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ADF/cofilins are the major regulators of actin dynamics in mammalian cells. The activation of ADF/cofilins is controlled by a
variety of regulatory mechanisms. Dysregulation of ADF/cofilin may result in loss of a precisely organized actin cytoskeletal
architecture and can reduce podocyte migration and motility. Recent studies suggest that cofilin-1 can be regulated through several
extracellular signals and slit diaphragm proteins. Cofilin knockdown and knockout animal models show dysfunction of glomerular
barrier and filtration with foot process effacement and loss of secondary foot processes. This indicates that cofilin-1 is necessary
for modulating actin dynamics in podocytes. Podocyte alterations in actin architecture may initiate or aid the progression of a
large variety of glomerular diseases, and cofilin activity is required for reorganization of an intact filtration barrier. Since almost
all proteinuric diseases result from a similar phenotype with effacement of the foot processes, we propose that cofilin-1 is at the
centre stage of the development of proteinuria and thus may be an attractive drug target for antiproteinuric treatment strategies.

1. Introduction

Glomerular visceral epithelial cells (podocytes) play a central
role in maintenance of the Glomerular Filtration barrier
by preventing the loss of high-molecular-weight molecules.
The podocyte is a highly specialized and polarized cell
type that consists of three parts: the cell body, the primary
foot processes, and the secondary foot processes. The
interdigitating foot processes completely cover the outer
surface of the glomerular capillary and form a filtration
slit that is spanned by a membranelike structure; this
is called the slit diaphragm [1]. Actin filaments are the
structural backbone component of podocyte foot processes.
Protein complexes of slit diaphragm that regulate or sta-
bilize the actin cytoskeleton are therefore essential for the
maintenance of an intact glomerular filtration barrier [2].
When podocytes are injured, they undergo dramatic actin
cytoskeletal changes. These cytoskeletal changes lead to
retraction of secondary processes and loss of functional
filtration slits; this is termed foot process effacement. Foot
process effacement is a dynamic and reversible process that
contributes to the development of massive proteinuria in
human glomerular diseases [3].

Actin is one of the most abundant and highly con-
served proteins in many eukaryotic cells. It is involved in

many different cellular processes that are essential for cell
growth, differentiation, division, membrane organization,
and motility [4]. The dynamics of actin filaments (F-actin)
assembly/disassembly and organization in cells are regulated
by several actin-binding proteins, including the Arp2/3
complex, profilin, capping protein, and ADF/cofilins.

One of the dynamic processes in the cell that is controlled
by F-actin assembly and disassembly is the lamellipodium.
The lamellipodium of motile cell is predominantly com-
posed of actin filaments, meaning that regulation of actin
filament arrangement at the leading edge is necessary for the
cellular directional motility [5].

ADF/cofilins are ubiquitous among eukaryotes and are
essential proteins responsible for the turnover and reorga-
nization of actin filaments in vivo [6, 7]. Mammals express
three members of the ADF/cofilin (AC) family: actin depoly-
merising factor (ADF), nonmuscle cofilin (cofilin-1, Cfl1),
and muscle cofilin (cofilin-2, Cfl2). Cofilin-1 is expressed
in most cell types during development [8]. Cofilin-2 has
two splice variants (Cfl2a and Cfl2b); Cfl2b is expressed;
predominantly in muscle cells, while Cfl2a in several tissues
[9]. Expression of ADF is restricted to endothelia and
epithelia [8]. These three isoforms share similar but not
identical biochemical activities. Only cofilin-1 and ADF are
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expressed in cultured human and mouse podocytes, with
cofilin-1 being the predominant isoform [10, 11].

In this paper, we focus on the regulatory mechanisms of
ADF/cofilin proteins in the modulation of actin dynamics
in podocytes. We discuss how alterations in these processes
can lead to a common phenotype in large variety of human
glomerular diseases due to rearrangement of actin filaments
in podocyte foot processes.

2. Modulation of Actin Dynamics by
ADF/Cofilin

Actin filaments are a highly dynamic part of the cell
which undergoes constant assembly and disassembly. Actin
filaments are polymers that are composed of globular actin
subunits. Each subunit is structurally polar and arranged
head to tail to give the filament an overall structural polarity
[12]. ADF/cofilin proteins modulate the actin dynamics
during the mechanism of treadmilling.

Treadmilling is the dynamic process in which the overall
length of the filaments remains approximately constant, but
moves through growing at one end (plus, fast growing, or
barbed end) by association of ATP-actin subunits (ATP-G-
actin) and shrinking at the other end (minus, slow growing,
or pointed end) through disassociation of monomers by
ATP hydrolysis. When incorporated ATP-actin monomers
undergo hydrolysis of ATP to form ADP-actin; cofilin, which
displays greater affinity for ADP-actin, binds to ADP-actin
which dissociates from the actin filament and recycles back to
the monomer pool. ADF/cofilin proteins have the ability to
enhance the rate of ADP-actin disassembly from the pointed
end, which can be observed in the leading edge of motile
cells [13]. Moreover, binding of ADF/cofilins to ADP actin
filament destabilizes a twisted form of the actin filament
[14, 15] and promotes severing of the filaments into short
segments which increases the number of depolymerizing
ends [16]. ADF/cofilin molecules binding to ADP-actin
monomer can also inhibit nucleotide exchange to prevent its
entrance to a new polymerization cycle [17].

On the other hand, ADF/cofilin proteins can accelerate
spontaneous polymerization of monomers (nucleation) to
initiate a new filament [18]. Nucleation of new filaments
is dependent on ADF/cofilins concentration. At a low con-
centration, ADF/cofilin proteins have the highest-F-actin-
severing activity but F-actin is stabilized and aged by
ADF/cofilin decoration at higher concentration, and at a very
high concentration, cofilin is able to nucleate new filaments
[19]. This makes ADF/cofilin an important regulator not
only of actin depolymerisation but also of actin stability and
nucleation.

All three mammalian ADF/cofilin isoforms have a nu-
clear translocation sequence, perhaps enabling a ADF/
cofilin-actin complex to pass into the nucleus [20]. The actin
sequence lacks nuclear translocation signal but does have an
export sequence [21]. With a molecular weight of 42 kDa, it is
unlikely for actin to enter the nucleus by diffusion; therefore
it relies on ADF/cofilin as transporter proteins to mediate its
entry into the nucleus [21].

3. Regulation of ADF/Cofilins

In mammals phosphorylation of ADF/cofilin on Ser3 leads
to inactivation [22, 23] but does not alter the protein
conformation, while phosphorylation prevents G- and F-
actin binding and tends to stabilize F-actin by inhibiting the
ability of these protein to sever and depolymerize F-actin
[24].

Phosphorylation of ADF/cofilins is mainly regulated by
two kinase families, the LIM kinases (LIMK1, 2) [25, 26]
and testicular protein kinases (TESK1, 2) [27, 28]. TESK
expression is restricted to several tissues such as testis, brain,
kidney, heart, and lung [29]. The most well-known pathways
involved in the TESK activation are very different and mainly
mediated by integrins and adhesion dependent [27, 28, 30].
LIM kinases are ubiquitously expressed and are downstream
targets of small Rho-GTPases. Both LIMK1 and LIMK2, are
targets of Rho-GTPases (Rho and Cdc42) via Rho kinases
(ROCK1, ROCK2) and myotonic dystrophy kinase-related
Cdc42-binding protein kinase (MRCKα), respectively [31,
32]. LIMK1, but not LIMK2 can be activated by p21-
activated kinases (PAK1, PAK2, and PAK4), downstream
of Rac and Cdc42 activation [33, 34]. In addition, LIMK1
can be activated in a Rho GTPase-independent manner [35,
36]. These evidences suggest that small Rho GTPases might
regulate various actin-dependent cell functions through
ADF/cofilin activity to maintain the structure and physiolog-
ical function of adult kidneys.

ADF/cofilin can be dephosphorylated, and therefore
activated, by two phosphatases, the slingshot family (SSH1L,
SSH2L, and SSH3L) and chronophin (CIN) [37, 38]. CIN
is highly specific for cofilin but the upstream signalling
pathways remain a mystery [39]. SSH is the only known
phosphatase to dephosphorylate and inactivate both LIMK1
and LIMK2 which leads to activation of ADF/cofilin by
negative regulation of a negative regulator. Only a few reg-
ulatory pathways resulting in SSH activation have been ever
identified. The phosphatase activity of SSH1L is negatively
regulated via phosphorylation by PAK4 in different cell types
[40]. It suggests a negative regulation of Rac1 activation
on SSH and ADF/cofilin activity. In other cell types, SSH
is activated through integrin pathway via Rac1 activation
[41]. A colocalization of SSH and actin filaments together
with the locatized activation of SSH1L was observed in vitro,
indicating that assembly of F-actin can trigger the local
activation of SSH1L and therefore promotes cofilin-mediated
actin turnover in protrusive lamellipodia [42]. Some scaf-
folding proteins such as 14-3-3 can also participate in the
modulation of ADF/cofilin-activity through interaction with
SSH isoforms. Phosphorylation of SSH1L on serines 937 and
978 by protein kinase D (PKD) promotes the interaction of
14-3-3 with SSH1L and restricts its subcellular localization,
which may inhibit SSH activity in breast carcinoma cells
[42]. Furthermore, the activity of nonphosphorylated cofilin
can be inhibited by binding to phosphatidylinositol 4,5-
bisphosphate (PIP2), which prevents cofilin interaction
with actin, but phospholipase-C- (PLC-) mediated PIP2
reduction causes cofilin to be released to cell membrane
and to be activated [43]. As mentioned above, extracellular
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Figure 1: Regulatory pathways modulating cofilin phosphorylation and dephosphorylation Rho-GTPases are the predominant regulator
of cofilin kinases and phosphatases. Cofilin phosphorylation is mainly regulated by LIMK and TESK. SSH family is the most important
phosphatase that dephosphorylates cofilin directly or via LIMK inactivation. Phosphorylated cofilin can no longer bind and regulate the
F-actin dynamics via treadmilling, severing, or nucleation.

signals can regulate actin dynamics through ADF/cofilin and
its upstream regulators (Figure 1).

ADF/cofilin can also be mechanically controlled by
intracellular pH both in vivo and in vitro [44, 45]. Changes
in pH over the physiological range alter the severing capacity
of active ADF/cofilin in vitro, but interestingly ADF is more
sensitive to pH variation than cofilin [45]. Overall, the reg-
ulation of ADF/cofilin can be influenced by subcellular
localization of ADF/cofilin kinases and phosphatases and
synergistic-or competitive interactions of ADF/cofilins with
other actin-binding proteins (ABPs) [46].

4. Regulation of ADF/Cofilin
Activity in Podocytes

Experimental evidence indicates that nephrin, an Ig-G-like
protein which is specifically expressed in podocytes is also
engaged in regulating cofilin-1 and actin reorganization
[11]. Garg et al. demonstrated that cofilin-1 colocalized
at the plasma membrane with nephrin in vitro. Nephrin-
induced activation of phosphatidylinositol 3 kinase (PI3K)
is necessary for SSH1L dephosphorylation via an unknown

phosphatase. SSH1L activation leads to cofilin-1 activation
through LIMK dephosphorylation on Thr508 [40]. On the
other hand, dephosphorylation of SSH1L decreases the
affinity for 14-3-3, and the released SSH1L translocates to
the protrusive leading edge of podocyte to activate cofilin-1-
mediated actin remodelling. It still has to be clarified whether
PKD is also involved in this regulation pathway in podocytes.
Thus far no evidence was published that demonstrates that
PKD can regulate SSH1L activity in podocytes.

Cofilin-1 activity can also be altered in response to several
extracellular stimuli. Incubation of murine and human
podocytes with TGF-β, a podocyte stressor, leads to increased
cofilin-1 phosphorylation and decreased cofilin-1 activation
[10]. In contrast, when stimulated with phorbol 12-myristate
13-acetate (PMA), increased activation of cofilin-1 was
observed in murine and human podocytes. PMA activates
PKC, a well-known regulator of actin cytoskeleton dynamics
in large variety of cells [10]. Taken together, this suggests
that PKC may be also involved in the pathway of modulating
cofilin-1 activity. In human neutrophils, a PKC-dependent
phosphorylation of cofilin was observed, but the involved
PKC isoforms and the regulatory pathway remain to be
demonstrated [47].
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Experiments in vitro have proved that mechanical stress
can change the podocyte morphology and the actin orga-
nization [48]. Osmotic stress, a major mechanical stress,
has also been addressed to the cofilin-related regulation.
In kidney tubular cells, hyperosmotic stress induces cofilin
phosphorylation via Rho/ROCK/LIMK pathway and slightly
delays actin kinetics due to reduced cofilin activation [49].
This same pathway was also activated by high-glucose
treatment in cultured proximal tubular epithelial cells
(PTECs), resulting in time-dependent increases in p-cofilin
and pLIMK. Moreover, high glucose induced membrane
translocation of Rho and ROCK2, without altering the PI3K-
pathway, SSH1L, Rac/PAK, LIMK expression, or cofilin and
SSH1L regulation at both mRNA and protein levels [50].
These studies highlight the possibility that osmotic stress or
high glucose level may play a regulatory role in podocyte
actin cytoskeleton through altering cofilin phosphorylation.

The motility and migration of podocytes can therefore be
dramatically altered, when the expression level or activities of
kinases or phosphatases that regulate ADF/cofilin is varied.

5. Podocyte Injury Associated with
ADF/Cofilin Inactivation

The podocyte foot process contains a coordinated network
of actin filaments which are connected by a multiprotein
complex to the slit diaphragm and the glomerular basement
membrane (GBM) via adhesion proteins. Proteins regulating
or stabilizing the actin cytoskeleton are therefore essential for
the maintenance of glomerular filtration function [51–53].
Rearrangement of the actin cytoskeleton and dysregulation
of its associated proteins is the major cause of foot process
effacement and proteinuria [54]. Foot process effacement
can be observed in a variety of human and experimen-
tal glomerular diseases associated with massive protein-
uria, including minimal change disease, focal segmental
glomerulosclerosis (FSGS), membranous glomerulopathy,
IgA-nephropathy, diabetic nephropathy, and lupus nephritis
[55, 56]. Mutation of actin-binding proteins including α-
actinin-4, MYH9, INF2, and CD2AP in podocytes leads to
rearrangement of actin cytoskeleton, disruption of filtration
barrier, and subsequent kidney failure [57–61].

There is ever-increasing evidence indicating that ADF/
cofilins are the major regulators participating in actin
turnover and cytoskeletal reorganization to sustain an intact
podocyte foot processes. Different animal vertebrate models
like knockdown or mutation of cofilin-1 in zebrafish or
podocyte-specific knockout in mice have been performed to
confirm the affect of cofilin-1 deficiency in vivo. Deficiency of
cofilin-1 in zebrafish leads to a severe edematous phenotype,
effacement of podocyte foot processes, and dysfunction of
the glomerular filtration barrier indicating that cofilin-1 is
an indispensable factor for the integrity of normal podocyte
foot processes in zebrafish [10].

Mutant mice with podocyte-specific cofilin-1 dele-
tion show disruption of renal function and alteration in
podocytes foot processes at 6 months of age. The mutant
mice have severe proteinuria and indiscernible foot process

spreading. However podocyte foot processes remain intact in
newborn mutant mice [11]. The delayed set-on of protein-
uria and podocyte foot process effacement can be explained
by compensation of increased ADF isoform expression
during the early development of mutant mice. Some studies
revealed that the different isoforms of ADF/cofilin are not
completely redundant. ADF is efficient at turning over acti-
nafilaments, whereas cofilin-1 is a more effective nucleator
of new filament assembly [8, 62, 63]. However, due to the
differences in actin modulation functions, ADF can not com-
pletely compensate the lost function of cofilin-1 and it does
not stay continuously upregulated in the podocytes-specific
knockout mouse. Interestingly, proteinuria and phenotypic
changes coincide with downregulated ADF expression [11].

In vitro cofilin-1 deficiency does not lead to significant
changes in actin architecture in podocytes. Supression of
cofilin-1 expression in cultured podocytes resulted in a
limited breakdown and formation of new actin filaments
beneath the plasma membrane and loss of forward pressure
on the overlying membrane, which leads to a reduced
cellular migration activity, suggesting that cofilin-1 activity
is required for rapid actin turnover in the lamellipodial
protrusion and is necessary for directional cellular migration
activity in podocytes [10, 11]. However, regulation of actin
dynamics is not the only role of actin to maintain the
podocyte function. Obrdlik and Percipalle showed that
cofilin-1 is required for elongation of RNA polymerase-II-
mediated transcription through interaction with actin [64].
This study indirectly indicates that deletion or downregula-
tion of cofilin-1 might disrupt the transcription of nascent
genes that are essential for podocyte integrity.

Despite wide distribution of cofilin modulators genes,
deletion of these genes resulted in relatively mild phenotypes
in mice. Deficiency of LIMK-1 led to abnormalities in
synaptic structure and spine development, due to aberrant
regulation of the actin cytoskeleton in vivo [65]. LIMK-
2 knockout mice exhibited minimal abnormalities, while
the double LIMK-1/LIMK-2 null mice were more severely
impaired but not embryonic lethal [66]. These morpholog-
ical and functional changes were primarily observed in the
neuronal system, but still suggest the possibility that LIMK
deficiency might cause similar abnormalities in podocyte
structure and function. SSH3L knockout mice were made to
examine its potential roles in vivo. Unexpectedly SSH3L was
not essential for viability or development of epithelial tissues
[67]. An SSH1L or SSH2L deficiency in animal models or
human diseases was not yet reported.

Under pathological conditions in the kidney, alterations
of the extracellular milieu also change cofilin-1 activity. TGF-
β is described as a causative factor for initiation and pro-
gression of proteinuric diseases in mice and humans. TGF-
β accumulates in injured kidneys in experimental animal
models and chronic renal disease in humans [68, 69]. In
different disease states TGF-β activation induces a constant
cofilin-1 inactivation, which results in disruption of cofilin-
1-mediated actin dynamins and subsequently effacement of
podocytes and proteinuria. TGF-β is an important mediator
of progressive fibrosis, cell proliferation, and cell death in
glomerular diseases. TGF-β pathways also occupy a central



International Journal of Cell Biology 5

Cofilin

P

TGF-β

receptor

RTK

IntegrinNephrin

LIMK

High glucose

Osmotic stress

SSHL
PKC

Cell body

Primary foot
processes

Cofilin Cofilin

Cofilin

TGF-β

P

P

Figure 2: Central role of cofilin in podocyte effacement TGF-β or high-glucose stimulation triggers cofilin-1 phosphorylation.
Phosphorylated/inactivated cofilin-1 undergoes translocation from cytoplasma to nucleus and is therefore not able to bind and promote
F-actin rearrangement. Nephrin and integrin cluster or PKC activate the cofilin-1 via SSH1L activation. A rapid turnover of cofilin-1 is
essential for the actin cytoskeleton dynamics in podocyte to perpetuate podocyte integrity. Secondary foot processes of podocyte are not
shown here. Secondary foot processes are fine actin-rich processes that sprout out of primary processes and interdigitate with foot processes
of neighbouring podocytes.

position in signalling networks that control a diverse set
of cellular processes. Interestingly, the effects of TGF-β on
podocytes are concentration dependent [70]. Our group is
currently investigating whether TGF-β impairs directional
migration activity and leads to alternations in cytoskele-
ton arrangement in a concentration-dependent manner in
podocytes. As mentioned above, PMA and TGF-β have
opposite effect on cofilin phosphorylation. PMA has already
been shown to increase migration in several cell types [71,
72]. However, it is still unknown whether PMA can rescue
the dysfunction of TGF-β induced in podocytes.

Hyperglycemia is a prerequisite for development of dia-
betic nephropathty. Hyperglycemia induces increased osmo-
larity of blood serum. In diabetic mellitus the high glucose
level and hyperosmolarity could promote the Rho/ROCK
activation in podocytes, because abundant evidence identi-
fied high glucose and osmotic stress as stimulators of Rho-
ROCK signalling pathway [73–76]. It suggests that Rho acti-
vation can cause cofilin phosphorylation and inactivation in
podocytes. The disruption of actin dynamic via cofilin inac-
tivation dependent on the hyperglycemia and hyperosmotic
stress is one of the causative stimulators for the progressive
development of diabetic nephropathy. In addition, high glu-
cose level leads to increased expression of TGF-β [77], which
further enhances the cofilin inactivation and its nuclear
localization. In response to the stimulation by TGF-β,
phosphorylated cofilin-1 undergoes nuclear translocation in
both murine and human podocytes (our unpublished data).

In renal diseases associated with foot process effacement,
cofilin-1 was inactivated and translocated to the nucleus of
podocytes. Cofilin-1 is dephosphorylated and active under

normal homeostasis conditions. In contrast, when the pod-
ocytes undergo foot process effacement because of nephritic
glomerular diseases, cofilin-1 was found phosphorylated
(inactivated) and translocated to the nucleus of podocytes
[10] (Figure 2). This suggested that cofilin-1 can be a poten-
tial diagnostic marker to detect the injury of podocytes in the
glomerulus. The role of nuclear uptake of phosphorylated
cofilin is currently unknown. But some evidence indicates
that cofilin forms a complex with actin and DNaseI and
perhaps plays a role in DNA degradation and initiation of
apoptosis [78]. One of the new most interesting findings is
that even though cofilin-1 is constantly expressed through-
out podocytes, the phosphorylated form is not detectable in
the normal glomerulus in mice and humans indicating that
all of the cofilins are active. Only if proteinuria is present,
there is a dramatic increase in phosphorylated cofilin-1 and
nuclear translocation of phosphocofilin is detectable [10].
The expression of phosphorylated cofilin-1 in glomerular
diseases suggests a reduced capacity of podocytes to adapt to
glomerular pressure differences. A higher filtration pressure
and distension of the capillary wall can not be compensated
and leads to proteinuria.

Because the glomerular capillary pressure constantly
changes with blood pressure, it is likely that the foot pro-
cesses experience distension of the capillary wall. Therefore,
podocytes must be able to adapt to these changes to assure
a network of functional filtration slits. Cofilin-1 is therefore
necessary for foot process spreading by accelerating actin
turnover and gives the pushing force for the protrusive lead-
ing edge. When podocytes are injured, cofilin-1 is required
to restore the normal actin architecture of podocytes for
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recovery. Otherwise, this injury is not reversible and results
in renal diseases associated with podocytes effacement and
massive proteinuria. Thus, cofilin dephosphorylation might
be an attractive pharmacological target to ensure proper
actin turnover in proteinuric diseases which might help in
the recovery process of effacement.
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