrolysis activity [31]. These observations suggest that mucus dehydration and
inflammation in CF and CB airways are associated with increased ATP metabolism leading
to reduced ASL ATP levels [23,31]. Therefore, inhibition of ATP hydrolysis in CF and CB
could be an approach to increase steady-state ATP levels on airway surfaces to restore
airway hydration via P2Y2R-promoted activation of Cl− secretion and inhibition of Na+

absorption. The recent identification of the polyoxometalate POM-5 as a potent and
effective inhibitor of ATPase activities in airway epithelial cells and lung secretions [23]
provided a useful tool to test this hypothesis. As we have recently shown, administration
of POM-5 to CF HBE cells results in sustained, increased steady-state ATP levels in airway
surfaces and enhanced ASL volume production [23].

4. Vesicular and Conductive Pathways of Airway Epithelial Nucleotide Release

Given the important role of released nucleotides in the control of airway surface
hydration and mucus clearance, the mechanisms of nucleotide release by airway epithelia
have been intensively investigated. Airway epithelial cells were initially shown to release
ATP acutely, in response to mechanical stimuli, such as plate tilting or touching of the
epithelium [28], and a medium change [30]. It has since been well-established that epithelial
cells release discrete amounts of ATP constitutively [22,32] and that enhanced ATP release
occurs following pharmacological challenges [33,34] or controlled mechanical stimuli, such
as hypotonic cell swelling (16,50) or phasic motion that mimics the shear stress that is
associated with normal tidal breathing (51). The diversity of conditions in which airway
epithelial nucleotide release was observed suggested that different mechanisms (perhaps
cell- and stimulus-specific) are involved [25,27,32–39]. For example, the mechanical strain
exerted on the cilia via interaction with the overlying mucus layer promotes ciliated cell
ATP release [26].

Non-lytic mechanisms for ATP release may include regulated exocytosis, which typi-
cally requires intracellular Ca2+ and/or conductive/transporter pathways [40]. Primary
cultures of naïve HBE cells, which are dominated by ciliated cells, exhibited robust re-
lease of ATP upon hypotonicity-induced cell swelling, and this release was, largely, not
affected by chelation of the intracellular Ca2+ or by pharmacological inhibition of the
secretory pathway [27,35,37], suggesting a conductive mechanism. However, HBE cells ex-
posed to inflammatory challenges that promote goblet cell hyperplasia exhibited enhanced
hypotonicity-induced ATP release, which was prevented by intracellular Ca2+ chelation
and by reagents that disrupt vesicle trafficking/exocytosis [27,35]. Furthermore, agents that
increase intracellular Ca2+ in HBE cells, such as ionomycin and UTP, caused a minor release
of adenine nucleotides and mucins in naïve cultures, but ionomycin- and UTP-promoted
ATP release and mucin secretion increased markedly in goblet cell-hyperplasic cultures [35].
Studies with goblet cell-rich Calu-3 cells demonstrated that mucin secreting cells release
nucleotides as co-cargo-molecules from mucin-containing granules [34,36].

Thus, functional data suggested that conducted and vesicular pathways contribute to
ATP release from airway epithelial ciliated and goblet cells, respectively. Major components
of these pathways have been identified at the molecular label: (a) pannexin 1 is an ATP re-
lease conduit expressed in non-mucous airway epithelial cells [41,42]; and (b) the vesicular
nucleotide transporter VNUT [the product of the SLC17A9 gene [43]] is the ATP transporter
mediating ATP storage in (and release from) mucin granules and secretory vesicles [44]
(Figure 2).
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Figure 2. ATP release pathways in airway epithelia. Cytosolic ATP is released from ciliated cells
via the plasma membrane channel PANX1. VNUT transports cytosolic ATP into Goblet cell mucin
granules (MG). ATP and its metabolites within MG are secreted concomitantly with mucins.

5. VNUT Mediates ATP Release from Mucin Granules and Vesicles

Our initial studies with goblet cell-rich airway epithelia established an association
between nucleotide release and mucin secretion [35,36]. Calu-3 cells, a lung epithelial cell
line comprised by a mixed population of non-mucous and mucin granule-rich (goblet)
cells [36], exhibit both pannexin 1-mediated ATP release in response to cell swelling [41]
and Ca2+ (ionomycin)-regulated vesicular release of nucleotides that correlates with mucin
secretion [36]. Furthermore, the potent mucin secretagogue thrombin promoted robust
nucleotide release in Calu-3 cells after complete inhibition of pannexin 1 [34]. Strikingly,
ADP and AMP were the most abundant species accumulating in thrombin-stimulated
Calu-3 cells, following pannexin inhibition. The data suggested that mucin granules store
(and release) nucleotides. Analysis of the nucleotide composition in mucin granules isolated
from Calu-3 cells supported this hypothesis. Notably, ADP, AMP, and ATP represented
60%, 30%, and 10% of the intragranular nucleotide pool, respectively [34], supporting the
notion that ADP and AMP are the predominant nucleotide species released with mucin
granules.

The identification by Moriyama and co-workers of SLC17A9/VNUT as the nucleotide
transporter that transfers cytosolic ATP into secretory granules [43] provided a tool to in-
vestigate the association of mucin secretion and nucleotide release. VNUT mRNA was am-
plified in Calu-3 cells and strong VNUT immunoreactivity was observed in these cells [44].
Ca2+-regulated nucleotide release from Calu-3 cells was blunted after treatment with in-
hibitors of the secretory pathway and by downregulation of VNUT by shRNA [36,44].
Calu-3 cell fractionation yielded a VNUT immunoreactivity-rich fraction that sedimented
with mucin granules. The relative distribution of ADP, AMP, and ATP within mucin gran-
ules was similar in control and VNUT shRNA-treated cells, but the total nucleotide pool
was markedly reduced following VNUT knockdown [44]. This observation is consistent
with the notion that VNUT transports ATP into mucin granules, but ATP is rapidly me-
tabolized within the granular compartment [34,44] (Figure 2). Release of predominantly
ADP and AMP from mucin granules minimizes autocrine, P2Y2R-mediated feedback for
mucin secretion. Importantly, released AMP and ADP provide a source for adenosine
formation leading to paracrine regulation of the ion/water transport activities needed for
the hydration of newly released mucins.

In addition to mucin granules, VNUT immunoreactivity was observed in lysosome-
rich and endoplasmic reticulum/Golgi-rich fractions isolated from Calu-3 cells [44]. Fur-
thermore, confocal microscopy analysis of Calu-3 cells transfected with Myc-tagged VNUT
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revealed strong Myc immunoreactivity that co-localized with the mucin granule marker
MUC5AC as well as vesicular compartments that stained negative for MUC5AC [44].
Our studies with inflamed airway epithelial cells suggest that a vesicular ATP pool can
be released from cells independently from mucins. HBE cells exposed for two days to
SMM (sterile supernatant from mucopurulent CF lung secretions) exhibited increased
hypotonicity-promoted ATP release that was independent of pannexin 1 activation, was
blocked by inhibitors of the secretory pathway, and was associated with increased VNUT
expression, but was not accompanied by mucin secretion [27]. In line with these data,
vesicular nucleotide release has been reported with cells lacking biochemically or mor-
phologically defined secretory granules, e.g., lymphocytes [45], rat hepatoma cells [46],
cholangiocytes [47], and lung carcinoma A549 cells [48–50].

Collectively, these observations suggest that VNUT transports ATP into (a) mucin
granules in goblet cells, contributing to nucleotide release in mucin secreting cells, and
(b) an unidentified vesicular compartment competent for regulated exocytosis in inflamed
airway epithelia.

6. Pannexin 1 Mediated-ATP Release

The report by Dahl and co-workers that pannexin 1 acted as a plasma membrane
ATP channel when overexpressed in Xenopus oocytes [51] triggered major interest in
assessing the involvement of this channel in the release of ATP from mammalian cells,
including airway epithelial cells. In 2009, Ransford et al. reported that ATP release from
hypotonically swollen HBE cells was markedly inhibited by pannexin channel blockers
or by knocking down pannexin 1 via shRNA [42]. Confocal images revealed pannexin 1
immunoreactivity at the apical membrane of most ciliated cells (the most abundant cell type
in these cultures) although expression was not limited to these cells [42]. Simultaneously,
we reported that activation of protease-activated receptors (PAR) in HBE cells resulted in
enhanced release of ATP and enhanced uptake of the pannexin 1 permeant dye propidium
iodide, and these responses were inhibited by the pannexin 1 blocker carbenoxolone [33].
Unambiguous assessment of the contribution of pannexin 1 to airway epithelial ATP
release was subsequently obtained in our lab, using pannexin 1 knockout (Panx1 KO)
mice. Utilizing a perfusion approach to assess ATP levels in tracheal luminal secretions
under controlled flow conditions, we reported that ATP release from wild-type (WT)
tracheas increased up to six-fold following a brief exposure to hypotonicity. In contrast,
Panx1 KO animals exhibited impaired hypotonicity-evoked ATP release, and similar data
were obtained with tracheal epithelial cell cultures from these mice [41]. In line with our
studies, Workman et al. have recently illustrated that mechanical stimulation (via air puffs)
of cultured WT murine nasal epithelial cells resulted in robust ATP release, which was
markedly attenuated by the pannexin 1 inhibitor carbenoxolone and was greatly reduced
(although not abolished) in cells from Panx1 KO mice [52].

It is worth noting that ATP release conductive pathways additional to pannexin 1 have
been described. For example, in the above-cited work, Workman and collaborators reported
that, similar to Panx1 KO cells, cells from mice lacking CALHM 1 [Ca2+ homeostasis
modulator 1] exhibited reduced air puff-promoted ATP release. The authors concluded
that pannexin 1 and CAHLM1 play complementary roles regulating ATP release in nasal
epithelia [52]. CALHM 1 was initially describe as an ATP channel mediating taste-evoked
ATP release from taste buds [53], but its expression in lower airway epithelia remains to be
investigated. It has been recently shown that overexpression of ABCG1 (ABC subfamily G
member 1) in HEK-293 cells confers enhanced hypotonicity-induced ATP release through
volume-regulated anion channels (VRACs) [54]. However, the contribution of this pathway
to airway epithelial ATP release is not known.

7. Pannexin 1 KO Mice Exhibit ASL Dehydration and Deficient Mucociliary Clearance

Capitalizing on the availability of Panx1 KO mice, we investigated the contribution
of pannexin 1 to mucociliary clearance (MCC) activities. First, we evaluated the role of
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pannexin 1 in the regulation of airway surface hydration. ASL height was assessed in
primary cultures of murine tracheal epithelial (MTE) cells, as an index of ASL volume
production [26]. Under resting conditions, ASL height, as surrogate of the hydration
status of the airway luminal surface [55] was similar in WT and Panx1 KO cell cultures.
However, when MTE cells were subjected to oscillatory shear stress [which mimics the
phasic mechanical motion of the lung in vivo and results in increased ATP release [25,38,39]]
ASL height increased in WT cells, but not in cells from Panx1 KO mice (Figure 3A). These
observations suggest that ASL height in static murine airway epithelia is not controlled by
pannexin 1, but pannexin 1 promotes airway surface hydration under conditions relevant
to the mechanical stresses exerted in normal lung physiology [25]. Ciliary beat frequency
(CBF) and mucociliary transport rates were subsequently measured in murine tracheas in
situ. CBF remained unchanged over time in WT mice but was markedly and significantly
lower in Panx1 KO mice after 15- and 20-min post euthanasia (Figure 3B). Lastly, utilizing a
fluorescence micro-bead clearance assay previously described [56], MCC rates were found
to be ~50% reduced in Panx1 KO mice, compared to WT mouse (Figure 3C).
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Collectively, these observations suggest that pannexin 1-mediated ATP release pro-
motes airway surface hydration and ciliary beating, thus contributing to MCC activities in
normal epithelia.

8. Summary and Conclusions

ATP and its metabolite adenosine present within the ASL, via activation of airway
epithelial purinergic receptors, regulate multiple components of the MCC. Major pathways
of nucleotide release and metabolism have been identified and their contribution to MCC
activities is beginning to be understood. ATP is released onto the luminal surface from:
(a) ciliated cells via the apical membrane channel pannexin 1; and (b) goblet cell mucin
granules and secretory vesicles via VNUT-mediated transport. Released ATP interacts with
the P2Y2R but is also rapidly converted to adenosine, which, in turn, promotes activation
of the A2BR. Both the P2Y2R and the A2BR regulate ASL volume production and ciliary
beating. Thus, decreased ATP release is predicted to result in defective MCC. Indeed, in
normal, ciliated cell-dominated airway epithelia, a reduction in ATP released via ablation
of pannexin 1 reduced, at least in part, ASL volume regulation, ciliary beating, and MCC
rates. However, mucus hyperproduction and inflammation are associated with increased
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VNUT-mediated nucleotide release, suggesting that secretion of nucleotides from mucin
granules and vesicles drives the hydration of newly secreted mucins. The extent to which
pannexin 1- and VNUT-mediated nucleotide release contributes to mucous hydration
in vivo in healthy and diseased airways is intensively investigated.

Due to the CFTR defect, the A2BR/cyclic AMP/CFTR-dependent mechanism of fluid
secretion is impaired in CF and likely in cigarette smoke-induced CB. Intriguingly, due
to hydrolysis, ATP steady-state levels are suboptimal to promote P2Y2R-mediated water
secretion and, therefore, the CFTR-independent mechanism of airway hydration down-
stream of P2Y2R does not optimally compensate for the CFTR defect. Therefore, reducing
the rates of hydrolysis of released ATP is predicted to facilitate airway surface hydration in
CFTR-deficient airways.

9. Methods

Wild-type and Panx1 KO mice were on C57BL/6 background, as previously de-
scribed [41]. Mice 4 months of age and both genders were used. Mice were housed in
individually ventilated micro-isolator cages, in a specific pathogen-free facility maintained
at the University of North Carolina at Chapel Hill, on a 12-h day/night cycle. They were
fed a regular chow diet and given water ad libitum.

MTE cells from WT and Panx1 KO mice. Cells were harvested from tracheas from
6–8 WT and Panx1 KO mice and grown to confluence in ASL for 10 days, as described
(39). ASL height was measure by confocal microscopy, as in [26]. For these studies,
oscillatory shear stress was applied at 0.5 dynes/cm at 14 cycles per minute, as previously
described (25).

CBF was measured in situ in the closed trachea, immediately after exsanguination
of the mouse anesthetized with 3% isoflurane. For the tracheal preparation, the skin
was opened, the muscle and connective tissue overlying the trachea were retracted and
the exposed trachea was covered with a piece of plastic wrap dipped in water equili-
brated mineral oil. This preparation was immediately placed under a dissecting scope
(10× magnification) outfitted with a digital camera (Basler, Germany) interfaced with
Basler software. The preparation was lighted with a DC red light allowing light reflected
from the beating cilia to be easily seen. The temperature of the preparation was closely mon-
itored using a temperature microprobe (T Type insect probe, Physitemp Inst., Clifton, NJ,
USA) placed alongside the trachea. The output from the temperature probe was displayed
digitally on a Physitemp TCAT-2ac Controller and a small ceramic heater (Wuhostam,
Shenzhen, China) positioned close to the preparation was used to maintain the temperature
of the preparation at 37 (±0.1) ◦C. Preparations were placed on an air table (TMC, Peabody,
MA, USA) to minimize vibrations that interfered with the CBF measurements. It took
approximately 3 min from the time of euthanasia until the preparation was under the scope
and data acquisition commenced. CBF was measured for a 2 s period at the indicated times
after euthanasia. The data were collected at 100 frames/second and analyzed using SAVA
software. CBF is reported as the mean of values from the three time points for each mouse.

MCC activities in the trachea were assessed using the fluorescence micro-bead clear-
ance assay previously described [56].
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